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Introduction: Long-term heavy metal contamination of soil a�ects the structure

and function of microbial communities. The aim of our study was to investigate

the e�ect of soil heavy metal contamination on microorganisms and the impact

of di�erent heavy metal pollution levels on the microbial interactions.

Methods: We collected soil samples and determined soil properties. Microbial

diversity was analyzed in two groups of samples using high-throughput

sequencing technology. Additionally, we constructed microbial networks to

analyze microbial interactions.

Results: The pollution load index (PLI) < 1 indicates that the area is not polluted.

1 < PLI < 2 represents moderate pollution. PLI was 1.05 and 0.14 for the

heavy metal contaminated area and the uncontaminated area, respectively.

Cd, Hg, Pb, Zn, and Cu were identified as the major contaminants in the

contaminated area, with the contamination factors were 30.35, 11.26, 5.46,

5.19, and 2.46, respectively. The diversities and compositions of the bacterial

community varied significantly between the two groups. Compared to the

uncontaminated area, the co-occurrence network between bacterial and fungal

species in the contaminated area was more complex. The keystone taxa of the

co-occurrence network in the contaminated area were more than those in the

uncontaminated area and were completely di�erent from it.

Discussion: Heavy metal concentrations played a crucial role in shaping the

di�erence inmicrobial community compositions.Microorganisms adapt to long-

term and moderate levels of heavy metal contamination through enhanced

interactions. Bacteria resistant to heavy metal concentrations may play an

important role in soils contaminated with moderate levels of heavy metals over

long periods of time.
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heavy metal contamination, soil microbial community, high-throughput sequencing,
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1 Introduction

In recent years, soil contamination with heavy metals has received widespread

attention due to their high biological toxicity, non-biodegradability, and long-term

accumulation in soil (Li et al., 2023). Anthropogenic activities are important causes of

heavy metal contamination in soil, such as mineral exploitation, agricultural activities,

industrial activities, and transportation (Zhang et al., 2023). It has been reported that

industrialization has led to heavymetal contamination inmany of China’s agricultural soils,

and the excessive levels of heavy metals in agricultural land have seriously hampered the

development of food security in China (Cai and Yang, 2023). In addition, compared to

single-heavy metal contamination, multiple heavy metal contamination is more complex

Frontiers inMicrobiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2024.1395154
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2024.1395154&domain=pdf&date_stamp=2024-05-10
mailto:niujingp@lzu.edu.cn
mailto:tiant@lzu.edu.cn
https://doi.org/10.3389/fmicb.2024.1395154
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1395154/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2024.1395154

and poses a threat not only to human health but also to ecological

functions (Qi et al., 2022). Many studies have shown that heavy

metals are detrimental to soil microorganisms, affecting their

diversity, community structure, and function (Cong et al., 2014;

Smidt et al., 2018; Xu et al., 2019). For example, the structure of

soil microorganisms in lead (Pb), cadmium (Cd), and zinc (Zn)

co-polluted soils has been found to be altered significantly, with

Firmicutes being the most resistant to heavy metals (Fajardo et al.,

2019). Shuaib et al. found that heavy metals, such as Hg, Cr, Pb,

Mn, and As, impacted microbial communities in soil and led to

the death of organisms (Shuaib et al., 2021). Other researchers

showed that long-term heavy metal pollution affects the predicted

functions of soil microbial communities (Li et al., 2020). Thus, the

effects of heavy metals on microbial communities have received

increasing attention.

Soil microorganisms play a key role in biogeochemical

processes, pollutant degradation, and maintaining the balance of

soil ecosystems (Wang W. et al., 2022; Qian et al., 2024). They can

respond to changes in the external environment by adjusting their

members, activity, and population composition (Ma et al., 2022;

Li et al., 2024). More importantly, soil microorganisms are more

sensitive to changes in heavy metals than plants and animals and

have the potential to be used as biomarkers of soil environmental

quality (Luo et al., 2019). In addition, heavy metals cannot be

degraded, but mineralization by microorganisms can convert them

into less toxic or less mobile states (Lin et al., 2023). It is necessary

to study the survival strategies of microorganisms under heavy

metal pollution.

The community composition of soil microorganisms is

influenced not only by environmental factors but also by

the interactions between microbial species (Du et al., 2023).

Bacterial–fungal interactions are prevalent in various ecological

environments (Arnold, 2022), and their interactions may be

conducive to the adaptation of microbes to multiple heavy metal-

contaminated soils. Although soil microorganisms have been

studied extensively, the effects of bacterial–fungal interactions

in heavy metal-contaminated soils are still poorly understood.

In order to uncover the changes in the survival patterns of

microorganisms in heavy metal-contaminated environments, it is

imperative to explore the bacterial–fungal interactions.

Network analysis is a powerful method for revealing

ecological interactions among microbial communities in various

environments (Yu et al., 2020; Yun et al., 2021). In recent years,

network analysis has been used more and more frequently in

the field of soil microbial ecology (Creamer et al., 2016). The

advantages of networks are derived from their capacity to extract

novel information on ecological interactions, establishments,

keystone taxa, and microbial interactions. Keystone taxa play an

important role in sustaining community stability and regulating

microbial interactions within the soil microbiome (Xun et al.,

2021). Therefore, it is important to investigate the variation of

keystone taxa under multimetal-contaminated conditions.

