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Background: Anorexia nervosa (AN) and bulimia nervosa (BN) poses a significant 
challenge to global public health. Despite extensive research, conclusive 
evidence regarding the association between gut microbes and the risk of AN and 
BN remains elusive. Mendelian randomization (MR) methods offer a promising 
avenue for elucidating potential causal relationships.

Materials and methods: Genome-wide association studies (GWAS) datasets 
of AN and BN were retrieved from the OpenGWAS database for analysis. 
Independent single nucleotide polymorphisms closely associated with 196 gut 
bacterial taxa from the MiBioGen consortium were identified as instrumental 
variables. MR analysis was conducted utilizing R software, with outlier exclusion 
performed using the MR-PRESSO method. Causal effect estimation was 
undertaken employing four methods, including Inverse variance weighted. 
Sensitivity analysis, heterogeneity analysis, horizontal multivariate analysis, and 
assessment of causal directionality were carried out to assess the robustness of 
the findings.

Results: A total of 196 bacterial taxa spanning six taxonomic levels were 
subjected to analysis. Nine taxa demonstrating potential causal relationships with 
AN were identified. Among these, five taxa, including Peptostreptococcaceae, 
were implicated as exerting a causal effect on AN risk, while four taxa, including 
Gammaproteobacteria, were associated with a reduced risk of AN. Similarly, nine 
taxa exhibiting potential causal relationships with BN were identified. Of these, 
six taxa, including Clostridiales, were identified as risk factors for increased BN 
risk, while three taxa, including Oxalobacteraceae, were deemed protective 
factors. Lachnospiraceae emerged as a common influence on both AN and 
BN, albeit with opposing effects. No evidence of heterogeneity or horizontal 
pleiotropy was detected for significant estimates.

Conclusion: Through MR analysis, we revealed the potential causal role of 18 
intestinal bacterial taxa in AN and BN, including Lachnospiraceae. It provides new 
insights into the mechanistic basis and intervention targets of gut microbiota-
mediated AN and BN.
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1 Introduction

Recent epidemiological studies indicate that 16% of global 
mortality can be  attributed to mental disorders, rendering them 
among the leading causes of disability and premature death worldwide 
(Murray et al., 2020; Arias et al., 2022). Eating disorders are one of the 
common types of mental disorders, exhibiting an age-standardized 
prevalence of 174.0 per 100,000 population. The prevalence of eating 
disorders in high-income countries is about three times the global 
average (GBD 2019 Mental Disorders Collaborators, 2022). Anorexia 
nervosa (AN) and bulimia nervosa (BN) represent the most prevalent 
types of eating disorders and are uniquely identified as psychiatric 
conditions with elevated mortality risk in the Global Burden of 
Disease Study 2019 (GBD 2019 Demographics Collaborators, 2020). 
A common feature of patients with both disorders is an excessive focus 
on weight and body shape and attempts to control weight. Patients 
with AN often adopt excessive behaviors to avoid weight gain, while 
patients with BN experience multiple overeating followed by 
inappropriate weight-compensating behaviors (Timko et al., 2019). 
Studies have suggested that AN and BN may share the same 
psychopathological features and have reciprocal transformations, 
manifesting as similar behaviors, such as impulsivity and compulsion 
(Howard et al., 2020).

Cognitive behavioral therapy is the first-line treatment for adults 
with AN and BN (Treasure et al., 2020). Nevertheless, a meta-analysis 
found that over 60% of patients failed to fully abstain from core 
symptoms even after receiving the best available treatments (Slade 
et al., 2018). Maudsley model and focal psychodynamic psychotherapy 
are also first-line treatments for adults with AN. For adults with BN, 
third-wave behavioral therapies are feasible attempts, such as 
dialectical behavior therapy, acceptance and commitment therapy. 
However, previous evaluations have shown little difference in efficacy 
between these therapies and cognitive behavioral therapy (Byrne et al., 
2017; Linardon et al., 2017). For adolescents with AN and BN, family-
based interventions are recommended as first-line treatments by 
international evidence-based guidelines (Hilbert et  al., 2017). 
However, a Cochrane review suggests that the evidence favoring 
family-based interventions over standard treatment or other 
psychological approaches is not very solid (Fisher et  al., 2019). 
Therefore, new treatments for AN and BN, such as the novel ghrelin 
receptor agonist, and transcranial direct-current stimulation are still 
worthy of in-depth research and exploration (van Passel et al., 2020; 
Solmi et al., 2021).

