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Introduction: Higher alcohols are volatile compounds produced during 
alcoholic fermentation that affect the quality and safety of the final product. This 
study used a correlation analysis of transcriptomics and metabolomics to study 
the impact of the initial addition of SO2 (30, 60, and 90  mg/L) on the synthesis of 
higher alcohols in Saccharomyces cerevisiae EC1118a and to identify key genes 
and metabolic pathways involved in their metabolism.

Methods: Transcriptomics and metabolomics correlation analyses were 
performed and differentially expressed genes (DEGs) and differential metabolites 
were identified. Single-gene knockouts for targeting genes of important 
pathways were generated to study the roles of key genes involved in the 
regulation of higher alcohol production.

Results: We found that, as the SO2 concentration increased, the production 
of total higher alcohols showed an overall trend of first increasing and then 
decreasing. Multi-omics correlation analysis revealed that the addition of 
SO2 affected carbon metabolism (ko01200), pyruvate metabolism (ko00620), 
glycolysis/gluconeogenesis (ko00010), the pentose phosphate pathway 
(ko00030), and other metabolic pathways, thereby changing the precursor 
substances. The availability of SO2 indirectly affects the formation of higher 
alcohols. In addition, excessive SO2 affected the growth of the strain, leading 
to the emergence of a lag phase. We screened the ten most likely genes and 
constructed recombinant strains to evaluate the impact of each gene on the 
formation of higher alcohols. The results showed that ADH4, SER33, and GDH2 
are important genes of alcohol metabolism in S. cerevisiae. The isoamyl alcohol 
content of the EC1118a-ADH4 strain decreased by 21.003%; The isobutanol 
content of the EC1118a-SER33 strain was reduced by 71.346%; and the 
2-phenylethanol content of EC1118a-GDH2 strain was reduced by 25.198%.

Conclusion: This study lays a theoretical foundation for investigating the 
mechanism of initial addition of SO2 in the synthesis of higher alcohols in S. 
cerevisiae, uncovering DEGs and key metabolic pathways related to the synthesis 
of higher alcohols, and provides guidance for regulating these mechanisms.
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1 Introduction

In vinification, sulfur dioxide (SO2) is the most common, cheap, 
and effective food additive. SO2 has multiple beneficial effects, 
including antibacterial and antioxidant properties and a satisfactory 
impact on wine color (Lisanti et al., 2019; Capece et al., 2020). Once 
added to must or wine, total SO2 consists of various bound and free 
forms of the compound in equilibrium, mainly molecular SO2, 
bisulfite, and sulfite (Sacks et al., 2020). However, ingestion of SO2 can 
cause adverse health effects, such as diarrhea, abdominal pain, and 
urticaria, and excessive intake and cumulative consumption of SO2 
may lead to vital organ poisoning (Vally et al., 2009; Ferrer-Gallego 
et al., 2017). Excess SO2 is toxic to yeast, and its initial level will affect 
the duration of the lag phase and the production of lipids, phenols, 
alcohols and other substances (Ferreira et al., 2017). Although many 
SO2 alternatives have shown good efficacy, no other physical 
technology or additive currently offers the same efficacy and broad 
spectrum of advantageous effects (antioxidant and antimicrobial) as 
SO2. Therefore, alternative methods should be  considered as 
supplements to SO2 in low-sulfite winemaking rather than as a 
complete replacement (Lisanti et al., 2019).

Higher alcohols, commonly known as fuel oils, are important 
volatile flavor compounds in alcoholic beverages and significantly 
affect the odor and texture of wine (Li et  al., 2018). The main 
higher alcohols produced by S. cerevisiae are n-propanol, 
isobutanol, isoamyl alcohol, and 2-phenylethanol (Choi et  al., 
2014). Excessive amounts of higher alcohols have strong 
intoxicating properties and negatively impact the quality 
(off-flavor), health effects, (headaches), and safety (poisoning) of 
alcoholic beverages (Yang et  al., 2014; Sun et  al., 2020). In 
S. cerevisiae, higher alcohols are generated through decarboxylation 
reduction of the corresponding intermediate α-keto acid to its 
corresponding aldehyde, followed by a subsequent dehydrogenation 
reaction (Cordente et al., 2021). The formation of higher alcohols 
in yeast can be divided into two different pathways based on the 
origin of the intermediate α-keto acids (Figure 1). One pathway, 
called the Ehrlich pathway, involves the catabolic generation of 
α-keto acids through the amino acid transamination pathway; the 
other pathway, called the Harris pathway, involves the biosynthetic 
generation of α-keto acids through glucose metabolism and the 
tricarboxylic acid cycle (Wang et al., 2017).