In the present study, we selected agricultural soils in Baiyin

and Lanzhou cities of Gansu Province, China, as the study area.

We investigated the effects of heavy metal-contaminated soils on

microorganisms and constructed co-occurrence networks based

on the amplicon sequence variant (ASV) levels for assessing

the correlation and co-occurrence patterns between bacteria and

fungi. This research will provide new insights into the survival

strategies of microorganisms in heavy metal-contaminated soils.

The objectives of this research were as follows: (1) bacteria and

fungi in soil respond variably to heavy metal contamination;

(2) bacterial–fungal interactions are influenced by heavy metal

pollution; and (3) there are keystone taxa in the microbial co-

occurrence network that contribute to the resistance of microbial

communities to heavy metals.

2 Materials and methods

2.1 Study area and sample collection

The research sites are located in Baiyin (36◦29′N, 104◦17′E) and

Lanzhou City (35◦46′N, 104◦1′E), Gansu Province, northwestern

China, where the soil type is gray calcareous soil (Figure 1).

The heavy metal-contaminated soil samples were collected in the

agricultural area along the Dongdagou stream, the main tributary

of the Yellow River in Baiyin, which belongs to the transition

zone from the middle temperate semi-arid zone to the arid zone

that has a temperate continental climate. The local average annual

rainfall is 220mm. Due to the lack of precipitation, there is a

local habit of using wastewater for irrigation (Nan and Zhao,

2000). Previous studies have shown that the average concentrations

of heavy metals in water samples from the East Dagou River

exceeded the maximum permitted levels of pollutants specified in

the Chinese National IrrigationWater Quality Standards (GB5084-

2005) (He et al., 2021; Wu et al., 2023). As a result, the site is

typical of an area contaminated with multiple heavy metals. The

non-heavy metal-contaminated soil samples were collected from

an agricultural area south of Xinglong Mountain Nature Reserve

in Yuzhong County, Lanzhou City, with a similar geography and

climate to that of Baiyin. The local area soil is not contaminated

with heavy metals.

Topsoil was collected in October 2021. According to the

Technical Specification for Soil Environmental Monitoring

(HJ/ST166-2004), at each sampling site, a piece of farmland with

an area of about 10 × 10m was randomly selected, and five

sub-sampling sites were set up in each selected farmland using the

five-point sampling method. A total of 16 samples were selected

in this study: nine samples were collected from Baiyin and seven

samples were collected from Lanzhou. Soil was collected with a

wooden shovel and mixed well to a depth of∼20 cm with a sample

weight >1 kg. Soil samples were sealed in polyethylene bags and

sent to the laboratory within 24 h. One part of the soil was stored

at −80◦C for subsequent DNA extraction, and the other part was

homogenized with a 2mm mesh sieve to remove stones, roots, and

other debris and stored at 4◦C for soil property analysis.

2.2 Soil property analysis

The total phosphorus (TP) content was determined by the

alkali fusion-Mo-Sb anti spectrophotometric method, available

phosphorus (AP) was determined by the sodium hydrogen

carbonate solution-Mo-Sb anti-spectrophotometric method, total

nitrogen (TN) was determined by the Kjeldahl method, organic
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FIGURE 1

The location of sampling points in the contaminated and uncontaminated areas. (A) China, (B) Baiyin and Lanzhou are shown on the left. The

geographical locations of the (C) contaminated and (D) uncontaminated sampling sites are shown on the right.

carbon (OC) was determined by the potassium dichromate

titrimetric method, ammonium nitrogen (AMN) was determined

by the indophenol blue colorimetric method, and nitrate nitrogen

(NN) was determined by the ultraviolet spectrophotometry

method. Microbial biomass carbon (MBC), microbial biomass

nitrogen (MBN), and microbial biological phosphorus (MBP) were

measured by the fumigation–extraction method.

Soil samples of∼0.5 g were digested with 2ml HCl, 6ml HNO3,

and 2ml HF in a microwave digestion system (Milestone ETHOS

ONE). Then, inductively coupled plasma–mass spectrometry (ICP–

MS, Agilent, United States) was used to determine the content

of heavy metals (Mo, Cd, Sb, Cu, Zn, Hg, and Pb). Quality

assurance/control procedures were performed using standardized

reference materials (the Chinese Academy of Measurement

Science) for each batch of samples (one blank and one standard).

2.3 Soil microbial DNA extraction and
sequencing data processing

Total microbial genomic DNA was extracted from soil samples

using the PowerSoil R© DNA Isolation Kit (MO BIO Laboratories,

USA) according to the manufacturer’s instructions. The quality

and concentration of DNA were determined by 1.0% agarose

gel electrophoresis and a GeneAmp R© 3 platform (ABI Inc.,

USA), and the sample was kept at −80◦C prior to further use.