The gut microbiota intricately participates in various physiological 
processes crucial for human well-being, including metabolic 
regulation and immune homeostasis (Fujisaka et al., 2018; Chen et al., 
2022). Emerging evidence suggests that the microbiota and the central 
nervous system communicate bidirectionally via the microbiota-gut-
brain axis, thereby influencing the pathophysiology of psychiatric 
disorders (Agirman et al., 2021; Cryan and Mazmanian, 2022; Fan 
et al., 2023). A recent study found that, multiple bacterial taxa, such 
as Clostridium, were altered in AN and correlated with estimates of 
eating behavior and mental health (Fan et al., 2023). A systematic 
review provided a clearer picture of the gut microbiota characteristics 
of AN patients. Preserved alpha-diversity and decreased beta-diversity 
were found in the qualitative synthesis. Three gut microbes (Alistipes, 
Parabacterioides and Roseburia), are able to effectively differentiate 
patients from controls (Di Lodovico et  al., 2021). Analogously, 

investigations into BN have corroborated a potential association 
between gut microbiota and BN development. Different pathological 
behaviors may be associated with a reduction in microbial diversity 
and typical microbiota-derived metabolites (Castellini et al., 2023). 
These findings underscore the intertwined relationship between gut 
microbiota and the progression of AN and BN. However, the causal 
link between specific bacterial taxa and AN and BN necessitates 
further elucidation.

Conventionally, randomized controlled trials represent the gold 
standard for establishing causality. However, ethical dilemmas, 
compliance issues and difficulties in family coordination add 
additional challenges to the study of AN and BN, especially for 
adolescents (Frostad and Bentz, 2022; Tsiandoulas et  al., 2023). 
Mendelian randomization (MR) offers a pragmatic alternative 
approach for assessing causality by utilizing single nucleotide 
polymorphisms (SNPs) as genetic instrumental variables (IVs) to 
statistically infer the causal impact of exposures on outcomes 
(Kurilshikov et al., 2021). This method emulates the random allocation 
process, thereby mitigating the influence of confounding variables 
(Emdin et al., 2017). Moreover, since the microbiome does not induce 
alterations in an individual’s DNA sequence, analyzing the causal 
relationship between gut microbiota and AN and BN through MR 
studies holds practical clinical relevance (Thomas, 2019). In this 
investigation, we employed two-sample MR analysis to scrutinize the 
potential causal role of gut microbiota in AN and BN, delineated 
specific pathogenic bacterial taxa, and elucidated their similarities, 
disparities, and associated mechanisms.

2 Materials and methods

2.1 Study overview

According to the law of independent assortment, genetic variants 
will be randomly assorted to gametes during meiosis. MR analysis 
uses this law as a principle to simulate randomized controlled trials 
using SNPs as genetic IVs. Because of this, MR study is seen as an 
appropriate method for analyzing the causal effects of exposure on 
clinical outcomes.

In this study, each bacterial taxon contained in the gut microbiota 
was categorized as a separate exposure. Of all, 196 gut microbiota taxa 
were selected as exposures (Kurilshikov et al., 2021), AN and BN were 
defined as the outcome variable (Wade et al., 2013; Duncan et al., 
2017). Two-sample MR analysis was conducted using summary 
statistics from genome-wide association studies (GWAS) to discern 
which bacterial taxa were causally associated with AN and BN, 
respectively. The overall design of the study is shown in Figure 1.

The analysis adhered to three pivotal assumptions inherent to MR 
studies (Emdin et  al., 2017; Skrivankova et  al., 2021): (1) genetic 
variation in exposed populations correlates with the exposure of 
interest, (2) genetic variation remains independent of confounding 
variables, and (3) genetic variation influences outcomes solely through 
the exposure of interest. The causal relationship between exposure 
factors and outcome factors was confirmed by testing 3 hypotheses 
that confirmed an indirect relationship between IV and outcome 
variables and was achieved only by exposure factors. A detailed 
information chart is provided in Supplementary material (Skrivankova 
et al., 2021).
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2.2 Genetic association data screening for 
AN and BN

All SNP data related to AN and BN were sourced from the MRC 
IEU OpenGWAS data infrastructure (Lyon et al., 2021), developed by 
the MRC Integrated Epidemiology Unit at the University of Bristol. 
This repository aggregates genetic associations from 50,037 GWAS 
datasets, totaling 346,312,366,530 genetic associations. Considering 
sample size, sequencing depth, ethnicity, and data recency, GWAS 
datasets for AN and BN authored by Duncan et al. (2017) and Wade 
et al. (2013), respectively, were selected. These studies encompassed 
13 study cohorts with a combined sample size of 16,919 individuals, 
drawn from diverse pedigrees to mitigate bias 
(Supplementary Tables S1, S2).

2.3 The selection of IVs

The genetic IVs of each bacterial taxon were obtained from the 
MiBioGen consortium, which comprised 18,340 individuals from 24 
cohorts. The consortium utilized standardized analytical pipelines for 
both microbiota phenotype and genotype, ensuring uniform data 
processing methods. This approach was employed to mitigate 

potential variations introduced by technical differences in generating 
microbiota data (Kurilshikov et  al., 2021). This study used three 
different regions (V4: 10,413 samples, 13 cohorts, V3–V4: 4,211 
samples, 6 cohorts and V1–V2: 3,716 samples, 5 cohorts) (V: 
hypervariable region sequencing for identifying bacterial taxa) of the 
16S rRNA gene to analysis the composition of gut microbiota and 
identified genetic variants that influent the relative abundance of 
microbial taxa by use of microbiota Quantitative Trait loci mapping 
(Kurilshikov et  al., 2021). Following the removal of 15 unknown 
bacterial taxa, the final dataset encompassed 196 taxa 
(Supplementary Table S3).