Based on transcriptomic analysis, the key genes that affect higher 
alcohols under different temperatures and α-amino nitrogen 
concentrations have been revealed (Sun et al., 2019; Wang et al., 2021). 
The effect of SO2 addition on volatile substances such as aldehydes, 
lipids, and alcohols during the wine fermentation process has also 
been explored (Herrero et al., 2003; Ochando et al., 2020). However, 
few studies have used transcriptomic and metabolomic correlation 
analyses to explore the effect of initial SO2 addition on higher alcohol 
synthesis in S. cerevisiae during winemaking or to explore the key 
genes involved.

The integration of multi-omics approaches will complement existing 
molecular and genetic information and provide valuable insights into the 
molecular mechanisms involved (Yu et al., 2022). Transcriptomics and 
metabolic phenotyping analysis enable us to gain a deep understanding 
of the functions of differentially expressed genes (DEGs), metabolic 
pathways, and regulatory mechanisms involved in the synthesis of higher 
alcohols (He et al., 2023). By employing strategies such as deletion and 
overexpression to alter the transcription levels of key genes in this 
pathway, we identified and verified the key genes involved in the synthesis 
of higher alcohol and their competition pathways in S. cerevisiae, thereby 
controlling the content of higher alcohols produced (Cui et al., 2023).

This study investigated the effect of the initial addition of SO2 to 
the fermentation system on the production of higher alcohols in yeast 
through transcriptomics and metabolomics correlation analysis and 
screened the DEGs that are identified by further analysis. Constructing 
a single-gene knockout recombinant strain, targeting important 
pathways, uncovering intrinsic patterns, and mining DEGs to identify 
key genes and metabolic pathways that regulate higher alcohol 
metabolism will provide crucial guidance for the precise regulation of 
higher alcohol production.

2 Materials and methods

2.1 Strains, plasmids, and primers

Saccharomyces cerevisiae EC1118a used in this study was provided 
and preserved by the State Key Laboratory of Microbiology, School of 
Bioengineering, Qilu University of Technology. The plasmids and 
primers used in this study are listed in Supplementary Tables S1, S2, 
respectively. Enzyme preparations used in this study were purchased 
from Vazyme Biotechnology Co., Ltd. (Nanjing, China).

2.2 Culture medium and experimental 
design

Saccharomyces cerevisiae was cultured in YPD medium (containing 
1% yeast extract, 2% peptone, and 2% glucose); 200 μg/mL of G418 
(geneticin, Coolaber, Beijing, China) was added to YPD medium to 
screen for KanMX-resistant transformants in recombinant strains. YPG 
medium (1% yeast extract, 2% peptone, and 2% galactose) was used to 
select strains with KanMX resistance gene eliminated. The grape juice 
culture medium was prepared from Chardonnay grapes that were 
destemmed, crushed, and pressed to extract the juice. After centrifugation, 
the juice was sterilized and set aside for later use (total sugar, 206 g/L; total 
acid: 5.8 g/L; pH 3.6). SO2 (in the form of K2S2O5) at 30, 60, and 90 mg/L 
was added to the grape juice culture medium. Each concentration has 
three parallel groups, and equal amounts of yeast cells were inoculated 
into grape juice culture medium. At the end of fermentation, the 
concentrations of isobutanol, isoamyl alcohol, and 2-phenylethyl alcohol 
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were determined. A UV spectrophotometer was used to measure optical 
density at 600 nm to determine the biomass concentration and draw a 
standard curve.