The V4 region of the bacterial 16S rRNA gene was amplified

using the primer pair 515F (5′-GTGCCAGCMGCCGCGGTAA-

3′) and 806R (5′′-GGACTACHVGGGTWTCTAAT-3′) (Liu et al.,

2015). The internal transcribed spacer (ITS) region of the

fungal rRNA genes was amplified using the primer pair

ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2R (5′ -

GCTGCGTTCTTCAT CGATGC-3′) (Adams et al., 2013) by an

ABI GeneAmp R© 9700 PCR thermocycler (ABI, CA, USA). The

PCR reaction mixture included 4 µl of 5 × FastPfu buffer, 2 µl

of 2.5mM dNTPs, 0.8 µl of each primer (5µM), 0.4 µl of FastPfu

polymerase, 10 ng of template DNA, and ddH2O mixed to a final

volume of 20 µl. PCR amplification cycling conditions were as

follows: initial denaturation at 95◦C for 3min, followed by 30

cycles of denaturing at 95◦C for 30 s, annealing at 55◦C for 30 s,

extension at 72◦C for 45 s, single extension at 72◦C for 10min,

and end at 4◦C. All samples were amplified in triplicate. The PCR

product was extracted by electrophoresis using 2% agarose gel.

The concentration of PCR products was determined by NanoDrop
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spectrophotometer (ND-2000 Spectrophotometer, Thermo Fisher

Scientific, USA).

Amplicons were gel-purified using an AxyPrep DNA Gel

Extraction Kit (Axygen Biosciences, USA) and sequenced on an

Illumina MiSeq platform at the Majorbio Bio-pharm Technology

Co., Ltd. (Shanghai, China). The resulting sequences were

processed by using the DADA2 plugin in the QIIME2 package

for quality filtering, denoising, merging, and dereplication. Then,

the sequences were clustered into amplified sequence variants

(ASVs), which are considered more precise and comprehensive

than operational taxonomic units (OTUs) (Callahan et al., 2017).

2.4 Construction of the co-occurrence
network

We constructed bacterial–fungal interspecies co-occurrence

networks using the “Hmisc” and “igraph” R packages based on

Spearman’s correlation coefficient. To reduce network complexity

and facilitate the identification of the core soil community,

thresholds were selected with absolute values of Spearman’s

correlation coefficient (r) of > 0.7 and Benjamini and Hochberg

false discovery rate (FDR)-corrected p-values of < 0.05 (Barberan

et al., 2012). Network images were generated using Gephi

(version v 0.9.2), and network properties (i.e., average degree,

average clustering coefficient, density, and modularity) were

calculated. The topological roles of the nodes in the network are

classified according to the threshold values of Zi (within-module

connectivity) and Pi (among-module connectivity). Module hubs

(Zi > 2.5), network hubs (Zi > 2.5 and Pi > 0.62), and connectors

(Pi > 0.62) of the network were considered critical nodes and

identified as keystone taxa.

2.5 Statistical analysis

The level of pollution caused by individual metals was evaluated

using the contamination factor (CF), as shown in Equation (1).

The level of contamination by multiple metals in the study area

was assessed comprehensively using the pollution load index (PLI),

as shown in Equation (2) (Bhuiyan et al., 2010). The calculation

formula is as follows:

CF = Metal[Measured]/Metal[Background] (1)

PLI = (CF1 × CF2 × · · · × CFn)
1/n (2)

where Metal [Measured] is the concentration of heavy metals in the

soil samples, Metal [Background] is the background value of heavy

metals, and n is the number of heavy metals measured in this study.

The values of 1 < CF < 3 indicate moderate pollution, 3 < CF <

6 indicates considerable high pollution, and CF > 6 indicates that

pollution is at the highest level (Esmaeilzadeh et al., 2021). If PLI

> 1, it is considered a contaminated area. The higher the value, the

more severe the heavy metal pollution.

Alpha diversity indexes, including coverage, Chao1 richness,

and Simpson index, were calculated using the “vegan” and “picante”

R packages. The Mantel test was performed using “vegan” and

“ggplot2” R packages to obtain the significance of Spearman’s

rank correlations between microbial communities and heavy

metals. Correlation heat maps were calculated and plotted using

the “psych” and “pheatmap” R packages, respectively. Principal

component analysis (PCA) was used to evaluate the influence of

heavy metal pollution on the structure of microbial communities.

The Wilcoxon Mann–Whitney test with the IBM SPSS 26.0

software was performed to compare alpha diversity indexes and

pollution load index (PLI) between groups, and the P-value of

<0.05 was deemed to be statistically significant.

