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Stenotrophomonas strains, which are often described as plant growth promoting 
(PGP) bacteria, are ubiquitous in many environments. A total of 213 genomes 
of strains of Stenotrophomonas were analyzed using comparative genomics to 
better understand the ecological roles of these bacteria in the environment. 
The pan-genome of the 213 strains of Stenotrophomonas consists of 27,186 
gene families, including 710 core gene families, 11,039 unique genes and 15,437 
accessory genes. Nearly all strains of Stenotrophomonas harbor the genes for 
GH3-family cellulose degradation and GH2- and GH31-family hemicellulose 
hydrolase, as well as intact glycolysis and tricarboxylic acid cycle pathways. 
These abilities suggest that the strains of this genus can easily obtain carbon 
and energy from the environment. The Stenotrophomonas strains can respond 
to oxidative stress by synthesizing catalase, superoxide dismutase, methionine 
sulfoxide reductase, and disulfide isomerase, as well as managing their osmotic 
balance by accumulating potassium and synthesizing compatible solutes, such 
as betaine, trehalose, glutamate, and proline. Each Stenotrophomonas strain 
also contains many genes for resistance to antibiotics and heavy metals. These 
genes that mediate stress tolerance increase the ability of Stenotrophomonas 
strains to survive in extreme environments. In addition, many functional genes 
related to attachment and plant colonization, growth promotion and biocontrol 
were identified. In detail, the genes associated with flagellar assembly, motility, 
chemotaxis and biofilm formation enable the strains of Stenotrophomonas 
to effectively colonize host plants. The presence of genes for phosphate-
solubilization and siderophore production and the polyamine, indole-3-acetic 
acid, and cytokinin biosynthetic pathways confer the ability to promote plant 
growth. These strains can produce antimicrobial compounds, chitinases, lipases 
and proteases. Each Stenotrophomonas genome contained 1–9 prophages 
and 17–60 genomic islands, and the genes related to antibiotic and heavy 
metal resistance and the biosynthesis of polyamines, indole-3-acetic acid, and 
cytokinin may be acquired by horizontal gene transfer. This study demonstrates 
that strains of Stenotrophomonas are highly adaptable for different environments 
and have strong potential for use as plant growth-promoting bacteria.
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Introduction

Stenotrophomonas is a genus with versatile metabolic capabilities, 
which belongs to the family Lysobacteraceae in the order 
Lysobacterales and is a common genus in various environments (Ryan 
et al., 2009). Many strains of Stenotrophomonas have been described 
as plant growth-promoting (PGP) bacteria owing to their various 
mechanisms (Singh and Jha, 2017; An and Berg, 2018; Alexander 
et  al., 2019). For example, S. maltophilia SBP-9, a strain that 
simultaneously solubilizes inorganic phosphate and produces indole-
3-acetic acid (IAA), gibberellic acid, ACC deaminase, and 
siderophores, significantly increased the biomass and chlorophyll 
content of wheat (Triticum aestivum) (Singh and Jha, 2017). 
Stenotrophomonas sp. CV83, which produces IAA, ACC deaminase 
and siderophores, can significantly enhance the growth of chickpea 
(Cicer arietinum) under drought stress conditions (Sharma et  al., 
2023). S. maltophilia SR1, a bacterium that can degrade aromatic 
hydrocarbons, exhibited PGP properties (Bashandy et al., 2020). Many 
strains of Stenotrophomonas have also been demonstrated to protect 
plants from phytopathogens via multiple ways. For example, 
S. maltophilia UN1512 can inhibit Colletotrichum nymphaeae, a fungal 
fruit and leaf pathogen, by secreting volatile and non-volatile organic 
compounds (Alijani et al., 2020). S. maltophilia C3 can decrease the 
incidence of Bipolaris leaf spot caused by the fungal pathogen Bipolaris 
sorokiniana by producing chitinases (Zhang et al., 2001). S. maltophilia 
MB9 can protect plants from multiple pathogens, including Curvularia 
sp., Aspergillus niger, Fusarium oxysporum, Diploidia sp., and 
Rhizoctonia solani, by producing the broad-spectrum antifungal 
compound dodecanoic acid (John and Thangavel, 2017).

Currently, a substantial amount of comparative genomic research 
on the species of Stenotrophomonas provides new insight on the 
formation of biofilm (Flores-Treviño et al., 2019), quorum sensing 
(QS) signaling and quenching (Huedo et al., 2018), genome evolution 
(Xu et al., 2023), PGP and antibiotic resistance mechanisms (Huang 
et al., 2018; Ulrich et al., 2021), and bioremediation (Mukherjee and 
Roy, 2016). For example, a comparison of the genome of the plant-
associated strain S. rhizophila DSM 14405T with S. maltophilia K29a 
and R551-3 revealed that S. rhizophila DSM 14405T possesses unique 
genes for the biosynthesis and transportation of plant-protective 
spermidine, plant cell wall-degrading enzymes, and high salt 
tolerance, but it lacks several critical virulence factors and heat shock 
genes (Alavi et  al., 2014). A comparative genomic analysis of 
30 S. maltophilia and seven S. rhizophila strains revealed that 96 genes, 
including chitin-binding proteins and mechanosensitive channels 
protein genes, are unique to S. maltophilia, and 59 genes are unique to 
S. rhizophila. The strains within both species have a high potential for 
biocontrol owing to their production of proteases, chitinases and 
keratinases, as well as similar PGP properties provided by the 
biosynthesis of siderophores and spermidine (Pinski et al., 2020). A 
comparative genomic analysis based on the 14 genomes of 
S. maltophilia revealed that the antibiotic resistance genes were not 
significantly different between the clinical and environmental strains 
(Youenou et al., 2015).

Although a substantial amount of comparative genomic research 
related to Stenotrophomonas strains has been conducted, a systematic 
and comprehensive comparative genome of this genus, particularly 
comparative information on the PGP properties is still missing. To 
better understand the PGP mechanisms of the Stenotrophomonas 

strains and their ecological roles in the rhizosphere, a comprehensive 
comparative genomic analysis based on the genomes of 213 strains of 
Stenotrophomonas was conducted in this study.

Materials and methods

Genome sources and analysis of the 
Stenotrophomonas strains

By September 2023, there were 1,206 genome sequences of 
Stenotrophomonas in GenBank. A total of 727 unique genomes were 
downloaded. The downloaded genome sequences were then evaluated 
using CheckM (Parks et al., 2015). Only 160 genomes of S. maltophilia 
(>99.5% completeness and < 0.5% contamination) and 53 genomes of 
other species of Stenotrophomonas (>90.0% completeness and 
contamination <6.0%) were selected for subsequent comparative 
genomic analyses. More details about the 213 Stenotrophomonas 
genomes are listed in Supplementary Table S1. The global distribution 
and habitat preference of the genus Stenotrophomonas was evaluated 
using the analytical pipeline Microbe Atlas Project (MAP)1 (Matias 
Rodrigues et al., 2017).

Pan-genome analysis of 
Stenotrophomonas

All the downloaded genome sequences were annotated using 
Prodigal (Hyatt et al., 2010). The faa files that were produced were 
used for pan- and core-genome analyses using the Bacterial Pan 
Genome Analysis tool (BPGA) pipeline v. 1.3 (Chaudhari et al., 2016). 
In a pan-genome analysis, the number of accumulated genes that are 
related to the number of genomes can be predicted by Heaps’ law as 
n .= a xb  (Tettelin et al., 2008). In the equation, x  is the number of 
genomes, while a and b are fitting parameters. When 0 < b < 1 indicates 
that the pan-genome is open, and only b < 0 indicates that the 
pan-genome is closed.

Phylogenetic analysis and measurements 
of genomic similarity

The core genome of Stenotrophomonas was constructed by 
aligning 213 genomes using USEARCH with a cut-off value 50% 
sequence identity. After the resulting core genes were concatenated 
and aligned using MUSCLE, a phylogenetic tree was constructed 
based on the concatenated core genes using the neighbor-joining (NJ) 
method (Chaudhari et al., 2016).

The amino acid sequences of the polyamines, IAA and cytokinin 
synthases were aligned using ClustalW (Hall, 2013). A phylogenetic 
tree based on these single coding sequences (CDS) was constructed 
using MEGA software v. 6.0 (Tamura et  al., 2013) with the NJ 
algorithm (Saitou and Nei, 1987). The tree topology was evaluated 
using the bootstrap analysis based on 1,000 resampling replicates. The 

1  https://microbeatlas.org/
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iTOL online server2 was used to display the phylogenetic tree (Letunic 
and Bork, 2021). The ANI values between these strains were calculated 
using fastANI v. 1.33 (Jain et  al., 2018). The dDDH values were 
calculated using the Genome to Genome Distance Calculator (GGDC 
2.5)3 (Auch et al., 2010).