SNP screening entailed the following criteria (Sanna et al., 2019): 
(1) genome-wide SNPs with significance (p < 1 × 10−5), (2) exclusion 
of weak IVs with an F-statistic <10, (3) linkage disequilibrium (LD) 
testing to ensure independence of selected IVs (r2 < 0.1 within a 500 kb 
range), and (4) removal of SNPs with incompatible or palindromic 
allele frequencies.

2.4 MR analysis and sensitivity assessment

MR analysis was conducted using R software (version 4.3.2) to 
evaluate the potential causal effect of gut microbes on AN and BN risk. 

FIGURE 1

Flow chart of the study. GWAS, genome wide association study; SNPs, single nucleotide polymorphisms; MR, Mendelian randomization; LD, linkage 
disequilibrium; IVW, inverse variance weighted.
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MR estimates for each SNP were derived using the Wald ratio method, 
with meta-analysis performed using four methods: Inverse variance 
weighted (IVW), MR Egger, weighted median, and weighted mode 
(Hartwig et al., 2017). The IVW method, recognized for its superior 
accuracy under practical conditions (Bowden et al., 2016), served as 
the primary analytical approach, supplemented by the other three 
methods. Bonferroni correction was applied at each taxonomic level 
(phylum, class, order, family, and genus) to account for multiple 
comparisons. MR estimates with p < 0.05 were considered statistically 
significant, while false discovery rate (FDR) p-values <0.05 denoted 
unequivocal significance. All estimates were expressed as odds ratio 
(OR) with a 95% confidence interval (CI) per standard deviation 
increase in the corresponding exposure.

The MR-PRESSO test was employed to identify outliers and 
address heterogeneity. In instances of detected heterogeneity among 
genetic IVs, outliers were eliminated, and MR analysis was 
re-executed. Sensitivity analyses were conducted via the leave-one-out 
method, Cochran’s Q statistic was utilized to assess potential 
heterogeneity, and the MR Egger intercept test was employed to 
estimate horizontal pleiotropy. Finally, the Steiger method facilitated 
causal directionality analysis to mitigate potential effects of 
reverse causation.

3 Results

3.1 Overview of genetic IVs

Multiple SNPs were considered for each of the 196 bacterial taxa, 
following stringent screening based on genome-wide significance 
thresholds, LD testing, and validation of the F statistic. Any SNPs 
identified as outliers by MR-PRESSO (global test: p < 0.05) were 
excluded. All retained SNPs exhibited F-statistics exceeding 10, 
indicating a robust correlation between the genetic IVs and the 
corresponding bacterial taxa. The final roster of retained SNPs and 
pertinent statistics are detailed in Supplementary Tables S4, S5.

3.2 Relationship of intestinal bacterial taxa 
to AN and BN

Among the 196 taxon phenotypes examined, stringent Bonferroni 
correction did not reveal any unequivocal and significant causal 
relationships between gut microbiome and the risk of AN or BN (FDR 
p < 0.05). Nevertheless, based on analyses employing the IVW method 
and three additional methods, we  ascertained potential causal 
relationships between certain intestinal taxa and the risk of AN or BN 
(p < 0.05).

As shown in Table 1, we identified nine taxa with potential causal 
relationships with AN. Among these nine taxa, Peptostreptococcaceae 
(IVW OR = 1.341, 95% CI 1.039–1.733, p = 0.024), Coprococcus3 (IVW 
OR = 1.563, 95% CI 1.084–2.252, p = 0.017), Escherichia Shigella (IVW 
OR = 1.490, 95% CI 1.109–2.003, p = 0.008), Lachnospiraceae NC2004 
group (IVW OR = 1.287, 95% CI 1.019–1.626, p = 0.034), 
Lachnospiraceae UCG010 (IVW OR = 1.363, 95% CI 1.018–1.825, 
p = 0.038) were determined to have a causal effect on AN risk. And 
Cyanobacteria (IVW OR = 0.724, 95% CI 0.563–0.930, p = 0.012), 
Gammaproteobacteria (IVW OR = 0.619, 95% CI 0.406–0.943, 

p = 0.026), Mollicutes RF9 (IVW OR = 0.740, 95% CI 0.584–0.939, 
p = 0.013), and Eubacterium brachy group (IVW OR = 0.778, 95% CI 
0.643–0.942, p = 0.010) trended toward a lower risk of AN. Among the 
other three MR analysis methods (MR Egger, weighted median, 
weighted mode), only the weighted median method for the 
Coprococcus3 and Lachnospiraceae NC2004 group and the MR Egger 
calculations for Escherichia Shigella were statistically significant. It is 
noteworthy that all these results are in agreement with the IVW 
calculation method for this group, which to some extent reflects the 
stability of the results.