3 Results

3.1 Soil heavy metal concentrations

The main soil type in the study area is gray calcareous soil,

which is characterized by a low content of organic matter and

nutrients (Yang et al., 2017). Since the level of pollution caused

by heavy metals varied significantly, we classified the sampling

sites according to the concentration of heavy metals. Baiyin soil

samples were defined as “contaminated area” and Lanzhou soil

samples were defined as “uncontaminated area”. As shown in

Figure 2, the CF values of Mo, Cd, Sb, Cu, Zn, Hg, and Pb were

significantly different in the contaminated and uncontaminated

areas (Wilcoxon, P < 0.05). Previous studies have confirmed that

the sources of pollution in the contaminated area were mainly

metallurgical plant dust and slag heap, and the level of pollution

gradually decreased with the distance from themain sources (Wang

et al., 2015). In addition, there was a local habit of using wastewater

for irrigation. In the present study, large volatility was observed

in the distribution of heavy metal content in contaminated areas,

which is largely due to anthropogenic activities (Yue et al., 2020).

Overall heavy metal contamination levels in the two groups of

areas were significantly different (Wilcoxon, P < 0.05). The level

of heavy metal in the contaminated area was significantly higher

than those in the uncontaminated area. The average PLI was 1.05

in the contaminated area and 0.14 in the uncontaminated area.

PLI > 1 indicated moderate pollution, and PLI < 1 indicated

an uncontaminated level. The levels of Mo and Sb in all soil

samples did not exceed local background values. Sb was the lowest

heavy metal that occurred at the agricultural soil sites in both

study areas, reaching concentrations of 12.50 and 3.26 ng g−1,

respectively (Supplementary Table S1). We considered that the Sb

content in the soil at the sampling sites was very low and that

the effect on the soil microbial communities would be relatively

minimal. The contents of Cd, Cu, Zn, Hg, and Pb were higher

than the local background values in the contaminated area and

lower than the local background values in the uncontaminated

area. Specifically, the Cd concentrations were, on average, 50 times

higher in the contaminated area than in the uncontaminated area.

Compared with Cd concentrations, other heavy metals showed

less concentration differences (<16 times) in these two areas. The

second highest concentration in the contaminated area was Hg,

with an average CF value of 11.26, indicating the highest level.

The physicochemical properties of the soil samples are

shown in Table 1. Microbial biomass carbon (MBC), microbial

biomass nitrogen (MBN), total nitrogen (TN), organic carbon
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FIGURE 2

A comparison of heavy metal pollution factors between contaminated and uncontaminated areas (A–G); (H) a comparison of pollution load indices

between contaminated and uncontaminated areas.

(OC), and nitrate nitrogen (NN) were significantly higher in

the uncontaminated than in the contaminated area (Wilcoxon,

P < 0.05). Microbial biological phosphorus (MBP), water content

(WC), total phosphorus (TP), available phosphorous (AP), and

ammonium nitrogen (AMN) levels were not significantly different

between the two groups (Wilcoxon, P > 0.05).

3.2 Richness and diversity of soil microbial
communities

Based on ASV data, three α diversity indexes (coverage, Chao1,

and Simpson) were used to evaluate the coverage, richness, and

evenness of the soil microbial communities (Table 2). There was no

significant difference for all indexes of bacteria and fungi between

contaminated and uncontaminated areas except the Simpson index

for bacteria. It was shown that heavy metal contamination did

not change the abundance and diversity of bacteria and fungi but

had an effect on the homogeneity of the bacterial communities.

Moreover, the average coverage for bacteria and fungi was 0.980

and 1.000, respectively, which indicated that the current sequencing

depth captured bacteria and fungi well. The average values of the

Chao1 index for bacteria and fungi were 1,549.12 and 505.69,

respectively. The abundance of bacteria in the soil was much higher

than that of fungi, which is consistent with the results of previous

studies, indicating that bacteria dominate the biomass and diversity

of soil microorganisms (Deng et al., 2018).

Principal component analysis (PCA) was performed to estimate

the β-diversity of soil microorganisms. As shown in Figure 3,

the PCA1 axis of bacteria and fungi accounted for about 56.98

and 38.90% of the total variation, respectively. The PCA2 axis

accounted for about 8.12 and 16.96%, respectively. The PCA1 and

PCA2 axes accounted for a total of 65.10 and 55.86%, respectively,

and the two major axes could explain most of the variation. In
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addition, analysis of similarity based on the Bray–Curtis distances

(ANOSIM) showed significant differences in the distribution of

bacterial and fungal communities between contaminated and

uncontaminated areas (R = 0.3965, P = 0.003 and R = 0.6163,

P = 0.001).

The population composition of bacteria and fungi at

the phylum level is shown in Figure 4. A total of 11,437

bacterial ASVs and 4,254 fungal ASVs were identified in the

contaminated and uncontaminated areas. In total, 27 bacterial

and 16 fungal phyla were identified. Differences exist in the

distribution of microbial communities in soils with various

levels of contamination. Proteobacteria, Actinobacteria, and

Acidobacteria were the top three abundant phyla in the bacterial

community. Actinobacteria showed significant preferences for

the contaminated (17.02%) and uncontaminated (31.04%) areas

(P < 0.001) (Supplementary Figure S1). Planctomycetes and

Gemmatimonadetes were higher in the contaminated area than in

the uncontaminated area.