2.3 Total RNA extraction and quality 
assessment

Yeast cells cultured in grape juice medium containing various 
concentrations of SO2 were harvested during the logarithmic phase of 
growth, centrifuged at a low temperature (8,000 × g, 4°C), and 
immediately frozen in liquid nitrogen. Total RNA was extracted using 
the TRIzol reagent. The quality and integrity of RNA nucleic acid 
samples were checked using agarose gel electrophoresis and Agilent 
2,100 Bioanalyzer (Agilent Technologies Inc., CA, United  States). 
Measuring the purity and concentration of RNA nucleic acid samples 
using the NanoDrop™ One/OneCsystem (Thermo Fisher Scientific, 
MA, United States).

2.4 Transcriptome library construction and 
sequencing analysis

After enriching the eukaryotic mRNA with a poly A tail using 
magnetic beads with oligo (dT), the mRNA is fragmented using 

ultrasound and reverse transcribed into the first strand of cDNA (Cui 
et al., 2023). The RNA chain was degraded with RNase H, and the 
second strand of cDNA was synthesized using dNTPs as the raw 
material in the DNA polymerase I system. Purified double-stranded 
cDNA was end-repaired, A-tailed, and connected to sequencing 
adapters (Peng et al., 2023). AMPure XP beads were used to screen 
approximately 200 bp of cDNA. PCR amplification was performed. 
Finally, AMPure XP beads were used to purify the PCR products and 
obtain a library (Duan et al., 2022). The sequencing strategy was PE150, 
and the sequencing platform was Illumina Novaseq 6,000. Sequencing 
of cDNA libraries was done using an Illumina sequencing platform by 
GeneDenovo Biotechnology Co., Ltd. (Guangzhou, China).

Use Fastp (v0.18.0) to perform quality control on the raw reads off 
the machine, and filter low-quality data to obtain clean reads. Use the 
short read alignment tool Bowtie2 (v2.2.8) to align the clean reads to 
the ribosomal RNA database, remove the aligned ribosomal reads 
without allowing mismatches, and use the remaining unmapped reads 
for subsequent transcriptomes analyze. HISAT2 (v2.2.4) (Kim et al., 
2015) was used to align the sequences obtained by paired-end 
sequencing to the reference genome (Ensembl_release47).1 Stringtie 

1 http://ftp.ensemblgenomes.org/pub/fungi/release-47/gtf/

saccharomyces_cerevisiae/

FIGURE 1

Biosynthetic pathways for higher alcohol formation in Saccharomyces cerevisiae. The blue line represents the higher alcohols originating from the 
Ehrlich pathway, the yellow line represents the synthesis of the corresponding amino acids, and the gray line represents the higher alcohol-related 
metabolites.
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was used to reconstruct transcripts based on the comparison results, 
and RSEM (v1.3.1) was used to quantify expression abundance and 
variation through FPKM values (number of transcript fragments 
per kilobase/million mapped reads).we used R language gmodels 
(v2.18.1)2 to carry out principal component analysis (PCA) to 
study the distance relationship between samples through 
dimensionality reduction. Differential gene expression analysis was 
performed using the DESeq2 (Love et al., 2014) software. Genes 
meeting the criteria FDR1 < 0.05 and |log2FC| > 1 were considered 
as significant DEGs.

2.5 Metabolomics experimental method

After slowly thawing 6 sets of parallel samples and quality control 
samples (QC Dunn et al., 2011) at 4°C, take an appropriate amount of 
samples and add them to the pre-cooled solution (methanol: 
acetonitrile: aqueous solution = 2:2:1, v/v) Mix well, sonicate at low 
temperature for 30 min, then let stand at −20°C for 10 min, and 
centrifuge at low temperature for 20 min (14,000 × g, 4°C). Take the 
supernatant and dry it under vacuum. During mass spectrometry 
analysis, add 100 μL acetonitrile aqueous solution (acetonitrile: 
aqueous solution = 1:1, v/v) to reconstitute. After centrifugation for 
15 min (14,000 × g, 4°C), the supernatant was taken as the loading 
solution. Equal volumes from the samples were used to determine the 
instrument status and equilibrium chromatography prior to injection. 
Mass spectrometry was used to evaluate system stability during the 
experimental process. LC–MS/MS (Triple quadrupole: Q-TOF) 
analysis was performed to quantify and characterize metabolites, 
followed by data quality evaluation and analysis.