The scatter plot (Figure  2) visualized the causal relationship 
between gut bacterial taxa and AN. Each point in the graph represents 
a SNP, and the short lines of the cross at each point reflect its 95% 
CI. The abscissa is the effect of the SNP on the exposure (gut microbe), 
and the ordinate is the effect of the SNP on the outcome (AN). The 
slash lines of different colors represent the MR fitting results of 
different calculation methods. A slope greater than 0 indicates that the 
exposure factor (gut microbe) is a disadvantage of AN. For the fitting 
results of different methods, the results of IVW are generally the main 
ones. As shown in Figure  2, except for Cyanobacteria and 
Lachnospiraceae NC2004 group, the results of the other MR analysis 
methods for the remaining seven taxa were in agreement with their 
respective IVW results. However, despite the inconsistencies between 
the MR Egger method results of these two gut microbes and the IVW 
method, the results of the IVW method remained robust due to their 
wide CIs and loss of statistical significance.

As shown in Table 2, we identified nine taxa with potential causal 
relationships with BN. Among these nine taxa, Clostridiales (IVW 
OR = 1.128, 95% CI 1.016–1.252, p  = 0.024), Bilophila (IVW 
OR = 1.114, 95% CI 1.021–1.214, p  = 0.015), Coprobacter (IVW 
OR = 1.085, 95% CI 1.005–1.171, p  = 0.037), Holdemania (IVW 
OR = 1.096, 95% CI 1.016–1.182, p  = 0.018), Ruminococcaceae 
UCG009 (IVW OR = 1.082, 95% CI 1.004–1.166, p  = 0.038), and 
Slackia (IVW OR = 1.101, 95% CI 1.004–1.208, p  = 0.041) were 
determined to be the increased risk of BN. While Rhodospirillales 
(IVW OR = 0.921, 95% CI 0.851–0.996, p = 0.038), Oxalobacteraceae 
(IVW OR = 0.937, 95% CI 0.890–0.985, p = 0.011), Lachnospiraceae 
UCG008 (IVW OR = 0.927, 95% CI 0.871–0.987, p  = 0.018) were 
identified as protective factors. Of the other three MR analysis 
methods, only the weighted median method for the Rhodospirillales, 
Oxalobacteraceae, Bilophila, and Holdemania were statistically 
significant. All of these results are consistent with the IVW calculations 
for this group, reflecting the stability of the study results. As shown in 
Figure 3, except for Rhodospirillales, Ruminococcaceae UCG009, and 
Slackia, the results of other MR analysis methods for the remaining 
six taxa were in agreement with their respective IVW results. However, 
the results of the IVW method remained robust due to the wide CIs 
and loss of statistical significance of the MR Egger method. It is worth 
noting that due to the relative shortage of SNPs in Slackia, the MR 
Egger method calculates too wide CIs, which to some extent reflects 
the disadvantage of the method being overly conservative.

3.3 Sensitivity analysis of MR results

Prior to conducting MR analysis, MR-PRESSO analysis was 
performed to exclude potential abnormal SNPs. Subsequent tests were 
undertaken to ensure the sensitivity of the findings and mitigate 

https://doi.org/10.3389/fmicb.2024.1396932
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yu et al. 10.3389/fmicb.2024.1396932

Frontiers in Microbiology 05 frontiersin.org

potential biases. The list of SNPs retained after the exclusion of 
aberrant SNPs by the MR-PRESSO method, along with relevant 
statistics, are presented in Supplementary Tables S4, S5. Further 
MR-PRESSO global test analysis revealed no outliers among IVs with 
significant causal relationships with AN or BN, as detailed in Table 3.

However, there might be  heterogeneity in IVs from different 
analysis platforms, experiments, and populations, which can affect 
the results of MR analysis (Cui et  al., 2023). To assess potential 
heterogeneity, Cochran’s Q statistic was computed, with all p-values 

exceeding 0.05, indicating the absence of heterogeneity in the study. 
This finding was corroborated by the results of funnel plot analyses 
(Supplementary Figures S1, S3). When IVs affect outcomes through 
factors other than exposure factors, they indicate that IVs are pleioty. 
Pleiotropy leads to the failure of the independence and exclusivity 
assumptions (Bowden et al., 2015; Verbanck et al., 2018). MR Egger 
intercept test results yielded p-values greater than 0.05, signifying the 
absence of pleiotropy in the study. Similarly, Steiger method analyses 
affirmed that all significant findings implicated gut microbiota in AN 

TABLE 1 Significant MR results of potential causal effect of gut microbiota on AN.