A majority of fungal ITS gene sequences were associated with

the phyla Ascomycota, Basidiomycota, and Mortierellomycota,

which represented 86.57 and 90.67% of the total sequences in the

contaminated and uncontaminated areas, respectively. Specifically,

proportions of Ascomycota were much higher than other fungal

phyla in both areas, with 65% in the contaminated and 75%

in uncontaminated areas. The abundances of Mortierellomycota

and Chytridiomycota were significantly different (P < 0.001)

(Supplementary Figure S1). These results together suggested that

heavy metal contamination has a strong impact on the soil

microbial community structure.

TABLE 1 Soil physicochemical properties.

Parameter CA UA P-value

MBC 115.58± 29.4 174.16± 35.36 0.000

MBN 15.85± 3.29 20.73± 5.68 0.000

MBP 8.10± 2.66 8.08± 3.94 0.611

WC 14.42± 2.71 14.94± 1.56 0.187

TP 0.50± 0.45 0.35± 0.11 0.574

AP 70.73± 56.26 45.73± 24.43 0.275

TN 0.93± 0.25 1.40± 0.34 0.000

OC 13.58± 3.63 18.93± 4.94 0.000

AMN 0.79± 0.16 1.37± 1.29 0.274

NN 2.11± 0.78 4.66± 3.33 0.006

P-value: the significance of physicochemical properties between contaminated and

uncontaminated area soils compared with the two-tailed Wilcoxon rank-sum test.

3.3 E�ects of environmental factors on
microbial community composition

We studied the correlations between environmental factors

and microbial taxa based on their relative abundance at the

phylum level to gain an insight into how environmental factors

affect the composition of microbial communities (Figures 5A, B).

We observed mainly positive correlations between heavy metals

and bacterial abundance. Zn and Hg concentrations showed

uniformly positive associations with the relative abundance

of bacteria Gemmatimonadetes, Chloroflexi, Planctomycetes,

and Armatimonadetes. Gemmatimonadetes were notably

positively associated with all heavy metals. Actinobacteria was

negatively associated with all heavy metals. It demonstrated that

Actinobacteria is sensitive to heavy metals, consistent with the

above results. It is found that different types of physicochemical

properties also have different effects on bacterial communities:

MBC was positively correlated with Acidobacteriota and negatively

correlated with Gemmatimonadetes, while MBP and AP were

positively correlated with Firmicutes. Furthermore, several

studies have reported that the phylum Proteobacteria was

found to be abundant in many environments with high heavy

metal content (Zhu et al., 2013; Chauhan et al., 2017; Zuo

et al., 2023). Nonetheless, there was no significant correlation

between Proteobacteria and heavy metals in this study. This

might be attributed to the higher resistance of Proteobacteria to

heavy metals.

Mo, Zn, Pb, Cd, and Cu were positively correlated

with Mortierellomycota and negatively correlated with

Chytridiomycota. It is evident that Sb was negatively correlated

with Basidiomycota, which suggested its sensitivity to varied

concentrations of Sb. Zoopagomycota was significantly associated

only with physicochemical properties. MBC, TN, and OC had

significantly negative effects on Mortierellomycota, while MBC,

WC, and NN had significantly positive impacts on Basidiomycota.

MBN was positively associated with Chytridiomycota and

negatively associated with Zoopagomycota.

Moreover, the Mantel test based on ASV data showed a strong

correlation between heavy metals, which might be attributed to

the reason that these heavy metals come from the same source

of contamination (Figure 6). In addition, MBC was negatively

correlated with the above heavy metals and positively correlated

with MBN, TN, OC, and NN. Cu, Hg, MBC, and WC had

significant effects on the entire bacterial community. Mo, Cd, Sb,

Zn, MBC, TN, and OC had significant effects on the entire fungal

community. These results indicated that Cu plays an important role

in altering the bacterial community after long-term contamination

(Li et al., 2014).

TABLE 2 The α index of soil microbial communities.

Sample Coverage Chao1 Simpson

Bacteria Fungi Bacteria Fungi Bacteria∗ Fungi

CA 0.980± 0.008 1.000± 0.000 1,538.09± 385.44 486.04± 81.08 1.00± 0.00 0.97± 0.01

UA 0.979± 0.001 1.000± 0.000 1,563.29± 86.17 530.96± 94.65 0.99± 0.01 0.97± 0.02

Statistical differences between contaminated and uncontaminated areas were analyzed by a two-tailed Wilcoxon rank-sum test. ∗Indicates P < 0.05.

Frontiers inMicrobiology 06 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1395154
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2024.1395154

FIGURE 3

Principal component analysis based on the Bray–Curtis distance showing di�erences in microbial community compositions among di�erences in

microbial community compositions at the ASV level. (A) The bacterial community (B) the fungal community.

FIGURE 4

Community composition of soil bacteria (A) and fungi (B) at the phylum level.

3.4 Co-occurrence patterns of microbial
communities

We constructed two co-occurrence networks at the ASV level

for the contaminated and uncontaminated areas in order to identify

associations between bacterial and fungal communities (Figure 7).

The topological properties of the microbial association network

are summarized in Table 3. Heavy metal pollution strengthened

the connectivity, complexity, and degree of clustering of co-

occurrence networks indicated by the increased average degree

and density, respectively. It has been observed that complex

networks with higher connectivity were more stable than simple

networks with lower connectivity (Santolini and Barabási, 2018).