2.6 Metabolome quality control and 
analysis

Preprocess the original data and use ProteoWizard software to 
convert the original data into. MzML format. The XCMS program 
was then used to extract the data and perform data integrity checks 
and normalization of the total peak area of the data to ensure 
parallel comparisons between samples and metabolites. Two 
ionization methods, positive ion mode (POS) and negative ion 
mode (NEG), are used for data quality control, and the data can 
be analyzed with higher coverage and better detection results. The 
R language pheatmap (Wu et al., 2022) was used to standardize the 
data z-score and perform cluster analysis, combined with the VI p 
value of the multivariate statistical analysis PLS-DA (Bylesjö et al., 
2006) and the univariate statistical analysis T-test p value to screen 
for significantly different metabolites between different comparison 
groups (Saccenti et al., 2014). Utilizing the rich pathway data from 
differential metabolites, we constructed a metabolic relationship 
network diagram to elucidate the interactions between different 
pathways, aiding in the identification of core metabolic pathways. 
The threshold for significant differences was VIP ≥ 1 and a t-test 
<0.05 in the PLS-DA model.

2 http://www.r-project.org/

2.7 Enrichment analysis of differentially 
expressed genes and metabolites

The Gene Ontology (GO) database3 was used for the GO functional 
analysis. GO functional classification annotations of DEGs help 
determine the functions of these genes, while GO functional significance 
enrichment analysis determines the main biological functions of DEGs. 
The Kyoto Encyclopedia of Genes and Genomes (KEGG)4 was used to 
analyze large-scale molecular datasets generated from molecular-level 
information, especially through high-throughput experimental 
techniques such as genome sequencing, to understand the advanced 
functions and utility of biological systems (Wang et al., 2021).

2.8 Transcriptomics and metabolomics 
correlation analysis

To screen and obtain a set of correlated genes and metabolites that 
influence sample grouping and analyze correlation characteristics, 
three model analyses were performed based on gene expression and 
metabolite abundance data. First, a pathway functional model was 
used to query the KEGG metabolic pathways shared by genes and 
metabolites and analyze their correlation characteristics (Cho et al., 
2016). Second, gene expression and metabolite abundance data were 
used to construct a bidirectional orthogonal projections to latent 
structures (O2PLS) model (el Bouhaddani et  al., 2016); through 
model prediction, we obtained a combined analysis of related gene 
and metabolite sets. Finally, when the sample group was ≥3, a 
correlation coefficient model was used to calculate the Pearson 
correlation coefficient between gene expression and metabolite 
abundance (Bartel et al., 2015; Hamanishi et al., 2015). The model 
analysis was visualized as a heat map and network diagram.

2.9 Construction of recombinant strains 
and determination of higher alcohol 
production

Using the yeast genome as a template, the upstream and 
downstream homologous fragments of the target gene were PCR 
amplified. Additionally, the plasmid pUG6 was used as a template to 
PCR amplify the Loxp-KanMX-Loxp resistance fragment to construct 
the knockout component. These three knockout component fragments 
were transformed into the parental strain using the lithium acetate/
polyethylene glycol (PEG) method (Gietz and Schiestl, 2007) to 
achieve homologous recombination between the transformed 
fragments and the yeast genome (Supplementary Figure  1). 
Transformants were initially screened on YPD agar containing 200 μg/
mL G418, and PCR was used to confirm the accurate integration of 
the KanMX knockout cassette from a single colony, which was 
subjected to two strain activations. Subsequently, lithium acetate/ PEG 
method was used to transform the plasmid pSH69 into the 
abovementioned colonies containing the correct integration. Plasmid 

3 http://www.geneontology.org/

4 http://www.genome.jp/kegg/
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transformation was verified. Colonies containing the plasmids were 
induced and cultured on YPG agar medium. KanMX-resistant 
fragments were removed through the expression of Cre recombinase 
induced by galactose in the medium. Subsequently, the plasmid 
pSH69 was lost through subculture, and the recombinant strain with 
the desired knockout was obtained.