Analysis of COG and metabolism

A COG analysis of the sequences of proteins from the core, 
accessory and unique gene families was used to categorize them 
according to the COG database using BPGA (v. 1.3). To ensure the 
accuracy and completeness of the results, only 33 complete 
Stenotrophomonas genomes were selected for analysis of their primary 
metabolic profile and the prediction of secondary metabolite 
biosynthetic genes using KAAS (KEGG Automatic Annotation 
Server) and the antiSMASH version 6.0 online4 (Blin et al., 2021), 
respectively. The carbohydrate active enzymes (CAZymes) were 
identified using the HMMER method of the dbCAN online server5 
(Zheng et  al., 2023) with the e-value thresholds ≤1e−15 and 
coverage >0.35.

Search for functional genes in the 
genomes

The genes related to PGP, oxidative and osmotic stresses, as well 
as resistance to heavy metals, were firstly searched in 33 complete 
genomes, and the sequences obtained were compared with the 
reference sequences in GenBank to determine the correctness of the 
sequences. Subsequently, the sequences that were obtained were used 
as the reference sequences to search their counterparts in the 
remaining genomes using BLAST.6 Only sequences that had >40% 
identity with the reference sequences indicated that the genome had 
the gene (Zhao et al., 2023).

The antibiotic resistance genes were identified using resistance 
gene identifier (RGI) of the CARD7 (Alcock et al., 2019), and the 
sequences with Perfect, Strict and Loose hits identities >70% were 
selected for further analysis.

Identification of mobile elements in the 
genome

Integrated prophages were identified using the PHASTER online 
server8 (Arndt et  al., 2016). The predicted prophages with 
completeness score > 90 were thought to be  intact; those with a 
completeness score of 60–90 were questionable prophages, and those 
with a completeness score < 60 were considered to be  incomplete 

2  https://itol.embl.de/

3  http://ggdc.dsmz.de/ggdc.php

4  https://antismash.secondarymetabolites.org/

5  https://bcb.unl.edu/dbCAN2

6  http://blast.ncbi.nlm.nih.gov/Blast.cgi

7  https://card.mcmaster.ca/

8  http://phaster.ca/

prophages. The genomic islands (GIs) of the genomes were predicted 
using the IslandViewer 4 online server9 with the IslandPick (Langille 
et al., 2008), SIGI-HMM (Waack et al., 2006), IslandPath-DIMOB 
(Hsiao et  al., 2003), and Islander (Hudson et  al., 2014) methods 
(Bertelli et al., 2017).

To learn the original source of the biosynthetic genes for 
polyamines, IAA, and cytokinin, the topologic differences of the 
phylogenetic tree between the single genes and the core genome were 
compared. The DNA genomic G + C content of the single genes and 
the whole genomes were compared (Syvanen, 1994; Garcia-
Vallve, 2000).

Results

General features and phylogenetic analysis 
of the Stenotrophomonas strains

Among the 213 strains, 78 were isolated from environmental 
habitats, such as soil, plants, sludge, water, and biofilm reactors, and 
135 were from materials from clinical settings, such as urine, blood, 
sputum, wounds, lungs, and animals among others. The species 
S. maltophilia, S. rhizophila, S. indicatrix, S. pavanii and S. geniculata 
can be  found in both clinical and environmental habitats, while 
S. acidaminiphila, S. lactitubi, S. nitritireducens, and S. bentonitica were 
only found in environmental habitats.

The genome size of the 213 strains of Stenotrophomonas ranged 
from 3.50 to 5.12 Mb with a G + C content of 63.8–69.3%. The number 
of CDS ranged from 3,099 to 5,180. The strains with the largest 
genome and CDS numbers were S. geniculata NWUBe21, which was 
isolated from seeds, and S. geniculate E119, which was isolated from 
feces, while the smallest was S. pictorum JCM 9942T, which isolated 
from soil. S. acidaminiphila Au-Ste40, which was isolated from soil, 
contained the highest content of genomic DNA G + C, while 
S. nitritireducens 2001 that was isolated from lake sediments had 
the lowest.

The phylogenetic tree based on core genes showed that the 213 
strains of Stenotrophomonas can be  subdivided into 10 clusters 
(Figure  1A). Among them, Clusters I, II, III, IV, V and IX are 
composed of two (S. indicatrix and S. lactitubi), two (S. chelatiphaga 
and S. tumulicola), four (S. terrae, S. nitritireducens, S. pictorum and 
S. humi), two (S. acidaminiphila and S. nitritireducens), two 
(S. bentonitica and S. rhizophila) and two (S. maltophilia and 
S. geniculate) species, respectively. Clusters VI, VIII, and X all consist 
of S. maltophilia, while Cluster VII only comprises strains of S. pavanii. 
The ANI values between all the strains tested were higher than 81%, 
which confirmed that the 213 strains of Stenotrophomonas belonged 
to a single genus (Supplementary Table S2). The topology of the tree 
based on ANI values was similar to that based on the core genome 
with only minor differences (Figure 1B). Cluster VII formed a clade 
with Cluster VI in the ANI phylogenetic tree.

There were 14 different Stenotrophomonas species found in 10 
clusters. Among them, S. lactitubi, S. indicatrix, S. acidaminiphila, 
S. nitritireducens, S. bentonitica, S. rhizophila, S. maltophilia, S. pavanii, 

9  http://www.pathogenomics.sfu.ca/islandviewer/
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FIGURE 1

(A) Phylogenetic tree constructed based on core genomes. Clinical strains are marked with red font and environmental strains with blue font. The three 
colors in the bar graph represent the percentage of core, accessory, and unique genes in the pan-genome. (B) Pairwise average nucleotide identity 
comparison between the genomes of 213 strains of Stenotrophomonas. The ANI values were used to construct a dendrogram and a heatmap with the 
average linkage method and Euclidean distance used for clustering and correlation analyses, respectively.
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and S. geniculata contain multiple strains. The ANI values of strains 
within the same species of S. lactitubi (95.1–96.9%), S. indicatrix 
(96.0–98.8%), S. acidaminiphila (97.1–98.9%), and S. pavanii (98.6–
98.7%) were > 95.0% (Supplementary Table S2), which indicated that 
the non-type strains of these species were accurately classified. In 
contrast, the values between some non-type strains within the other 
species of Stenotrophomonas compared to their type strain were lower 
than the threshold value for the delineation of a species (ANI value 
<95% and dDDH value <70%), which indicated that these strains had 
been misidentified. For example, strains of S. nitritireducens are 
present in both Clusters III and IV, and some S. maltophilia strains 
tightly clustered with S. geniculata in Cluster IX. Strains 2001 and 
SCN18_13_7_16_R1_B_68_91, which are currently both identified as 
S. nitritireducens, are scattered in Clusters III and IV, respectively. The 
ANI and dDDH values of strain 2001 to the type strain of 
S. nitritireducens were only 84.9 and 27.0%, respectively, indicating 
that it had been misidentified. Nine of 12 S. rhizophila strains had 
<90% ANI and < 35% dDDH values to the type strain of S. rhizophila 
(DSM 14405T), which suggested that these nine strains should not 
be identified as S. rhizophila. Strains of S. maltophilia were widely 
scattered in Clusters VI, VIII, IX, and X. Only those in Cluster X 
shared high ANI (>95%) and dDDH (>70%) values with the type 
strain, while the two values of the other three cluster strains with 
S. maltophilia NBRC 14161T ranged from 91.2–94.0% and 41.0–52.0%, 
respectively. The low values indicate that these strains were 
misidentified as S. maltophilia (Supplementary Table S2). Among 

them, the strains in Cluster VIII share high values of ANI and dDDH 
with each other and low values with the other strains, indicating that 
they belong to an unidentified novel species, while the ANI and the 
dDDH values between the strains in Cluster VI were 90.7–99.9% and 
39.5–99.5%, respectively, indicating that the strains in this cluster can 
be  further divided into two or more different species, and the 
classification of the Cluster IX strains was similar to that of Cluster VI.

Analyses of the pan-genome and COG 
distribution

The pan-genome of the 213 Stenotrophomonas strains contained 
27,186 gene families. There were 710, 15,437, and 11,039 core, 
accessory, and unique genes, respectively. Each of the 213 
Stenotrophomonas genomes were composed of 15.1–24.3% core genes 
and 69.0–83.5% accessory genes, while the unique genes only 
accounted for 0–11.1% of the genomes. According to Heaps’ law, the 
pan-genome of Stenotrophomonas was open and increasing (b = 0.48) 
(Figure 2A).