Level Exposure N SNPs Method OR 95% CI p-value

Phylum Cyanobacteria 8

IVW 0.724 0.563–0.930 0.012*

MR Egger 1.142 0.479–2.719 0.775

Weighted median 0.767 0.541–1.088 0.137

Weighted mode 0.545 0.299–0.994 0.088

Class Gammaproteobacteria 6

IVW 0.619 0.406–0.943 0.026*

MR Egger 0.533 0.141–2.011 0.406

Weighted median 0.645 0.376–1.108 0.113

Weighted mode 0.626 0.310–1.265 0.249

Order Mollicutes RF9 13

IVW 0.740 0.584–0.939 0.013*

MR Egger 0.776 0.381–1.580 0.498

Weighted median 0.760 0.549–1.053 0.099

Weighted mode 0.773 0.481–1.242 0.308

Family Peptostreptococcaceae 14

IVW 1.341 1.039–1.733 0.024*

MR Egger 1.436 0.805–2.561 0.244

Weighted median 1.288 0.914–1.814 0.148

Weighted mode 1.212 0.730–2.011 0.47

Genus

Coprococcus3 9

IVW 1.563 1.084–2.252 0.017*

MR Egger 3.927 1.072–14.381 0.078

Weighted median 1.704 1.036–2.804 0.036*

Weighted mode 1.902 0.868–4.168 0.147

Escherichia Shigella 10

IVW 1.490 1.109–2.003 0.008*

MR Egger 2.772 1.184–6.491 0.047*

Weighted median 1.384 0.924–2.072 0.115

Weighted mode 1.158 0.559–2.401 0.702

Eubacterium brachy group 9

IVW 0.778 0.643–0.942 0.010*

MR Egger 0.829 0.346–1.985 0.686

Weighted median 0.827 0.642–1.065 0.141

Weighted mode 0.861 0.599–1.239 0.444

Lachnospiraceae NC2004 group 9

IVW 1.287 1.019–1.626 0.034*

MR Egger 0.956 0.359–2.547 0.931

Weighted median 1.461 1.057–2.019 0.022*

Weighted mode 1.598 0.965–2.644 0.106

Lachnospiraceae UCG010 10

IVW 1.363 1.018–1.825 0.038*

MR Egger 1.879 0.881–4.005 0.141

Weighted median 1.256 0.858–1.839 0.240

Weighted mode 1.180 0.697–1.996 0.553

*Represents that p meets the significance threshold. N SNPs represents the number of SNPs being used as IVs; OR, odds ratio; CI, confidence interval; IVW, inverse variance weighted, MR, 
Mendelian randomization.
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or BN, with no evidence of reverse causality interference. Finally, 
sensitivity analysis employing the leave-one-out method 
demonstrated that the exclusion of any individual SNP did not 
substantially alter the results (Supplementary Figures S2, S4). These 
comprehensive analyses bolster the sensitivity and validity of the MR 
findings regarding the causal relationship between intestinal bacterial 
taxa and AN or BN.

4 Discussion

The escalating health and social burden attributed to eating 
disorders underscores the urgent need for effective treatments 

(Murray et al., 2020; Arias et al., 2022). It has been well-documented 
that eating disorders such as AN and BN interact with a range of 
mental and organic disorders (AlHadi et  al., 2022). Blocking the 
progression of AN and BN by modulating the gut microbiota and its 
metabolites has received widespread attention from clinical 
researchers (Jiao et  al., 2023; Himmerich and Treasure, 2024). 
However, the ethical dilemma and compliance problems in adolescent 
treatment add additional challenges to clinical research (Frostad and 
Bentz, 2022; Tsiandoulas et al., 2023). By leveraging genetic IVs, MR 
analysis facilitates a deeper understanding of the intricate interplay 
between gut microbiota and eating disorders, thereby offering 
promising avenues for targeted therapeutic interventions 
(Thomas, 2019).

FIGURE 2

Scatter plots of MR analysis of potential causal effect of 9 gut microbiota on AN. (A) Cyanobacteria, (B) Gammaproteobacteria, (C) Mollicutes RF9, 
(D) Peptostreptococcaceae, (E) Coprococcus3, (F) Escherichia Shigella, (G) Eubacterium brachy group, (H) Lachnospiraceae NC2004 group, 
(I) Lachnospiraceae UCG010. IVW, inverse variance weighted; AN, anorexia nervosa; MR, Mendelian randomization; SNP, single nucleotide 
polymorphism.
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Employing a two-sample MR analysis framework with GWAS 
datasets, we  identified nine bacterial taxa with potential causal 
associations with AN and nine bacterial taxa with potential causal 
associations with BN. A previous study found that core microbiota 
depletion signs were observed in patients with AN. Overrepresented 
taxa in patients taxonomically belonged to Alistipes, Clostridiales, 
Christensenellaceae, and Ruminococcaceae. And underrepresented 
taxa were Faecalibacterium, Agathobacter, Bacteroides, Blautia, and 

Lachnospira (Prochazkova et al., 2021). Similar studies have found that 
gut microbiota-associated metabolites, such as trimethylamine 
N-oxide (Wagner-Skacel et al., 2022), choline (Doose et al., 2023), 
serotonin (Hata et al., 2019), and p-cresyl sulfate (Miyata et al., 2021), 
in the onset and progression of AN and BN.

In this investigation, we identified five bacterial taxa, including 
Peptostreptococcaceae, Coprococcus3, Escherichia Shigella, 
Lachnospiraceae NC2004 group, and Lachnospiraceae UCG010, as 

TABLE 2 Significant MR results of potential causal effect of gut microbiota on BN.