In the two co-occurrence networks, the increase in nodes

and edges of contaminated areas also implied that potential

microbial interactions were closer in polluted soils. The node

proportion of the fungal community was obviously lower than

that of the bacterial community. This could be attributed to

the highest bacterial diversity. Moreover, positive associations

were abundant in all the two co-occurrence networks, which

indicated that most of the bacterial–fungal interactions were

primarily symbiotic.
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FIGURE 5

Spearman rank correlations between environmental factors and bacterial (A) and fungal community (B) (**0.001 < p < 0.01 and *0.01 < p < 0.05).

Moreover, important taxonomic groups in the co-occurrence

networks were extracted according to the values of Zi (within-

module connectivity) and Pi (among-module connectivity)

(Figure 8). Specifically, a total of seven and two ASVs were

confirmed as the keystone taxa in the contaminated (five

bacterial taxa and two fungal taxa) and uncontaminated (two

bacterial taxa) areas, respectively. The keystone taxa of bacteria

in the contaminated area were Chloroflexi, Armatimonadetes,

Proteobacteria, and Acidobacteria, and the keystone taxa of fungi

were all Ascomycota (Supplementary Table S2). The only keystone

taxa in the uncontaminated area were bacteria, Verrucomicrobia,

and Bacteroidetes (Supplementary Table S3). More keystone taxa
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FIGURE 6

Spearman rank correlations between environmental factors and microbial community composition. ***p < 0.001, **0.001 < p < 0.01, and

*0.01 < p < 0.05.

were found in contaminated areas than in uncontaminated areas,

which indicated that microorganisms will resist heavy metal

stress through enhanced interactions. In addition, many of the

bacterial keystone taxa are low-abundance colonies, suggesting

that low-abundance bacteria may also play an essential role in the

interaction of colonies to help resist heavy metal stress.

To gain further insights into the effects of heavy metal

contamination on bacterial–fungal interactions, Spearman’s

correlation analysis was performed by selecting bacteria and fungi

with relative abundance >10% at the genus level (Figure 9). There

were more bacterial–fungal interactions in the contaminated

area than in the uncontaminated area, which is consistent

with the results of the co-occurrence network analysis. We

observed that many of the fungi in the contaminated area were

positively correlated with Arthrobacter and Microvirga but

negatively correlated with Sphingomonas and Gp7. Interestingly,

the interactions of Mortierella with these bacterial genera are in

contrast to the above fungal genera. In the uncontaminated area,

Pseudogymnoascus and Solicoccozyma were positively correlated

with Gemmatimonas and Gp 16, respectively. Bradymyces was

negatively correlated with Gaiella. These results illustrated that

heavy metal contamination altered the interactions among

soil microorganisms.

4 Discussion

4.1 The response of microbial communities
to heavy metal pollution

Numerous studies have shown that heavy metal contamination

reduces the diversity of soil microorganisms (Smidt et al., 2018;

Zhang M. et al., 2022). However, in the present study, only the

bacterial Simpson index was significantly different between the

contaminated and uncontaminated areas. It is already known that

bacteria are more sensitive than fungi in the face of heavy metal

stress (Yang et al., 2023), which might be the reason for the

difference in the bacterial Simpon index and no difference in fungi

in this study.

On further comparing the differential species of the two

groups of soil microorganisms, we observed that heavy metal

contamination increased the abundance of Planctomycetes

Frontiers inMicrobiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1395154
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2024.1395154

FIGURE 7

Co-occurrence network of microbial communities. (A) Contaminated areas (B) uncontaminated areas.

and Gemmatimonadetes but decreased the abundance of

Actinobacteria. The results showed that Planctomycetes and

Gemmatimonadetes were resistant to heavy metals and were

able to survive in heavy metal-contaminated soils. Consistent

with previous research, Actinobacteria were sensitive to heavy

metals, which reduced their abundance significantly (Pan et al.,

2020). In addition, Proteobacteria have been confirmed by many

researchers as resistant to metal microorganisms and dominate

in heavy metal-contaminated soils, which might be related to

their complex livelihoods and the ability to degrade various

complex organic molecules (Pereira et al., 2014). In this study,

the abundance of Proteobacteria was higher in the contaminated

area than in the uncontaminated area, but there was no significant

difference between the two groups. This difference might be due

to its relatively high resistance to some heavy metals and ability to

live in extreme environments (Zhao et al., 2019; Yan et al., 2020).

Therefore, slight contamination was unable to cause significant

variation in its abundance.