The most common categories of COGs in the core genome of 
Stenotrophomonas (40.0%) were related to metabolism, while those of 
the accessory genomes (33.8%) and unique genomes (37.3%) were 
both related to information storage and processing (Figure 2B). The 
most abundant components of the core genome were related to the 
maintenance of primary cellular processes, such as class E (9.0%; 

FIGURE 2

(A) Pan-genome and core genome plots of the 213 strains of Stenotrophomonas. The plot shows the equations fitting the total and core gene families, 
as well as how the number of gene families increase and decline in the pan and core genome with each consecutive addition of a Stenotrophomonas 
genome. The functional proportions of core, accessory and unique genes in COG categories (B) and COG sub-categories (C).
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amino acid transport and metabolism), class C (7.9%; energy 
production and conversion) and class J (7.1%; translation, ribosomal 
structure and biogenesis) (Figure 2C). The percentages of classes E, C, 
and J in the accessory and unique genomes were 4.9 and 4.8%, 3.6 and 
3.1%, and 2.1 and 1.6%, respectively. In contrast to the core genome, 
the accessory and unique genomes were primarily related to the 
functions of adapting to environmental niches. They were the most 
enriched in class K (transcription), class U (intracellular trafficking, 
secretion, and vesicular transport), class T (signal transduction 
mechanisms), class Q (secondary metabolites biosynthesis, transport, 
and catabolism) and class V (defense mechanisms), which accounted 
for 10.2 and 9.7% (4.5%), 6.1 and 6.7% (2.6%), 6.6 and 5.9% (2.7%), 
3.2 and 3.4% (1.9%), as well as 2.8 and 4.2% (1.6%), respectively 
(Figure 2C).

Main metabolism and secondary 
metabolites in the strains of 
Stenotrophomonas

All 33 strains with complete genome sequences harbored the 
intact pentose phosphate pathway, fructose metabolism pathway, 
tricarboxylic acid cycle (TCA cycle), fatty acid, lipopolysaccharide, 
and peptidoglycan biosynthetic pathways. Only S. geniculata E119 
lacked an intact glycolysis pathway owing to a deficiency in the 
glyceraldehyde 3-phosphate dehydrogenase (gapA) gene that converts 
glyceraldehyde-3P to glycerate-1,3P2 (Figure  3; 
Supplementary Table S3). In terms of nitrogen metabolism, all 33 
strains harbored the Amt family ammonia transporter gene, which is 
responsible for the uptake of ammonia. In particular, S. indicatrix 
MGMM10, S. nitritireducens 2001, S. maltophilia strains PSKL2, 
FDAARGOS_92, and FDAARGOS_507, and S. rhizophila strains 
DSM 14405T, Bl2-2, JC1, PI-27, and QL-P4 lacked both nitrate 
reductase and nitrite reductase, while the other 23 strains only lacked 
nitrite reductase. This indicated that all these strains cannot utilize 
nitrate as a nitrogen source. The metabolism of sulfur also varies 
between strains, and only S. acidaminiphila strains T0-18, SPDF1, and 
T25-65, and S. nitritireducens 2001 had an intact sulfate reduction 
pathway, while the remaining 29 strains lacked the genes involved in 
the conversion of sulfate to sulfite. However, they harbored the genes 
to convert sulfite to sulfide. In terms of the biosynthesis of amino 
acids, all 33 strains of Stenotrophomonas can synthesize 20 types of 
amino acids. There was only one exception. S. geniculata E119 cannot 
synthesize histidine because it lacks histidinol-phosphatase. In 
addition, the phosphate-specific ABC transporter complex PstSABC 
and the two-component system PhoRB were identified in the core 
genome. This indicates that the strains of Stenotrophomonas can take 
up inorganic phosphate and regulate phosphate homeostasis.

Bacterial chemotaxis is an important prelude to metabolism, 
competition, symbiosis, infection and other ecological interactions in 
bacterial communities (Kato et  al., 2008). The genomic analysis 
revealed that all 33 strains of Stenotrophomonas had the genes for 
flagellar proteins and the chemotaxis signaling system. In particular, 
all 33 strains of Stenotrophomonas harbored the flg operon (flagellar 
motif), the fli cluster, and flhAB that encodes the structural proteins 
for the flagella, as well as the motAB and filA genes that encode the 
quorum unit MotAB and the sigma factor FliA, respectively. The 
chemotaxis genes had the cheABYWR and mcp genes that encode the 

chemotaxis and methyl-accepting chemotaxis proteins, respectively. 
The two-component system DesK-DesR genes, which regulate the 
biosynthesis of fatty acid desaturase (Des), was found in all 33 strains 
(Beranová et al., 2010). In addition, the genes for DNA mismatch 
repair, glutathione and folate biosynthesis, peroxidase, and resistance 
to cationic antimicrobial peptides (CAMP) and β-lactams were also 
found in the core genome, which enables the strains of 
Stenotrophomonas to adapt to complex and variable environments 
more efficiently.

Secondary metabolites can enhance the environmental 
adaptability of the strains and provide them with an evolutionary 
advantage (O’Connor, 2015). A total of 149 smBGCs of 14 major types 
were predicted in the 33 Stenotrophomonas genomes, and each strain 
contained three to seven smBGCs (Supplementary Table S4). Among 
them, S. maltophilia strains JZL8 and ISMMS2 had the highest 
number of smBGCs with seven, while each strain of S. nitritireducens 
2001, and S. rhizophila strains Bl2-2, JC1, and QL-P4 had only three 
smBGCs. In detail, 55 RiPP-like smBGCs were found in 32 strains of 
Stenotrophomonas (Supplementary Figure S1), and 22 of the clusters 
were similar to the entolysin BGCs, which encode a cyclic lipopeptide 
(CLP) that can be fatal to bacteria, fungi, and viruses by disrupting 
their membranes (Oni et al., 2019). The clusters responsible for the 
biosynthesis of aryl polyenes (APEs), which help bacteria to evade the 
host immune system (Lee et al., 2021a,b), were found in 31 strains 
except for S. maltophilia CYZ and S. rhizophila JC1. The 
NRP-metallophore/NRPS heterozygous clusters were found in 29 
Stenotrophomonas strains, and all of them were similar to the 
2,3-dihydroxybenzoylserine (DHBS) BGCs, which is a cluster that is 
responsible for the biosynthesis of catecholate siderophore 
enterobactin (Ahire et  al., 2011). In addition, some smBGCs are 
strain-specific. For example, the cluster responsible for ranthipeptide, 
lanthipeptide-class-i and lanthipeptide-class-iii biosynthesis was only 
detected in S. maltophilia strains CSM2, ISMMS2, and JV3, 
respectively.

Diversity of CAZymes in Stenotrophomonas 
strains

Carbohydrates are the primary source of carbon for most 
microbes. Carbohydrate active enzymes (CAZymes), a class of 
enzymes that is involved in the metabolism of carbohydrates, is not 
only involved in the biosynthesis and degradation of biopolymers but 
also in the formation of bacterial biofilms and the glycosylation of 
proteins and lipids (Benini, 2020). A total of 118 different CAZyme 
genes family were identified in the 213 Stenotrophomonas genomes, 
including 63 glycoside hydrolases (GHs), 21 glycosyltransferases 
(GTs), 11 carbohydrate esterases (CEs), 9 polysaccharide lyases (PLs), 
8 auxiliary activities (AAs), and 6 carbohydrate-binding modules 
(CBMs) (Supplementary Figure S2). S. rhizophila CFBP 13503 was 
identified as harboring the most CAZyme genes at 124, while 
S. pictorum JCM 9942T had the fewest (68). The CAZyme number of 
the strains from clinical sites (69 to118, average 106) was similar to 
that of the strains from the environmental strains (68 to 124, 
average 104).

In particular, this study explored the CAZymes involved in the 
degradation of complex polysaccharides. Lignocellulolytic enzymes 
can be  subdivided into cellulases, hemicelluloses, and 
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FIGURE 3

Prediction of the central metabolic potential of 33 complete genomes of Stenotrophomonas strains, as well as the possible biosynthetic pathway for 
phytohormones and the mechanism of hyperosmolar adaptation of the 213 strains. Solid lines, pathways common to all bacteria; dashed lines, partial 
presence.
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lignin-modifying enzymes. Most cellulases and hemicelluloses are 
members of the GHs family, while the lignin-modifying enzymes are 
generally in the AAs protein family (López-Mondéjar et al., 2016; 
Zhou et al., 2018). Among them, all 213 strains produced GH3-family 
enzymes that degraded cellulose, while only some of the 213 strains 
harbored GH5- (45 strains), GH8- (44 strains), GH1- (19 strains), 
GH9- (4 strains) and GH74-family (5 strains) enzymes involved in the 
degradation of cellulose. The hemicellulose hydrolases produced by 
these species primarily include GH2 (211 strains), GH31 (209 strains), 
GH10 (162 strains), GH43 (100 strains), GH16 (13 strains) and GH39 
(2 strains) families. Lignin-modifying enzymes were primarily 
represented by the families for laccase-like multi-copper (AA1) and 
lignin-modifying peroxidases (AA2) (Ma et al., 2021). Genes for the 
AA1 family were found in all 213 genomes, while AA2 was not found 
in any of them. In addition, the GH18, GH19, and GH20 families, 
which are responsible for the degradation of chitin (Swiontek 
Brzezinska et al., 2013), were detected in 186, 61, and 210 strains, 
respectively. The analysis revealed that the strains of Stenotrophomonas 
produced a large number of CAZymes involved in the degradation of 
polysaccharides, which indicates that these strains can easily obtain 
carbon and energy from their environment.