Level Exposure N SNPs Method OR 95% CI p-value

Order

Clostridiales 10

IVW 1.128 1.016–1.252 0.024*

MR Egger 1.003 0.784–1.282 0.984

Weighted median 1.089 0.941–1.259 0.252

Weighted mode 1.077 0.900–1.288 0.438

Rhodospirillales 9

IVW 0.921 0.851–0.996 0.038*

MR Egger 1.055 0.687–1.620 0.813

Weighted median 0.908 0.825–1.000 0.049*

Weighted mode 0.906 0.806–1.019 0.137

Family Oxalobacteraceae 12

IVW 0.937 0.890–0.985 0.011*

MR Egger 0.970 0.757–1.244 0.817

Weighted median 0.906 0.844–0.972 0.006*

Weighted mode 0.891 0.788–1.007 0.092

Genus

Bilophila 10

IVW 1.114 1.021–1.214 0.015*

MR Egger 1.341 0.735–2.447 0.367

Weighted median 1.131 1.005–1.272 0.041*

Weighted mode 1.178 0.989–1.403 0.100

Coprobacter 7

IVW 1.085 1.005–1.171 0.037*

MR Egger 1.514 0.891–2.573 0.185

Weighted median 1.119 1.017–1.233 0.022*

Weighted mode 1.123 0.986–1.279 0.130

Holdemania 9

IVW 1.096 1.016–1.182 0.018*

MR Egger 1.094 0.699–1.712 0.705

Weighted median 1.103 1.002–1.215 0.045*

Weighted mode 1.104 0.986–1.236 0.125

Lachnospiraceae UCG008 9

IVW 0.927 0.871–0.987 0.018*

MR Egger 0.738 0.491–1.108 0.186

Weighted median 0.949 0.874–1.032 0.220

Weighted mode 0.957 0.845–1.083 0.505

Ruminococcaceae UCG009 9

IVW 1.082 1.004–1.166 0.038*

MR Egger 0.960 0.602–1.531 0.867

Weighted median 1.062 0.962–1.172 0.232

Weighted mode 1.043 0.925–1.175 0.513

Slackia 4

IVW 1.101 1.004–1.208 0.041*

MR Egger 0.451 0.001–163.645 0.816

Weighted median 1.094 0.973–1.231 0.135

Weighted mode 1.079 0.942–1.234 0.353

*Represents that p meets the significance threshold. N SNPs represents the number of SNPs being used as IVs; OR, odds ratio; CI, confidence interval; IVW, inverse variance weighted, MR, 
Mendelian randomization.
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potential causes for the increased risk of AN. The findings concerning 
Coprococcus and Escherichia Shigella align with those reported in a 
previous meta-analysis study (Zang et al., 2023). Hanachi et al. (2019) 
reported a decrease in the richness and diversity of gut microbiota in 
severely malnourished AN patients who received enteral nutrition. 
This study further identified a negative correlation between the 
severity of functional intestinal disorders in AN patients and 
Peptostreptococcaceae by 16S rRNA analysis. This seems to contradict 
our conclusion that Peptostreptococcaceae is a potential cause of 
AN. However, the abundance of Peptostreptococcaceae is influenced by 
a variety of factors. The abundance of Peptostreptococcaceae is 
increased in stool samples from patients with ulcerative colitis and 
colorectal cancer (Cheng et al., 2020). And it tends to decrease after 

probiotic consumption, suggesting that the abundance of 
Peptostreptococcaceae is easily influenced by food intake and probiotics 
(Hibberd et al., 2017; Zaccaria et al., 2023). This appears to explain the 
decrease in the abundance of Peptostreptococcaceae in patients with 
functional intestinal disorders of AN after receiving enteral nutrition, 
which is not related to the onset of AN. This finding underscores the 
intricate role of the intestinal microbiota in the interplay between AN 
pathogenesis and its accompanying symptoms.

Our investigation also revealed that four bacterial taxa, namely 
Cyanobacteria, Gammaproteobacteria, Mollicutes RF9, and 
Eubacterium brachy group, exhibited the potential to reduce the risk 
of AN. Previous 16S rRNA investigations have highlighted correlations 
between Eubacterium and AN (Hanachi et al., 2019; Yuan et al., 2022), 

FIGURE 3

Scatter plots of MR analysis of potential causal effect of 9 gut microbiota on BN. (A) Clostridiales, (B) Rhodospirillales, (C) Oxalobacteraceae, 
(D) Bilophila, (E) Coprobacter, (F) Holdemania, (G) Lachnospiraceae UCG008, (H) Ruminococcaceae UCG009, (I) Slackia. IVW, inverse variance 
weighted; BN, bulimia nervosa; MR, Mendelian randomization; SNP, single nucleotide polymorphism.
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but directional causality remains elusive, a view that is confirmed by 
our findings. These microbes are one of the major producers of 
butyrate and play an important role in immunomodulatory processes 
at the intestinal mucosal level, which may be  one reason for the 
reduced risk in AN patients (Yuan et al., 2022). Cyanobacteria are 
single-celled prokaryotes capable of oxygen-producing photosynthesis, 
which are mainly used in fields such as fertilizers and fuels (Arias 
et al., 2021). Recent studies have found that Cyanobacteria contains a 
variety of bioactive components that can induce autophagy and 
apoptosis, regulate epigenetic modifications, and exert antitumor 
effects (Bouyahya et  al., 2024). Xu et  al. (2019) found that 
Cyanobacteria were associated with neuropsychological behavior 
induced by long-term alcohol exposure, and the mechanism may 
be  related to the secretion of brain-derived neurotrophic factor. 
Depression-like behavior induced by a high-fat diet in mice is also 
associated with increased abundance of Cyanobacteria (Hassan et al., 
2019). Similarly, Gammaproteobacteria have been shown to 
be abundant in young adults with major depressive disorder, regardless 
of psychotropic medication (Liu et al., 2020). Mice exposed to chronic 
social defeat stress showed mild depressive-like behavior and an 
increase in the abundance of Mollicutes (Kosuge et al., 2021). And a 
study on anti-anxiety drugs found that (R)-ketamine might work by 
downregulating Mollicutes (Yang et al., 2017). Based on the available 
evidence, these gut microbes (Cyanobacteria, Gammaproteobacteria, 
Mollicutes) are all positively associated with depression, and their 
potential role in reducing AN risk remains to be confirmed by clinical 
studies. These three types of gut microbes seem to help distinguish 
between AN and depression, which have similar clinical manifestations.