Ascomycota was the highest relatively abundant among

the fungi. Extensive degradation and metabolic properties and

strong survival in a variety of habitats enable Ascomycota to

rapidly adapt its community structure to its environment after

exposure to heavy metal stress (Lin et al., 2019). Heavy metal

pollution increased the abundance of Mortierellomycota and

decreased the abundance of Basidiomycota and Chytridiomycota,

indicating that Mortierellomycota is resistant to heavy metals,

while Basidiomycota and Chytridiomycota are sensitive to heavy

metals. As reported by previous studies, Gemmatimonadetes and

Actinobacteria were correlated to Sb (Huang et al., 2023). The

same results were observed in the present study. Considering the

content of Sb was very low in both groups, we suggested that these

species may be sensitive to Sb levels. In addition, Basidiomycota

only correlated with Sb in heavy metals, and there may be suitable

colonies to be biomarkers for Sb. However, the interaction between

fungi and Sb merits further investigation (Wang W. et al., 2022).

Bacteria and fungi have different degrees of resistance to

different levels of heavy metal pollution, as well as different abilities

to accept and degrade heavy metals (Guo et al., 2017). Correlation

analysis of environmental factors and microorganisms showed that

bacteria and fungi responded differently to different environmental

factors. Physicochemical properties and heavy metals had mostly

contrasting effects on the same species. Among the bacteria,

only Actinobacteria were negatively correlated with heavy metals,

indicating that Actinobacteria was sensitive to heavy metals and

that low concentrations of heavy metal pollution can reduce its

abundance. Previous research has demonstrated that AP and AN

had a strong influence on fungal communities in rhizosphere soil

and bulk soils, while soil moisture contributed significantly to

determine the structure of fungal communities in wetland soils

(Onufrak et al., 2019; Wang Y. et al., 2022). In the present study,

environmental factors cluster differently in fungi compared to

bacteria. WC and AMN were not significantly different in the two

groups but clustered together with the physicochemical properties

that were significantly different. The reason for this result might be

the relatively large contribution of these two environmental factors

in driving changes in fungal communities.

The relationship between metallic elements indirectly reflects

whether the elements have the same origin (Zhang and Sun, 2018;

Jie et al., 2021). The higher the correlation between elements, the

greater the possibility that they have the same source. In this study,
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there was a strong correlation between heavy metals, which might

be due to the local habit of using wastewater to irrigate agricultural

fields. Simultaneously, MBC showed a significant correlation with

the above heavy metals as well as MBN, TN, OC, and NN. It

has been reported that heavy metal contamination may alter soil

chemistry to some extent (Shen et al., 2022). Therefore, it can be

inferred that heavy metal contamination causes variations in MBC,

which in turn affects other soil physicochemical properties. The

uneven distribution of heavy metal Cd content and obvious spatial

variation demonstrated that soil disturbance is mainly caused by

anthropogenic activities (Zhao et al., 2020). Moreover, Cd was the

most contaminated heavy metal in the contaminated area and is the

TABLE 3 Topological characteristics of bacterial and fungal

co-occurrence networks.

Topological properties CA UA

Nodes 1,242 782

Bacterial nodes (%) 77.78% 77.75%

Fungi nodes (%) 22.22% 22.25%

Edges 5,455 1,136

Positive edges (%) 98.64% 97.98%

Negative edges (%) 1.36% 2.02%

Average degree 8.784 2.905

Average clustering coefficient 0.663 0.846

Density 0.007 0.004

Modularity 0.775 0.975

most serious toxic metal threatening food safety and agricultural

sustainability in China (Zhao et al., 2014).

4.2 The e�ects of heavy metal pollution on
the co-occurrence patterns of microbial
communities

Co-occurrence networks can be used to understand the

potential ecological relationships among microbial communities.

In this study, the average PLI value of the contaminated area

was 1.05, indicating moderate pollution. Meanwhile, heavy metal

contamination in the contaminated area was observed for a long

term. The average PLI value of the uncontaminated area was

0.14, indicating uncontaminated levels. The results show that

the co-occurrence network of the heavy metal contamination

group was more intensive, with more nodes and higher co-

occurrence number, connectivity, and stability. Previous research

has shown that microorganisms tend to adapt to heavy metal

pollution and increase their diversity and abundance accordingly

if contamination continues for a long time (Bourceret et al., 2016).

Studies have also revealed that microbial community function may

be higher in heavy metal-contaminated soils (Singh et al., 2019).

The above results indicated that the low levels of heavy metal

pollution in the long-term may lead to improved adaptation of

microorganisms to the environment and more efficient transfer

of resources.

Previous studies have confirmed that moderate heavy metal

contamination can enhance microbial interactions (Zhang X.

et al., 2022). In this study, there were seven keystone taxa

FIGURE 8

The analysis of bacterial and fungal ASV levels with network hubs and module hubs’ role in network characterization.
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FIGURE 9

Spearman rank correlation between bacteria and fungi at the genus level. Only genera with relative abundance > 10% are shown. (A) Contaminated

areas (B) uncontaminated areas (**0.001 < P < 0.01 and *0.01 < P < 0.05).

in the heavy metal-contaminated area and more than two in

the uncontaminated area. Keystone taxa play a key role in the

co-occurrence network, and an increase in the number of taxa

further indicated the increased stability of the bacterial–fungal

co-occurrence network in the heavy metal-contaminated areas (Xu

et al., 2023). The species of keystone taxa in the contaminated
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and uncontaminated areas were different, further suggesting that

heavy metal contamination could alter soil microbial interactions.