A GC–MS method was used to determine the content of higher 
alcohols. An 8 mL sample was transferred into a 15 mL sample bottle 
with 1.5 g NaCl and 100 μL butyl acetate (internal standard) and 
preheated to 45°C for 10 min using a magnetic stirrer/heating stage. 
The material was then extracted with a DVA/CAR/PDMS extraction 
head, and analyzed using GC–MS. Each sample was analyzed three 
times. This was done on an InertCap capillary column 
(30 mm × 0.25 mm × 0.25 μm) using the temperature protocol: hold at 
40°C for 3 min, heat to 130°C at 2°C/min, and heat to 220°C at 10°C/
min retention for 4 min; the injector and detector temperature 250°C, 
and no split injection; electron impact ion source, electron energy 
70 eV, ion source temperature 230°C, and full scan mode. Based on 
the chromatographic retention time and mass spectrometry 
information of the standard product, quantitative analysis was 
performed by comparing the qualitative and internal standard 
methods with reference to the standard spectral library (NIST17).

2.10 Reverse transcriptase quantitative PCR

To perform fluorescence reverse transcriptase real-time 
quantitative PCR (qPCR), RNA was extracted using the SPARK Easy 
Yeast RNA, and Script II RT Plus Kits (Sparkjade Biotechnology Co., 
Ltd., Shandong, China) was used to reverse transcribe the RNA. Taq 
Pro Universal SYBR qPCR Master Mix was obtained from Vazyme 
Biotechnology (Nanjing, China). The PCR procedure consisted of an 
initial pre-denaturation at 95°C for 30 s, followed by amplification 
consisting of 40 cycles of denaturation at 95°C for 5 s, annealing and 
polymerization at 60°C for 30 s, and a melting curve stage at 95°C for 
15 s and at 60°C for 1 min. The ubiquitin-conjugating enzyme E26 
gene UBC6 was used as the internal reference gene, and the 2−ΔΔCt 
method was used for quantitative analysis (Teste et al., 2009).

2.11 Statistical analysis

All experiments were conducted in at least three parallel groups, 
and statistical analysis was performed in GraphPad Prism 9.5.1 (San 
Diego, California, United States). The results were expressed as mean 
and standard deviation (SD), and were analyzed using one-way 
analysis of variance (ANOVA). There was a significant difference, and 
the statistical significance level was set at p value <0.05.

3 Results

3.1 Effect of initial SO2 addition on higher 
alcohol synthesis and growth of the 
EC1118a strain

The generation of higher alcohols was correlated with SO2 
concentration (Figure  2A). At 30, 60, and 90 mg/L SO2, the total 

alcohol content was 91.513, 113.677, and 98.649 mg/L, respectively. 
Compared with the 30 mg/L SO2, total high alcohol content increased 
by 16.892 and 7.797% at the 60 and 90 mg/L SO2, respectively; this 
involved an increase in the amounts of isobutanol by 31.064 and 
5.964%, isoamyl alcohol by 16.473 and 7.163%, and 2-phenylethyl 
alcohol by 16.824 and 11.064%, respectively. The yield of higher 
alcohols showed an overall trend of being highest at 60 mg/L SO2, and 
showed a decline at 90 mg/L SO2. As the initial SO2 concentration 
increased, yeast growth was inhibited (Figure  2B). The inhibitory 
effect was evident at 90 mg/L, and the duration of the lag phase was 
significantly prolonged with increasing SO2 concentrations.