The ability to adapt to abiotic stresses

To survive in environments, particularly those that are extreme, 
microbes have evolved the ability to surmount oxidative stress and 
osmotic pressure (Zhao et al., 2023). Among these, oxidative stress is 
the result of an imbalance between the production of reactive oxygen 
species (ROS) and the ability of biological systems to detoxify them 
(Chautrand et al., 2022). Bacteria use two primary mechanisms to 
detoxify the ROS. One is to scavenge the ROS using superoxide 
dismutase (SOD) and catalase (CAT) (Arts et al., 2015). The sodB and 
sodC genes, which are responsible for catalyzing the decomposition of 
superoxide anion (O2

−) to O2 and hydrogen peroxide (H2O2), were 
found in all 213 strains of Stenotrophomonas (Figure 4). The katE, 
ahpC and bcp genes, which are responsible for the conversion of H2O2, 
were also found in all the strains. The gpx gene encodes glutathione 
peroxidase (GPX), which catalyzes the reduction of many oxidants, 
including H2O2 and peroxynitrite (ONOO−) (Panday et al., 2020), was 
found in all the strains tested except for S. maltophilia HZ34. Another 
is the timely repair of the cysteine and methionine residues that have 
been damaged by ROS oxidation. The disulfide isomerase (DsbC) and 
methionine sulfoxide reductase (Msr) systems, which can repair 
oxidized cysteine and methionine residues, respectively (Darby et al., 
1998; Grimaud et al., 2001). The dsbC, msrA and msrB genes were 
found in all 213 strains.

Bacteria usually adopt two main strategies to maintain their 
osmotic balance (Gunde-Cimerman et al., 2018). One is to take up 
and accumulate a large amount of potassium (Vyrides and Stuckey, 
2017). All 213 strains of Stenotrophomonas were found to have K+ 
uptake transporter proteins genes, including the Kdp-ATPase system 
(kdp), the potassium efflux system (kef), and the potassium transport 
system gene (kup) (Sleator and Hill, 2002). Another strategy relies on 
the biosynthesis and accumulation of compatible solutes (Figure 3), 
including sugars, such as trehalose; amino acids, such as proline and 
glutamate; and their derivatives, such as betaine (Zhao et al., 2023). 
Glycine betaine, a common compatible solute, can be synthesized by 

choline dehydrogenase (BetA) and betaine-aldehyde dehydrogenase 
(BetB) (Lamark et al., 1991). The betA gene was detected in 211 strains 
and was only absent in S. rhizophila GN_RF3 and S. maltophilia HZ34. 
In contrast, the betB gene was identified in 208 strains and only absent 
in five strains of S. acidaminiphila. Trehalose can be produced from 
UDP-glucose via the OstA-OstB pathway (Paul et al., 2008). The ostA 
and ostB genes were only absent in S. maltophilia HZ34. In addition, 
the glutamate (gdhA, gltBD and glnA) and proline (proABC) 
biosynthetic genes were detected in the genomes of all 213 strains of 
Stenotrophomonas. These results indicate that all the strains of 
Stenotrophomonas can eliminate ROS and tolerate osmotic stress, 
which endows them with the ability to survive more effectively in 
extreme environments.

The antibiotic resistome of the strains of 
Stenotrophomonas

Antibiotics are used extensively to treat bacterial infections in 
agriculture and animal husbandry. Bacteria usually harbor many 
antibiotic resistance genes (ARGs) to survive (Zhuang et al., 2021). 
The number of ARGs per strain of Stenotrophomonas ranged from 3 
to 23. Among them, Stenotrophomonas sp. strain SH_67_7 harbored 
the most ARGs, and S. nitrodeiducens CN18_13_7_16_R1_B_68_91 
harbored the least (Supplementary Table S5). There were somewhat 
more ARGs in the clinical strains (average 14 per strain) than in the 
environmental strains (average 11 per strain), and S. maltophilia 
(8–23), S. geniculata (9–20), and S. pavanii (15–16) species had 
dramatically higher number of ARGs than the other species (4–13). 
The antibiotic efflux pumps genes, including the resistance-
nodulation-cell division (RND) type and the major facilitator 
superfamily (MFS) type, were identified in all the strains of 
Stenotrophomonas. rsmA, an RND efflux pump gene involved in the 
resistance to fluoroquinolones, diaminopyrimidines and phenol 
antibiotics, was found in all 213 strains except for S. geniculata 
NWUBe21 and S. rhizophila DE0483. smeDEF, an RND efflux pump 
gene cluster involved in the resistance to macrolide, fluoroquinolone, 
tetracycline, and phenol antibiotics (Alonso and Martínez, 2000), was 
identified in 201 strains of Stenotrophomonas. Another RND efflux 
pump gene cluster smeABC, which is involved in resistance to 
aminoglycoside, β-lactam, and fluoroquinolone antibiotics (Li et al., 
2002), was found in most of the clinical strains (124) and a minority 
of the environmental strains (28).

The resistance of bacteria to aminoglycosides (AGs) is primarily 
caused by AG-modifying enzymes (AMEs), which include 
O-phosphotransferases (APHs), N-acetyltransferases (AACs) and 
O-adenyltransferases (ANTs) (Wright, 1999). The aph gene was 
identified in 134 clinical strains and 53 environmental strains, while 
the aac gene was found in 59 clinical and 17 environmental strains. In 
particular, the aph(9)-Ic, aph(3′)-IIc, aph(3″)-Ib, aph(6)-Id, aph(3′)-IIa, 
aph(3′)-VIa, and aph(6)-Ic genes that encode variants of APH were 
identified in 185, 183, 5, 4, 1, 1 and 1 strains, respectively, while the 
aac(6′)-Iz, aac(6′)-Ib8, aac(6′)-Iak, aac(6′)-Iap and aac(6′)-31 genes 
that encode variants of AAC were identified in 62, 12, 8, 3 and 1 
strains, respectively. The ant(2″)-Ia gene was only found in 
S. maltophilia CV_2005, S. maltophilia 476BLSM_MAD, S. maltophilia 
212 and S. maltophilia Smal28. In the Stenotrophomonas resistome, the 
highest numbers of types of genes for resistance were associated with 
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FIGURE 4

Distribution of enzymes with functions related to plant growth promotion and environmental adaptation in 213 strains of Stenotrophomonas. Enzymes 
associated with colonization and biofilm formation, XerC, XerD, SmeDEF, ThuA, WssD, BscA, LapA, RfbA, RfbB, RfbC, RfbD, ExoD, GumD, RpfC, RpfF, 
RpfG, CarA, CarB, PcoI, GreA, FilA, and diguanylate cyclase; polyamine synthases, SpeA, AguA, AguB, SpeE, MetK, SpeD, LdcC; IAA synthases, TrpAB, 
TrpC, TrpD, TrpEG, TrpF, IorA, AmiE, and AldA; CK synthases, MiaA and MiaB; phosphate-solubilizing enzymes, acid phosphatase, alkaline phosphatase, 
PhyA, GDH, exopolyphosphatase, and inorganic pyrophosphatase; iron acquisition proteins, Fiu, CirA, FepA, EntA, EntF, EntH, TonB, ExbB, ExbD, FeoA, 
and FeoB; biological control enzymes, ChiA, CbpD, protease, lipase, PhaA, PhaB, PhaC, KerSMD, and KerSMF; antioxidant stress kinases, SodB, SodC, 
KatE, AhpC, BpC, GPX, DsbC, MrsA, and MrsB; potassium ion transporters, KdpA, KdpB, KdpC, Kef, Kup; compatible solute synthases, BetA, BetB, OtsA, 
OtsB, ProA, ProB, ProC, GltB, GltD, GdhA, and GlnA; heavy metal resistance enzymes, CopA, CopB, CzcA, CzcB, CzcC, ArsB, ArsC, ArsH, ChrA, and 
ChrR.
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aminocoumarin, phenicol, and tetracycline antibiotics, with 25, 14, 
and 12, respectively, while sulfonamide, monobactam, and mupirocin-
like had the fewest types of resistance genes. The results indicated that 
the strains of Stenotrophomonas have multidrug resistance that can 
be  adapted to respond to antibiotic pressure in the 
external environment.