Both keystone taxa identified in the uncontaminated area were

bacteria, while five bacterial taxa and two fungal taxa were

identified in the contaminated area. These fungi belonged to the

Ascomycota phylum, which had the largest relative abundance.

It has been shown that fungi in heavy metal-contaminated

soils are more resistant to heavy metals than bacteria, and

Ascomycetes had the highest resistance to heavy metals (Frossard

et al., 2017; Zeng et al., 2020). In this study, heavy metal

pollution increased the number of fungal keystone taxa. We

hypothesized that fungi can increase tolerance to heavy metals

by enhancing microbial interactions. The bacterial keystone taxa

in the contaminated area were Chloroflexi, Armatimonadetes,

Proteobacteria, and Acidobacteria. Among them, Chloroflexi

was significantly positively correlated with Zn, Mo, and Hg.

Armatimonadetes was positively correlated with Zn and Hg. The

other two bacterial taxa had no significant correlation with heavy

metals in this study. However, Proteobacteria was recognized

as the tolerant phylum to heavy metals, and Acidobacteria was

also been observed to be positively correlated with heavy metal

concentrations (Pan et al., 2020). The keystone taxa Acidobacteria

phylum at the genus level was GP17. It has been verified that

the relative abundance of the genus GP17 was higher in heavy

metal-contaminated soils than in uncontaminated soils (Zhang M.

et al., 2022). The keystone taxa in uncontaminated areas were

Verrucomicrobia and Bacteroidetes, which were not significantly

correlated with heavy metal concentrations in this study. However,

previous studies showed that these two bacteria phyla were

significantly negatively correlated with Zn, Pb, and Cr (Li et al.,

2020). These results indicated that species with high tolerance

to heavy metals will dominate the microbial interactions and

play the role of keystone taxa in heavy metal-contaminated soils.

Research has shown that a more stable microbial co-occurrence

network would facilitate nutrient redistribution (Mo et al., 2022)

and the stability of ecosystem function (Yuan et al., 2021). In

addition, the relative abundance of keystone taxa at the genus

level was low in both groups. This finding suggested that some

low-abundance fungi could be keystone members in the soil

microbiome and might play more critical roles in maintaining

ecological stability and structuring fungal communities than some

abundant genera. Moreover, the mechanism of the role of keystone

taxa in the soil bacterial–fungal ecological network needs to be

further explored. In conclusion, moderate-heavy metal pollution

may contribute to the survival of microorganisms. Interspecific

interactions between bacteria and fungi were a key element in the

evolution of microbial communities in heavy metal-contaminated

soil ecosystems (Chun et al., 2021).

Then, the interactions between soil bacteria and fungi

were further analyzed (Figure 9). There were more bacterial–

fungal interactions in the contaminated area than in the

uncontaminated area, suggesting that heavy metals altered

the interactions between soil microorganisms, which was

consistent with the results of the co-occurrence network

analysis. The correlated bacteria with fungi at the phylum

level were Proteobacteria, Acidobacteria, Actinobacteria,

Ascomycota, Basidiomycota, and Mortierellomycota in the

contaminated area. The correlated bacteria with fungi at the

phylum level in the uncontaminated area were Actinobacteria,

Gemmatimonadetes, Ascomycota, and Basidiomycota. It has

been documented that both Acidobacteria and Proteobacteria

are the dominant phyla in heavy metal-contaminated areas

(Jiang et al., 2021). In uncontaminated soil, these two bacterial

taxa were not significantly correlated with fungi, whereas they

were significantly correlated with fungi in contaminated soil.

Bacterial–fungal interactions may enhance their resistance to

heavy metals.

5 Conclusion

In this article, the contaminated area was mainly contaminated

with the Cd, Cu, Zn, Hg, and Pb. The abundance and diversity

of bacterial and fungal communities in the co-contaminated

soils with multiple heavy metals did not change significantly,

but the community distribution had significant changes.

The relative abundance of Proteobacteria increased, whereas

Actinobacteria showed the opposite trend in the case of heavy

metal contamination. Ascomycota was the highest relatively

abundant fungus among all study sites, much greater than that in

other groups. Cu, Hg, MBC, and WC had significant effects on the

entire bacterial community. Mo, Cd, Sb, Zn, MBC, TN, and OC

had significant effects on the entire fungal community. Moreover,

multiple heavy metal contaminations enhanced the complexity

of the bacterial–fungal co-occurrence network, with more

keystone taxa in the co-occurrence networks in the contaminated

areas than in the uncontaminated areas. The keystone taxa in

the contaminated area were Chloroflexi, Armatimonadetes,

Proteobacteria, Acidobacteria, and Ascomycota, which were

resistant to heavy metals. The keystone taxa in the uncontaminated

area were Verrucomicrobia and Bacteroidetes, which were

sensitive to heavy metals. In summary, soil microorganisms

may resist multiple heavy metal contamination through enhanced

interactions. This study could provide fundamental information for

developing bioremediation mechanisms for the recovery of heavy

metal-contaminated soil.
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