In a previously published MR analysis, Actinobacteria, Bilophila, 
Holdemania, Lactobacillus, Ruminococcaceae UCG009, and two 

unknown gut microbes were identified as risk factors for the 
development of AN, which is very different from our conclusions (Xia 
et al., 2023). Interestingly, the results are highly similar to those of our 
BN study. Reviewing the original published GWAS datasets, we found 
that the main reason for this was because the earlier GWAS datasets 
could not be distinguished from the two disease subtypes at a technical 
level due to the crossover of AN and BN diagnoses (Boraska et al., 
2014). At the same time, the limitations of detection techniques have 
resulted in relatively small numbers of SNPs captured from earlier 
datasets, limiting the exploration of more critical causal associations 
(Duncan et al., 2017). Therefore, our study can be regarded as an 
update of this study, which provides cross-validation of the findings 
of BN in this study.

In our results, six taxa, including Clostridiales, Bilophila, 
Coprobacter, Holdemania, Ruminococcaceae UCG009, and Slackia, are 
potential contributors to the increased risk of BN. Ruminococcaceae 
are positively associated with autism, depression, and are abundant in 
patients with AN (Prochazkova et al., 2021). Similar studies showed 
that the abundance of Clostridiales in feces of activity-based anorexia 
mice with food restriction increased significantly (Breton et al., 2019). 
Given the crossover nature and common pathological basis of AN and 
BN diagnoses, their potential risks to BN are promising. Bilophila is 
an opportunistic pathogen, and the close association of increased 
abundance with intestinal inflammation has been confirmed 
(Alexander et al., 2023; Zahavi et al., 2023). Recent studies have found 
that a ketogenic diet can exacerbate cognitive impairment caused by 
intermittent hypoxia, the mechanism of which is associated with 
impairment of hippocampal function due to the enrichment of gut 
microbes such as Bilophila (Olson et al., 2021). Changes in Bilophila 
abundance have been observed in patients with mental disorders such 

TABLE 3 Significance levels of different tests for MR results.

Outcome Expose Egger Q Steiger
MR-PRESSO 
global test

AN Cyanobacteria 0.324 0.445 0.000 0.452

AN Gammaproteobacteria 0.829 0.765 0.000 0.875

AN Mollicutes RF9 0.894 0.959 0.000 0.980

AN Peptostreptococcaceae 0.802 0.694 0.000 0.778

AN Coprococcus3 0.190 0.764 0.000 0.651

AN Escherichia Shigella 0.166 0.791 0.000 0.666

AN Eubacterium brachy group 0.889 0.809 0.000 0.883

AN Lachnospiraceae NC2004 group 0.559 0.541 0.000 0.629

AN Lachnospiraceae UCG010 0.394 0.914 0.000 0.917

BN Clostridiales 0.330 0.682 0.000 0.698

BN Rhodospirillales 0.546 0.997 0.000 0.924

BN Oxalobacteraceae 0.780 0.292 0.000 0.395

BN Bilophila 0.558 0.655 0.000 0.088

BN Coprobacter 0.268 0.805 0.000 0.745

BN Holdemania 0.996 0.938 0.000 0.981

BN Lachnospiraceae UCG008 0.301 0.434 0.000 0.473

BN Ruminococcaceae UCG009 0.625 0.892 0.000 0.916

BN Slackia 0.794 0.220 0.000 0.322

AN, anorexia nervosa; BN, bulimia nervosa; MR, Mendelian randomization.
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as autism spectrum disorders. As for Coprobacter, its abundance is 
currently thought to be  associated with chronic insomnia and 
cognitive function (Feng et al., 2021). Similarly, Holdemania exhibits 
a high abundance in patients with depression (Barandouzi et al., 2020) 
and is closely associated with anxiety and Parkinson’s disease (Jang 
et al., 2020). Slackia stands out as a typical causative agent, however, 
recent studies suggest that it may be involved in the development of 
Alzheimer’s disease (Nagpal et al., 2019). Therefore, although there are 
no reports about Coprobacter, Holdemania and Slackia in patients with 
AN or BN, their research is still worthy of attention.