Tolerance to heavy metals

Most heavy metals are lethal in the environment (Gadd, 2010). 
The CopAB proteins are responsible for resistance to copper. In 
particular, CopA can bind copper ions in the periplasm to sequester 
the copper, while CopB is a transmembrane protein that can serve as 
an exporter of copper (Ge et al., 2021). The copA gene was identified 
in all 213 strains of Stenotrophomonas, and the copB gene was found 
in 212 strains (Figure 4). The CzcABC-type efflux pump proteins are 
involved in exporting cobalt, zinc and cadmium from the cells 
(Hussain et  al., 2022). All 213 strains of Stenotrophomonas also 
harbored czcA, czcB and czcC genes. The ars operon ensures that 
various bacteria are resistant to arsenic. Some bacteria can reduce 
As(V) (arsenate) to As(III) (arsenite), which is catalyzed by arsenate 
reductase (ArsC). The As(III) that is produced can be directly pumped 
out of the cell via ArsB. In addition, MAs(III) (methylarsenite) can 
be oxidized to the less toxic MAs(V) (methylarsenate) via ArsH (Hao 
et al., 2021). The arsC, arsB and arsH genes were identified in 213, 209 
and 194 genomes of Stenotrophomonas, respectively. The chrR gene 
encodes chromate reductase, which catalyzes the conversion of soluble 
and toxic Cr(VI) to insoluble and less toxic Cr(III), respectively 
(Baldiris et al., 2018), was found in all strains. In contrast, the chrA 
gene that encodes the chromate efflux transport protein, which pumps 
chromate out of the cytoplasm (Díaz-Pérez et al., 2007), was found in 
55 strains. These genes in strains of Stenotrophomonas endow the 
bacteria with tolerance to heavy metals in the environment.

Mobile genetic elements in 
Stenotrophomonas

MGEs are the direct evidence of the evolution and adaptation 
of microbial populations through the horizontal transfer of genes 
(Sobecky and Hazen, 2009). The MGEs in microbes usually include 
prophages, GIs, and insertion sequence (IS). A total of 637 
prophage regions, including 79 questionable, 354 incomplete, and 
204 intact prophages, were detected in these Stenotrophomonas 
genomes, thus, indicating that inducible or transferable functional 
prophages are widely distributed in strains of Stenotrophomonas. 
The number of prophages in each strain ranged from one to nine. 
Among them, 204 intact prophages were found in 60.6% (129/213 
strains) of the strains of Stenotrophomonas, and they ranged from 
one to five intact prophages per strain (Supplementary Table S6). 
In particular, the largest proportion was composed of 
Verrucomicrobia phage P862 (NC_029047) followed by 
Burkholderia phage phi1026b (NC_005284), Vibrio phages VHML 
(NC_004456) and vB_VpaM_MAR (NC_019722). The major 
proteins of the prophages that were detected were the structural 
proteins of tail, capsid, portal, and head, and the functional 
enzymes terminase, integrase and lysin.

A total of 6,663 GIs were predicted in the 213 Stenotrophomonas 
strains. The number of GIs per strain ranged from 17 to 60 
(Supplementary Table S1). S. rhizophila JC1 contained the highest 
number of GIs, while S. chelatiphaga DSM 21508T contained the 
fewest (17). There are many vital functional protein genes in these 
GIs, including kinases (201 strains), MFS transporters (192 strains), 
GNAT family N-acetyltransferase (171 strains), ATP-binding 
proteins (166 strains), response regulator transcription factor (156 
strains), efflux RND transporter (118 strains), siderophore receptor 
(112 strains), RNA polymerase (111 strains), nucleotidyl transferase 
(101 strains), DNA polymerase III subunit beta (70 strains), DNA 
replication/repair protein RecF (64 strains), lysozyme (54 strains), 
type II toxin-antitoxin system (52 strains), CusA/CzcA family heavy 
metal efflux RND transporter (68 strains), copper resistance protein 
(62 strains), arsenical resistance protein (40 strains), mercury 
reductase (31 strains) and chromate efflux transporter (25 strains). 
These genes are involved in the physiology at the transcriptional 
and translational levels, as well as confer pathogenicity, drug and 
heavy metal resistance to the strain (Supplementary Table S7). In 
addition, some Gls include the genes that encode integrases (205 
strains), transposases (185 strains) and recombinases (163 strains), 
which may mediate the movement of GIs among the host bacteria. 
Thus, the prophages and GIs enhanced the genetic diversity of the 
Stenotrophomonas strains and enabled them to rapidly adapt to 
diverse ecological niches.

Colonization potential and biofilm 
formation of Stenotrophomonas strains

Colonization of the rhizosphere by bacterial strains is the first 
and the foremost step. Genes involved in motility, chemotaxis, 
adhesion and biofilm formation are thought to contribute to this 
colonization (Kandel et al., 2017). The two site-specific tyrosine 
recombinases XerC and XerD are associated with competitive 
colonization on the root surface (Martínez-Granero et al., 2005). 
The two genes xerC and xerD were both found in the genomes of 
all 213 strains of Stenotrophomonas (Figure 4). The SmeDEF efflux 
pump, which is responsible for the microbial resistance to 
quinolones, has been found to be  involved in the endophytic 
colonization of plant roots (García-León et al., 2014). The smeDEF 
gene was identified in all 213 strains. In addition, the thuA gene, 
which is involved in the utilization of trehalose, enhances the 
ability of the strain to colonize plants at the early stages (Pinski 
et al., 2020). The thuA gene was detected in 15 strains, including 
10 S. rhizophila strains, S. bentonitica DSM 103927T, S. bentonitica 
VV6, S. chelatiphaga DSM 21508T, S. tumulicola JCM 30961T and 
Stenotrophomonas sp. AP15.006.

As a physical barrier, biofilm can protect the embedded bacteria. 
Thus, the ability of bacteria to form biofilms determines their ability 
to colonize the root surface. Cellulose is an important component of 
biofilms in some species. The bcsA and wssD genes are two genes that 
are responsible for the biosynthesis of cellulose. Their inactivation 
significantly reduced the formation of biofilm and decreased the 
ability of strains to colonize the plant host (Barak et  al., 2007; 
Monteiro et al., 2012). However, these two genes were only found in 
43 strains of Stenotrophomonas (21 environmental and 22 clinical 
strains). In addition, lipopolysaccharides (LPS) and 

https://doi.org/10.3389/fmicb.2024.1395477
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhao et al.� 10.3389/fmicb.2024.1395477

Frontiers in Microbiology 11 frontiersin.org

exopolysaccharides (EPS) facilitate the attachment of bacterial cells 
to the root surface (Kandel et al., 2017). The lapA gene, a key gene 
responsible for the assembly of LPS, was found in 210 strains. 
Rhamnose is an important subcomponent of LPS. The rfbABCD 
gene, a cluster that is responsible for the biosynthesis of rhamnose 
(Balsanelli et  al., 2010), was found in all the strains of 
Stenotrophomonas. The exoD gene that encodes the protein for the 
biosynthesis of EPS (Reed and Walker, 1991) was found in 212 
strains. The gumD gene, which is also responsible for the catalysis of 
the biosynthesis of EPS, (Meneses et  al., 2011) was found in the 
genomes of 50 strains of Stenotrophomonas (33 environmental and 
17 clinical strains). The results of genomic analyses showed that all 
the strains of Stenotrophomonas have a range of biofilm formation 
genes that can promote their ability to colonize plants. In addition, 
the ability to form biofilms has also been shown to be one of the main 
pathogenesis-related virulence factors (Wall et al., 2019). Inhibiting 
the expression of virulence-associated genes is reportedly correlated 
with the attenuation of the biofilm formation ability of S. maltophilia 
(Kim et al., 2018).

The formation of biofilm and cell adhesion are usually 
regulated by QS at the bacterial community level. The diffusible 
signal factor (DSF) is a QS molecule that can regulate the genes 
related to plant colonization, such those involved in chemotaxis, 
motility, the formation of biofilm and production of the multidrug 
efflux pump (Alavi et al., 2013a). The rpf gene cluster, which encodes 
all the components of the DSF system, was detected in 213 strains 
of Stenotrophomonas (Figure 4). Carbamoyl phosphate synthase, 
which is encoded by the carAB genes, can be used to degrade DSF 
(Newman et al., 2008). The carA gene was found in 212 strains 
(S. maltophilia HZ34 lacked), while the carB gene was found in 
211. S. maltophilia HZ34 and Stenotrophomonas sp. SH_67_7 lack 
this gene. pcoI is a key gene related to the population sensing 
signals. Its deletion led to significant deficiencies in the formation 
of biofilm at the wheat rhizosphere (Wei and Zhang, 2006). The 
pcoI gene was only found in seven environmental strains, including 
five strains of S. acidaminiphila, and S. nitritireducens 
SCN18_13_7_16_R1_B_68_91 and Stenotrophomonas sp. MES1.

Some prevalent bacterial transcriptional regulators are also 
associated with plant-rhizobacterial interactions. The sigma-28 
factor encoded by the filA gene is involved in the regulation of the 
expression of flagellin, chemotaxis, and motility-related genes (Yi 
et al., 2017). The filA gene was identified in the genomes of all the 
strains of Stenotrophomonas. The greA gene, another important 
transcription factor, determines the ability of host to adapt to 
hyperosmolarity and salt stress. The strains that lack this gene 
cannot establish an effective symbiotic relationship with plants 
(Nogales et al., 2002). The greA gene was found in 212 strains and 
was only absent from S. maltophilia HZ34. Cyclic diguanylate (c-di-
GMP), a universal secondary messenger in bacteria, is involved in 
the regulation of a variety of physiological functions, including cell 
differentiation, biofilm formation, motility, adhesion, colonization 
of host tissues and the generation of pathogenic factors (Pinski 
et al., 2020). The biosynthesis of c-di-GMP is catalyzed by the gene 
that encodes diguanylate cyclase, which was found in 205 strains of 
Stenotrophomonas. The results indicate that strains of 
Stenotrophomonas have a range of transcriptional regulators that are 
related to the colonization of plants.