3.2 Transcriptome analysis and screening 
of DEGs

Based on the transcriptomic analysis results, PCA showed reliable 
repeatability in the three parallel samples and identified 2,766 DEGs, 
of which 937 were upregulated and 1829 were downregulated 
(Figures 3A,B). GO and KEGG identified a total of 6,510 GO terms 
that were enriched in biological process (BP; 34.29%), molecular 
function (MF; 30.38%), and cellular component [CC; 35.33%] 
(Figure 3C). According to the results of the BP analysis, with the 
increase in SO2 concentration, the number of upregulated and 
downregulated DEGs also increased. Metabolic processes related to 
the synthesis of higher alcohols include pyruvate metabolism that is 
catabolized into alcohol through the Ehrlich pathway (GO:0006090), 
glycolysis (GO:0006096), amino acid metabolism (GO:1901605), 
oxidation–reduction process (GO:0055114), redox coenzyme 
metabolism (GO:0006733), and oxidative phosphorylation 
(GO:0006119). The results of the MF analysis relating to the synthesis 
of higher alcohols included phosphoenolpyruvate carboxykinase 
(ATP) activity (GO:0004612), aldehyde dehydrogenase (NAD) activity 
(GO:0004029), pyruvate decarboxylase activity (GO:0004737), and 
transaminase activity (GO:0008483). KEGG enrichment analysis 
revealed that the pathway classes with significantly enriched 
differential genes mainly included metabolic pathways, carbon 
metabolism, amino acid biosynthesis, glycolysis, and gluconeogenesis 
(Figures  4A,B). The pathways related to the synthesis of higher 
alcohols mainly involve carbon metabolism (ko01200), pentose 
phosphate pathway (ko00030), pyruvate metabolism (ko00620), 
glycolysis/gluconeogenesis (ko00010), and the valine, leucine, and 
isoleucine anabolic pathways (ko00290). In addition, the regulation of 
DEGs examined by RT-qPCR was consistent with that observed using 
RNA-seq data (Supplementary Figures 2A–D).

We conducted a trend analysis on three groups of gradient 
samples with varying initial SO2 concentrations (30, 60, and 90 mg/L). 
Clustering was based on the gene expression patterns of the samples 
(the shape of the expression curve in multiple stages), in order to 
facilitate the selection of representative gene sets that met specific 
biological characteristics in the clustering result (Zeng et al., 2019). 
The overall findings of the trend analysis are shown in 
Supplementary Figure 3. A total of seven change trends was observed. 
Based on the change trend observed in the cumulative concentration 
of higher alcohols (total higher alcohol) and the gene expression 
function, the following three gene expression trends were analyzed. 
Twenty-eight genes exhibited a gene expression trend that initially 
increased and subsequently decreased in relation to the SO2 content, 
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including ADH4, ADH5, GDH2, FBA1, LEU2, TIR1, and TPI1. 
Eighty-nine genes showed an initial downward and a subsequent 
upward trend, these included ALD6 and SOL4. GPD1 and PCK1 
showed a continuous downward trend.

3.3 Metabolomic analysis

The metabolites identified by metabolomics and related to the 
synthesis of higher alcohols are shown in Supplementary Table S3. 

FIGURE 2

Effect of the initial total SO2 concentration on the formation of higher alcohols. (A) Effect on isobutanol, isoamyl alcohol, 2-phenylethanol, and the 
cumulative concentration of higher alcohols. (B) Effect on yeast strain growth. The data are the mean ± SD from three biological replicates.

FIGURE 3

Screening of differentially expressed genes (DEGs) and Gene Ontology (GO) enrichment analysis. (A) Principal component analysis (PCA) (B) A multi-
group difference scatter plot calculates the logarithmic value of the fold difference between the groups (log2FC) as the ordinate and the name of the 
comparison group as the abscissa. It displays the differential genes of multiple comparison groups simultaneously. The upper part of the abscissa 
indicates the upregulated genes, and the lower part shows the downregulated genes. (C) GO enrichment analysis using secondary classification 
histogram maps and differential gene transcripts. The differential gene transcripts obtained from the GO database are divided into the following 
groups: molecular function (MF), cellular component (CC), and biological process (BP). Regarding the included GO terms, the abscissa is the secondary 
GO term, and the ordinate is the number of differential genes in the term. Red indicates upregulation, and blue indicates downregulation.
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Metabolomic analysis identified 946 differential metabolites in POS 
mode, of which 416 were upregulated and 530 were downregulated 
(Figure 5A). In total, 943 differential metabolites were identified in 
NEG mode, of which 485 were upregulated and 458 were 
downregulated (Figure  5B). KEGG analysis was performed on 
different metabolites in the POS and NEG modes. The results showed 
that the different metabolic pathways in POS mode (Figure  5C) 
mainly included glycerophospholipid metabolism (ko00564), 
glutathione metabolism (ko00480), and the biosynthesis of alkaloids 
derived from the shikimate pathway (ko01063). The main differential 
metabolites were acetylcholine (C01996), acetyl coenzyme A 
(C00024), and glutathione (C00051). In NEG mode (Figure 5D), the 
affected metabolic pathways included the pentose phosphate pathway 
(ko00030), amino acid metabolism (ko01230), metabolic pathway 
(ko01100), and carbon metabolism (ko01200). The main differential 
metabolites include S-adenosylmethionine (C00019), pyruvate 
(C00022), α-ketoglutarate (C00026), glycerol (C00116), threonine 
(C00188), isoleucine (C00407), and glutamine acid (C00302).