Our study identified three taxa—Rhodospirillales, 
Oxalobacteraceae, and Lachnospiraceae UCG008—as protective factors 
for BN. Rhodospirillales is mainly used in water purification and new 
energy sources (Chun et al., 2018). Zhang et al. (2023) found that sleep 
deprivation led to a significant increase in the abundance of 
Rhodospirillales and enhanced pro-inflammatory cytokine responses 
as well as learning and memory impairments in mice. Another study 
found a significant increase in the abundance of Rhodospirillales in 
socially isolated mice (Siddi et al., 2024). Studies of Oxalobacteraceae 
have found that it reduces the risk of delirium, attention deficit 
hyperactivity disorder (Wang et al., 2023; Yu et al., 2023). Therefore, 
these gut microbes may have a close relationship with mental 
disorders, and further clinical research on AN and BN is 
worth exploring.

It is notable that AN and BN share similar clinical mechanisms, 
yet previous studies have not consistently identified a specific group 
of gut microorganisms commonly associated with both disorders. In 
our current investigation, we observed that while the Lachnospiraceae 
NC2004 group and Lachnospiraceae UCG010 were identified as risk 
factors for AN, Lachnospiraceae UCG008 emerged as a protective 
factor for BN. Previous studies have found that Lachnospiraceae 
NC2004 group was able to reduce the risk of gastroduodenal ulcers, 
and was able to reduce circulating inflammatory cytokine levels (Xue 
et  al., 2023). Lachnospiraceae UCG010 may reduce the risk of 
cholelithiasis and narcolepsy (Liu et al., 2023; Sheng et al., 2024). In 
contrast, Lachnospiraceae UCG008 has been shown to be associated 
with a higher risk of periodontitis (Ye et al., 2023), and is a potential 
risk factor for hemorrhagic stroke (Shen et al., 2023). Based on current 
evidence, we cannot definitively explain the contradiction between the 
different genera of Lachnospiraceae, but it appears to be related to 
inflammation and immunity (Sun et  al., 2021; Zeng et  al., 2023). 
However, despite belonging to distinct strains, Lachnospiraceae 
appears to be  a common influencing factor for both AN and 
BN. Previous research has linked reductions in Lachnospiraceae to an 
increased risk of developing depression (Liu et al., 2022), autism (Li 
et al., 2023), and Alzheimer’s disease (Hung et al., 2022). The elevated 
risk of AN observed in our study further underscores the widespread 
association of Lachnospiraceae with mental disorders (Wang et al., 
2023). Notably, although Lachnospiraceae have exhibited favorable 
organismal protective effects across a spectrum of diseases (McCulloch 
et al., 2022; Yan et al., 2023), their contrasting effects on AN and BN 
suggest a complex relationship between gut microbiota and disease 
that warrants further elucidation. The exact mechanism underlying 
these observations remains to be clarified through additional clinical 
intervention studies.

The therapeutic feasibility of microbial supplements for the 
treatment of psychiatric disorders has gained considerable recognition 
(Sanada et  al., 2020; Góralczyk-Bińkowska et  al., 2022). Liu et  al. 
confirmed that probiotic supplementation mitigated intestinal damage 

induced by dietary restriction in AN patients (Liu et  al., 2021). 
Subsequent clinical investigations substantiated that administering a 
probiotic complex reduces inflammation levels and gastrointestinal 
distress symptoms in AN patients (Gröbner et al., 2022). There is a 
potential causal relationship between the gut microbiota and AN and 
BN identified in this study, and the regulation of these microbiota by 
probiotics may be a promising therapeutic target for AN and BN.

In this study, we have, for the first time, elucidated the causal 
relationship of certain intestinal taxa with AN and BN, offering novel 
perspectives for subsequent mechanistic exploration and drug 
research. Leveraging causal inference through MR design effectively 
circumvented the influences of confounding bias and reverse 
causation. Furthermore, we conducted rigorous tests to ensure the 
sensitivity of our findings. However, this study does entail some 
limitations. Firstly, the sample size and the number of relevant loci in 
the current gut microbiota GWAS data are constrained. To mitigate 
the risk of inadequate IVs at the genus and species levels, potentially 
leading to imprecise bacterial characterization, we  conducted 
summary analyses of bacterial features at higher taxonomic levels. It 
is anticipated that with advancements in microbiome GWAS and the 
accumulation of larger sample sizes, more specific bacterial features 
will be discerned and complemented. Secondly, to enhance statistical 
power, the gut microbiota and disease GWAS datasets analyzed in this 
study were amalgamated from multi-source samples. While this 
approach facilitates broader extrapolation of conclusions, it may 
introduce some heterogeneity in the results. Therefore, despite 
employing a meticulous methodology to exclude heterogeneous data, 
the results should be interpreted cautiously.

5 Conclusion

In summary, our study identified the potential causal involvement 
of 18 intestinal bacterial taxa, notably including Lachnospiraceae, in 
the pathogenesis of AN and BN through MR analysis. These 
potentially valuable gut microbiota may indicate the risk of disease 
development and provide feasible targets for the pathogenesis of AN 
and BN and probiotic therapy. Further clinical intervention and 
intestinal microbial testing have broad prospects for the research and 
treatment of AN and BN.
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