Genes for the biosynthesis of polyamines 
and phytohormones and their diversity in 
strains of Stenotrophomonas

Polyamines, including putrescine, spermidine, spermine and 
cadaverine, may be involved in the promotion and protection of plant 
growth (Couée et al., 2004; Xie et al., 2014). Bacteria could synthesize 
putrescine from arginine step by step catalyzing by arginine 
decarboxylase (SpeA), agmatine deiminase (AguA), and N-carbamoyl-
putrescine amidase (AguB) (Burrell et  al., 2010; Michael, 2016) 
(Figure 3). The speA, aguA, and aguB genes were present in 213, 212, 
and 212 strains, respectively. Only S. maltophilia HZ34 lacked both 
the aguA and aguB genes (Figure  4). The speE gene, which is 
responsible for the conversion of putrescine to spermidine (Lee et al., 
2012), was found in all the strains of Stenotrophomonas. The MetK and 
SpeD enzymes are responsible for the conversion of methionine to 
S-adenosyl-methioninamine (dcSAM), which is required for the 
biosynthesis of spermine (Xie et al., 2014). The metK and speD genes 
are found in all 213 strains. In addition, lysine decarboxylase (LdcC) 
catalyzes the conversion of L-lysine to cadaverine (Liu et al., 2022). 
The ldcC gene was found in the genomes of 203 strains of 
Stenotrophomonas. The presence of these genes suggests that strains 
of Stenotrophomonas can produce multiple types of polyamines.

IAA and cytokinin (CK) are the two most common 
phytohormones that influence various traits of plant growth and 
development, including cell division and elongation, seed germination, 
fruit development and the delay of senescence (Grossmann, 2009; 
McSteen, 2010; Akhtar et al., 2020). There are five different pathways 
for the biosynthesis of IAA from tryptophan. Among them, the 
indole-3-acetamide pathway (IAM), the indole-3-pyruvic acid 
pathway (IPA/IPyA) and the tryptamine pathway (TAM) are the most 
common pathways in bacteria (Zhang et al., 2019; Tang et al., 2023). 
The vital genes for the biosynthesis of tryptophan, including trpAB, 
trpC, trpD, trpEG, and trpF, were present in all 213 genomes of 
Stenotrophomonas. For the IPA pathway, the gene that is responsible 
for the conversion of tryptophan to IAAld was not detected in all 213 
genomes, but the gene for indole-3-acetaldehyde dehydrogenase 
(AldA) that converts IAAld to IAA was found in all these genomes 
(Figure 3). In addition, the iroA gene that encodes indole-pyruvate 
ferredoxin oxidoreductase (IorA), which can directly convert IPA to 
IAA (Imada et al., 2017), was identified in 207 strains. As the IAM 
pathway, all 213 strains lacked the tryptophan monooxygenase that 
catalyzes the initial conversion of tryptophan to IAM, but the amidase 
gene responsible for the conversion of IAM to IAA was detected in all 
213 genomes. For the TAM and TSO (tryptophan side-chain oxidase) 
pathway, only the aldA gene of the final step was detected, but the gene 
responsible for the conversion of tryptophan to IAAld was 
not detected.

The miaA gene encodes a tRNA dimethylallyltransferase that is 
responsible for the conversion of dimethylallyl diphosphate to N6-
(dimethylallyl) adenosine (iPR). The miaB gene, which encodes 
tRNA-2-methylthio-N(6)-dimethylallyladenosine synthase, converts 
iPR to 2-methylthio-N6-(dimethylallyl)adenosine (2MeSiPR). Both 
genes are involved in the biosynthesis and conversion of CK 
(Nascimento et  al., 2020) and were identified in all the 
Stenotrophomonas genomes except for S. rhizophila IS26 and 
Stenotrophomonas SH_67_7, which both lacked miaB.
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Phosphate-solubilization and the 
acquisition of iron

Phosphorus (P) is an essential macronutrient for plant growth and 
development. Although there are adequate amounts of P in the soil, 
most of the organic and inorganic phosphate that is found in the soil is 
not directly available to plants. Many bacteria that are associated with 
plants can solubilize P into a form that can be utilized by plants (Sharma 
et al., 2013). Organic phosphates are primarily degraded by the enzyme 
acid phosphatases, alkaline phosphatases and phytase that are produced 
by bacteria (Sharma et  al., 2013), while inorganic phosphates can 
be solubilized by the production of organic acids, such as gluconic acid, 
citric acid, malic acid, and succinic acid (Vassilev et al., 2006). There are 
two categories of phosphatases that are based on their optimal pH, 
including acid phosphatase and alkaline phosphatase, which both 
dephosphorylate phosphate ester or the phosphoric anhydride bonds in 
organic compounds (Jorquera et al., 2008). The acid phosphatase and 
alkaline phosphatase genes were found in 213 and 197 strains, 
respectively (Figure 4). The phytase encoded by phyA is responsible for 
the catalysis of the degradation of phytate to release P, and this gene was 
identified in 212 strains. S. nitritireducens SCN18_13_7_16_
R1_B_68_91 does not produce phyA. In addition, the gdh gene encodes 
a phosphate starvation-inducible glucose dehydrogenase (GDH), which 
may be involved in the solubilization of mineral phosphate (Sharma 
et al., 2005). This gene was identified in 205 strains of Stenotrophomonas. 
Among them, five S. acidaminiphila strains, S. pictorum JCM 9942T, 
Stenotrophomonas sp. MES1 and S. maltophilia HZ34 lacked gdh gene. 
An exopolyphosphatase and an inorganic pyrophosphatase are encoded 
by the ppx and ppa genes, respectively. They catalyze the hydrolysis of 
inorganic pyrophosphate. Both genes were found in all 213 genomes of 
Stenotrophomonas. These genes enable these strains of Stenotrophomonas 
to solubilize soil phosphate, which provides adequate amounts of P for 
their own metabolism and that of their host plant.

Similar to P, iron is an essential nutrient for plant and microbial 
growth, but its bioavailability is limited owing to the low solubility of 
ferric oxide (Fe3+) ions (Behnke and LaRoche, 2020). Siderophores, 
iron chelators that are produced by microorganisms, can convert the 
iron into soluble complexes that can be utilized by plants (Ahmed and 
Holmström, 2014). The comparative analysis revealed that most 
strains of Stenotrophomonas possessed the genes to biosynthesize 
catecholate siderophores. In particular, 26 and 189 strains possessed 
the catecholate siderophore biosynthetic genes fiu and cirA, 
respectively, and 171 and 187 strains had the biosynthetic genes 
entAFH and fepA, respectively, for the catecholate siderophore 
enterobactin (Patzer et  al., 2003; Pakarian and Pawelek, 2016). In 
Gram-negative bacteria, the uptake and transfer of iron ions (Fe3+) by 
siderophores is powered by the Ton complex (TonB-ExbB-ExbD) 
(Faraldo-Gómez and Sansom, 2003). The tonB, exbB and exbD genes 
were present in all 213 genomes (Figure 4). In addition, many bacteria 
can take up ferrous iron (Fe2+) using the Feo system under anaerobic 
and acidic environments (Lau et al., 2016). The Feo system is primarily 
composed of FeoA and FeoB, (Kalidasan et al., 2018). The feoB gene 
was detected in all 213 strains of Stenotrophomonas except for 
S. maltophilia HZ34, while the feoA gene was not found in 
Stenotrophomonas SH_67_7 and S. maltophilia HZ34. The results 
suggest that the strains of Stenotrophomonas can enhance the 
availability of Fe3+ in an environment deficient in iron, which benefits 
both their survival and the growth of plant.

Potential of the genus Stenotrophomonas 
for biocontrol

The biological control of microbes in the rhizosphere provides their 
hosts with natural protection from soilborne phytopathogens (Pandit 
et  al., 2022). The production of cell wall-degrading enzymes by 
rhizobacteria is one of the primary mechanisms that they use to destroy 
pathogens. The chitinase encoded by the chiA gene can degrade the 
chitin in the cell walls of pathogenic fungi (Kharade and McBride, 
2014). The chiA gene was detected in 204 genomes of Stenotrophomonas. 
In addition, the chitin-binding proteins (CBPs), encoded by the cbpD 
gene, can increase the efficiency of some specific chitinases (Manjeet 
et al., 2013). The cbpD gene is found in 183 strains of Stenotrophomonas 
(Figure  4). Proteases and lipases also play an important role in 
biocontrol (Friedrich et al., 2012). Among them, protease genes were 
identified in 205 strains of Stenotrophomonas, while lipase genes were 
identified in 200 strains. Six strains lacked the chitinase, protease, and 
lipase genes, including S. acidaminiphila T0-18, S. acidaminiphila 
T25-65 and S. nitritireducens SCN18_13_7_16_R1_B_68_91 isolated 
from bioreactors, S. pictorum JCM 9942T isolated from the soil and 
S. acidaminiphila SPDF1 isolated from cell culture media.

Polyhydroxybutyrate (PHB), the most abundant and well-
characterized polymer of bacterial polyhydroxyalkanoate (PHA) 
(Jendrossek, 2009), has proven to have both antibacterial and antifungal 
activities (Ma et al., 2019). The biosynthesis of PHB is a three-step 
process that begins with acetyl-CoA acetyltransferase (PhaA), which 
catalyzes the condensation of two molecules of acetyl-CoA to 
acetoacetyl-CoA; this compound is then reduced to 
3-hydroxybutyryl-CoA by acetoacetyl-CoA reductase (PhaB) and 
finally catalyzed by PhaC (poly(3-hydroxyalkanoate) polymerase) to 
produce PHB (Jendrossek and Pfeiffer, 2014). The three genes are found 
in the genomes of all strains of Stenotrophomonas. The keratinases 
KerSMD and KerSMF have broad substrate specificity and can be used 
as pesticides (Gupta and Ramnani, 2006; Yue et al., 2011). Both genes 
kerSMD and kerSMF were detected in 205 strains of Stenotrophomonas. 
The results suggest that Stenotrophomonas may be a useful tool for the 
integrated management of various plant pathogens and pests.

Discussion

The genus Stenotrophomonas is widely distributed in various 
habitants on the globe, including plant, animal, soil and aquatic 
environments (Figure 5A). Among them, strains of Stenotrophomonas 
were detected in 1,712 plant samples (24.3%), while only 428 samples 
were detected in aquatic environments (6.09%); the rhizosphere is the 
primary habitat among plant environments that has been shown to 
harbor these bacteria (Figure 5B). This suggests that the strains of the 
genus are closely associated with plants. Previous studies have also 
shown that strains of Stenotrophomonas can promote plant growth, as 
well as manage pests and pathogens (Kumar et al., 2023). However, 
there have been no systematic analyses of the abilities of this genus to 
adapt to the environment and promote the growth of plants. To our 
knowledge, this is the first study that systematically and comprehensively 
elucidates the possible adaptive and plant-promoting mechanisms of the 
genus Stenotrophomonas using the comparative genomic method.

Stenotrophomonas was named for its tolerance to oligotrophic 
conditions. The genomic analysis showed that almost all of the strains 
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that have been analyzed can synthesize all 20 amino acids, which 
suggests that most of them can grow well in simple nutrients. In 
addition, the comparative results suggest that the strains of this genus 
are extremely effective at utilizing carbon sources. In detail, nearly all 
of the Stenotrophomonas strains that have been analyzed harbor the 
GH3-family cellulose-degrading genes and the GH2- and GH31-
family genes for hemicellulose hydrolase. Most of the strains also 
contained intact EMP and TCA pathways to utilize the monomer 
carbohydrates. This indicates that the strains of Stenotrophomonas 
can not only degrade two types of abundant carbohydrates in the 
biosphere, including both cellulose and hemicellulose, but also their 
monomers. The high ability of these strains to utilize carbon sources 
enables these them to easily survive in the soil. Alternatively, all the 
strains of Stenotrophomonas contain SOD and CAT genes to scavenge 
excess ROS, as well as the dsbC and msrAB genes to repair the 
cysteine and methionine residues that been damaged owing to 
oxidation by ROS. These genes ensure that the strains of 
Stenotrophomonas can remove the ROS produced during their rapid 
growth on eutrophic conditions, which suggests that the strains of 
this genus can also thrive in eutrophic media.

Extreme conditions, including osmotic pressure, antibiotics and 
heavy metals, are another important limiting factor for the survival of 
the strain in the environment. All the strains of Stenotrophomonas 
possess the mechanism to pump in potassium ions using a specific 
transport system (kdp, kup and kef) to maintain their osmotic balance. 
In addition, most of them also harbored genes to synthesize 
compatible solutes, such as betaine, trehalose, glutamate and proline, 
to manage osmotic stress. The numerous genes for antibiotic resistance 
that are present in the genomes increase the ability of 
Stenotrophomonas to survive in high-stress environments that contain 
antibiotics. Previous studies have shown that SmeABC and SmeDEF 
are the two most common efflux pumps in S. maltophilia (Wang et al., 
2018). The results of this study confirmed these two efflux pumps are 
common not only in S. maltophilia but also in the entire genus of 
Stenotrophomonas. In addition, all the genomes of Stenotrophomonas 
harbored AG-modifying enzyme genes, including APHs and AACs, 
which enable their resistance to broad-spectrum aminoglycoside 
antibiotics. It is notable that fewer strains of Stenotrophomonas harbor 
the genes for resistance to monobactam, mupirocin and sulfonamide 
antibiotics, which suggests that they could be used to select clinical 

candidates and develop them to some extent. cop, czc, ars and chr 
operon units were identified in all the genomes of Stenotrophomonas, 
and they provide resistance to copper, cobalt, zinc, cadmium, arsenic 
and chromium. In summary, the genes related to carbon source 
utilization, antioxidative stress, osmotic protection, antibiotic and 
heavy metal resistance enhance the ability of the strains of 
Stenotrophomonas to survive in extreme environments, as well as to 
provide a foundation for its colonization of the rhizosphere and 
promotion of plant growth.

Chemotaxis and motility are vitally important for free-living 
bacteria because the levels of nutrients vary, and nutrients are often 
present as point sources over time (Blackburn et al., 1998). All the 
strains of Stenotrophomonas have chemotaxis and motile device 
flagella, which suggests that these strains can sense a variety of 
physicochemical cues and rapidly move to inhabit a niche that is more 
conducive to their survival. Furthermore, the active motility facilitated 
by the flagella and guided by chemotactic responses promotes the 
initial contact of strains of Stenotrophomonas with their host root 
surface, which increases the efficiency of colonization. Similarly, 
Stenotrophomonas can form biofilms that increase their adhesion to 
biotic and abiotic surfaces and result in their resistance to heat, 
antibiotics, UV and other environmental stresses, which leads to a 
promotion in the colonization and biocontrol efficacy of roots 
(Shaheen et al., 2010; Gao et al., 2019). A series of transcriptional 
regulators were identified in all the genomes of Stenotrophomonas that 
regulate and enhance the levels of expression of the genes related to 
motility, chemotaxis, adhesion, and biofilm formation to improve the 
survival of these strains and their efficiency of colonization. Altogether, 
the presence of genes related to motility, chemotaxis and biofilm 
formation contribute to the resistance of strains of Stenotrophomonas 
to environmental stresses and facilitate their efficient colonization of 
plant hosts.

Rhizobacteria can promote the growth of host plants through a 
variety of direct and indirect mechanisms, with direct mechanisms that 
include the biosynthesis of phytohormones and the facilitation of 
acquiring resources (Figure 6). The genomic analysis revealed that all 
the strains of Stenotrophomonas harbor the genes involved in the 
biosynthesis of L-tryptophan and the final step of IAA biosynthesis. This 
result was supported by a previous study that showed that 
Stenotrophomonas sp. 169 and S. maltophilia R551-3 can produce IAA, 

FIGURE 5

Biogeographic distribution analysis of the genus Stenotrophomonas based on the Microbe Atlas Project (MAP) database and pipeline. (A) The global 
distribution of Stenotrophomonas. (B) Number of samples that contain the representative OTU sequence per habitat and sub-habitat. OTU, operational 
taxonomic unit.
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FIGURE 6

Schematic diagram of plant-growth promoting bacterial interactions. IAA, indole-3-acetic acid; CK, cytokinin; EPS, exopolysaccharide; LPS, 
lipopolysaccharide; PHA, polyhydroxyalkanoate; PHB, polyhydroxybutyrate; ROS, reactive oxygen species; RNS, reactive nitrogen species.

but the genes that catalyze the first two steps of IAA biosynthesis were 
not found in their genomes (Taghavi et al., 2009; Ulrich et al., 2021). 
This suggests that Stenotrophomonas may have unidentified enzymes 
involved in the initial conversion of tryptophan or the existence of novel 
pathways for the biosynthesis of IAA. The miaAB gene for the 

biosynthesis of cytokinin and several genes involved in the biosynthesis 
of polyamines, such as putrescine, spermidine and cadaverine, were also 
identified in all the genomes of Stenotrophomonas. Polyamines are not 
only associated with the establishment of biological interactions 
between the roots and rhizosphere microorganisms (Jang et al., 2002; 
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Alavi et  al., 2013a,b), but they also protect plants from various 
environmental stresses, including acidic, oxidative, cold and osmotic 
stresses (Kasukabe et al., 2004; Alavi et al., 2013a). In addition, each of 
the 213 Stenotrophomonas genomes analyzed harbored multiple genes 
that were responsible for phosphate-solubilization, which suggests that 
the genus has a strong ability to solubilize phosphate to meet the plant 
requirements for P. All the strains of Stenotrophomonas can also secrete 
a catecholate siderophore to chelate Fe3+ and utilize the Feo system to 
absorb Fe2+. These iron acquisition systems also play an important role 
in biological control in addition to providing iron to plants because they 
can reduce availability of iron to plant pathogens and limit their growth 
in the rhizosphere by promoting the uptake of iron (Aznar et al., 2015).

Stenotrophomonas can also indirectly promote the growth of 
plants by inhibiting phytopathogens, which is primarily accomplished 
through the production of antimicrobial compounds and cell wall-
degrading enzymes and quenching the QS of pathogens (Figure 6). In 
particular, strains of Stenotrophomonas harbor many abundant BGCs 
with PiPP-like, arylpolyene, and NRP-metallophore/NRPS. The 
secondary metabolites produced by these BGCs may contribute to the 
prevention of plant damage by phytopathogens and enhance the 
competition for niche resources (Bulgarelli et al., 2013). All the strains 
of Stenotrophomonas can also synthesize PHB, which not only has 
antifungal and antibacterial properties, but also serves as carbon and 
energy storage compounds in bacteria that can improve their survival 
and tolerance to stress during starvation (Sadykov et al., 2017). In 
addition, the genes that encode various hydrolytic enzymes, such as 
keratinases, chitinases, proteases and lipases, were identified in most 
of the Stenotrophomonas genome. Previous studies have shown that 
keratinases can be  used as effective biocontrol agents for plant-
parasitic nematodes (Pinski et al., 2020), while chitinases, proteases, 
and lipases can protect plants against phytopathogens by destroying 
the cell walls of fungi (Zhang et al., 2001). The carAB gene required 
for the rapid degradation of DSF was also found in most strains of 

Stenotrophomonas, which controls these pathogens that produce DSF 
by quenching their QS abilities (Newman et al., 2008). Altogether, 
these findings suggest that Stenotrophomonas can have beneficial 
effects on plants through a variety of mechanisms.

MGEs may expand the species gene pool and enhance bacterial 
adaptation and competitiveness in specific habitats through a large 
number of mechanisms of horizontal gene transfer (HGT) (Dobrindt 
et al., 2004). Different numbers of horizontally transferred GIs and 
prophages were found in each Stenotrophomonas genome, and genes 
involved in the translocation and catabolism of various substrates, 
siderophore receptors, and resistance to antibiotics and heavy metals 
were identified in the GIs, which indicates that many strains of 
Stenotrophomonas have acquired the genes for resistance to antibiotics 
and heavy metals through HGT. In addition, the phylogenetic analysis 
revealed that the biosynthetic genes for polyamines (aguB, speE, and 
ldcC), IAA (iroA and aldA) and cytokinins (miaA and miaB) could have 
been acquired by HGT. In particular, the topology of the phylogenetic 
trees based on the sequences of AguB (Figure 7A), SpeE (Figure 7B), 
LdcC (Figure  7C), IroA (Figure  7E), AldA (Figure  7F), MiaA 
(Figure 7G), and MiaB (Figure 7H) differed significantly from that 
based on the core genome (Figure 1A). Strains that clustered together 
in the core genome tree were usually scattered in different branches in 
the trees that were constructed using single AguB, SpeE, LdcC, IroA, 
AldA, MiaA, and MiaB proteins. In contrast, the topology of the tree 
based on AmiE (Figure 7D) is similar to that of the core genome-based 
phylogenetic tree with only minor differences. The S. maltophilia strains 
RC09, NEC1, KMM_349, E824, NS26, and 291 located in Cluster VI in 
the core phylogenetic tree scattered separately in different clusters on 
the AimE tree. S. maltophilia PC315, which is a member of Cluster VI 
on the core genome tree, presents as Cluster IX in the AmiE tree. 
Although the phylogenetic tree based on the AmiE sequence differed 
slightly from the core genome phylogenetic tree in topology, the G + C 
content of the amiE gene (68.1–74.9%) is significantly higher than that 

A B C D

E F G H

FIGURE 7

Phylogenetic tree of Stenotrophomonas constructed based on the amino acid sequences of AguB (A), SpeE (B), LdcC (C), AmiE (D), IroA (E), AldA (F), 
MiaA (G), MiaB (H).

https://doi.org/10.3389/fmicb.2024.1395477
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhao et al.� 10.3389/fmicb.2024.1395477

Frontiers in Microbiology 16 frontiersin.org

of the host genome (63.8–69.3%) (Supplementary Figure S3D). This 
suggests that the amiE gene may also have been acquired through 
HGT. In addition, the open pan-genome and increasing number of 
novel genes suggest that the strains of Stenotrophomonas can introduce 
alien genes by the exchange of genetic material with other community 
members in their habitat and promote their broader genomic plasticity.

In summary, the genus Stenotrophomonas has a high degree of 
environmental adaptability and may promote plant growth through one 
or more mechanisms, which indicate that this genus is a promising 
PGPB, and can be used as a viable alternative to synthetic pesticides and 
fertilizers in agriculture to some extent. Thus, this bacterium could 
provide an effective and environmentally friendly solution to address 
agricultural pollution and ensure food security. Moreover, the presence 
of large numbers of heavy metal resistance genes in Stenotrophomonas 
proves that it may have immense potential in assisting in the 
phytoremediation of heavy metal pollution. However, it is worth noting 
that the diversity of Stenotrophomonas strains makes it difficult to 
distinguish characteristics because of their advantageous interactions 
with plants and their facultatively harmful infections with humans 
(Berg and Martinez, 2015). Therefore, advanced molecular techniques 
should be  developed to identify and discriminate between human 
pathogenic and non-pathogenic strains of Stenotrophomonas, so that 
non-pathogenic strains can be applied in future agricultural systems.

Conclusion

The comparative genomic analysis of 213 strains of 
Stenotrophomonas revealed that despite their geographical isolation 
and diverse hosts, genetic factors related to environmental adaptation 
and plant promotion were identified in all of them. In particular, 
nearly all the strains can utilize ubiquitous carbohydrates in the 
biosphere, such as cellulose and hemicellulose, as carbon and energy 
sources. The presence of functional genes associated with antioxidant 
stress, osmotic pressure protection, heavy metal and antibiotic 
resistance, motility, chemotaxis and biofilm formation enable them to 
colonize and survive in a variety of host environments. The genes 
involved in dissolving phosphates and producing siderophores, 
polyamines, phytohormones, antimicrobial compounds, and pathogen 
cell wall-degrading enzymes confer the Stenotrophomonas strain with 
plant growth-promoting and biocontrol properties. Overall, the 
results of this study suggest that Stenotrophomonas may have immense 
potential for use in sustainable agricultural practices and 
bioremediation technologies and can be used as a suitable candidate 
for a microbial biocontrol agent or an anti-stress agent for crops.
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Glossary

ANI average nucleotide identity

dDDH digital DNA–DNA hybridization

COG clusters of Orthologous Groups of proteins

smBGCs secondary metabolite biosynthesis gene clusters

SodB superoxide dismutase [Fe]

SodC superoxide dismutase [Cu-Zn]

KatE catalase

AhpC alkylhydroperoxidase

Bcp thioredoxin peroxidase

DsbC disulfide interchange protein

MsrA peptide methionine-S-sulfoxide reductase

MsrB peptide methionine-R-sulfoxide reductase

OtsA trehalose-6-phosphate synthase

OtsB trehalose 6-phosphate phosphatase

ProA glutamate-5-semialdehyde dehydrogenase

ProB glutamate 5-kinase

ProC pyrroline-5-Carboxylic acid reductase

GdhA glutamate dehydrogenase

GlnA glutamine synthetase

GltB glutamate synthase large chain

GltD glutamate synthase small chain

CopA copper-exporting P-type ATPase A

CopB copper-transporting P-type ATPase B

CzcABC cobalt-zinc-cadmium resistance protein

ArsB arsenical pump membrane protein

ArsH arsenical resistance protein

LapA Lipopolysaccharide assembly protein A

RfbA glucose-1-phosphate thymidylyltransferase

RfbB dTDP-glucose 4,6-dehydratase

RfbC dTDP-4-dehydrorhamnose 3,5-epimerase

RfbD dTDP-4-dehydrorhamnose reductase

GumD exopolysaccharide xanthan biosynthesis glycosyltransferase

RpfC DSF synthase

RpfC sensor histidine kinase

RpfG two-component system response regulator

PcoI acyl-homoserine-lactone synthase

SpeE spermidine synthase

MetK methionine adenosyltransferase

SpeD S-adenosylmethionine decarboxylase proenzyme

Fiu and CirA catecholate siderophore receptor

EntA enterotoxin type A

EntF enterobactin synthase component F

EntH enterobactin synthase component H

FepA ferrienterobactin receptor

TonB TonB-dependent siderophore receptor

ExbB TonB-system energizer

ExbD biopolymer transporter

Feo Fe2+ transport protein
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