In addition, the core pathways in POS mode (Figure 5E) were the 
glycerophospholipid metabolism pathway, whose main related 
pathways are ether lipid metabolism and glycolysis/gluconeogenesis, 
and metabolic pathways; the glutathione metabolism pathway, whose 
main related pathways are arginine biosynthesis, cysteine and 
methionine metabolism; biosynthesis of alkaloids derived from the 
shikimate pathway, whose main related pathways are phenylalanine 
metabolism, citrate cycle, phenylalanine, tyrosine and tryptophan 

biosynthesis; thiamine metabolism, whose main related pathways are 
glycine, serine and threonine metabolism, cysteine and methionine 
metabolism. The core pathway in NEG mode (Figure 5F) was the 
metabolic pathway, with its main related pathways being the pentose 
and glucuronate interconversions, the pentose phosphate pathway, 
fatty acid biosynthesis, glycine, serine, and threonine metabolism, 
glyoxylate and dicarboxylate metabolism, and valine, leucine, and 
isoleucine biosynthesis.

3.4 Transcriptome and metabolome 
association analysis

The DEGs obtained from transcriptomics and differential 
metabolites obtained from metabolomics were subjected to KEGG 
pathway analysis. The most common metabolic pathways include 
glycolysis/gluconeogenesis, carbon metabolism, amino acid 
biosynthesis, tryptophan metabolism, and the TCA cycle. The O2PLS 
model was used to perform a correlation analysis on the two sets of 
scientific data. The O2PLS load diagram (Supplementary Figures 4A–C) 
of the joint part (the part that is highly related to the transcriptome 
and metabolome) and the two sets of scientific correlation load 
diagrams (Supplementary Figures  5A–C) were used to obtain a 
combined analysis of the correlated gene and metabolite sets. The 
correlation between the top 250 DEGs and differential metabolites 
with correlation coefficients and absolute values greater than 0.5 is 

FIGURE 4

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes (DEGs). (A) KEGG enrichment circle plot. 
Moving from the outer to the inner circle, this diagram displays the number of genes enriched in the background gene set, the number of genes 
enriched in the differential gene set, and the Gene Ratio. (B) KEGG enrichment bubble chart. The ordinate represents the pathway, and the abscissa 
represents the enrichment factor (the number of differential genes in the pathway divided by the total number of genes in the pathway). The size of the 
dot indicates the quantity of genes (gene number). The color chart represents the p value: dark red signifies a low p value.
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represented by a heat map (Figure  6A) and a network diagram 
(Figure 6B). In the correlation analysis, differential metabolites related 
to the synthesis of higher alcohols include pyruvate, valine, leucine, 

isoleucine, tyrosol, and glycerol, and related genes include CDC19 
(pyruvate kinase), CYB2 (L-lactate dehydrogenase, cytochrome b2), 
ENO2 (phosphopyruvate hydratase), ALD4 (mitochondrial aldehyde 

FIGURE 5

Functional analysis of differential metabolites. (A) Volcano plot of differential metabolites in the positive ion mode (POS). The abscissa is the log2 value 
of the difference in metabolite abundance for each control group, the ordinate is the log transformed p value (−log10), and the dotted line 
(perpendicular to the Y-axis) is the threshold of the p value for differential metabolite screening. Red dots represent differential metabolites with VIP  ≥  1 
and p  ≤  0.05, whose expression is upregulated; yellow dots represent differential metabolites with VIP  ≥  1 and p  ≤  0.05, whose expression is 
downregulated. The larger the point, the greater the VIP value of the metabolite. (B) Volcano plot of differential metabolites in negative ion mode 
(NEG). (C) Bubble plot of KEGG enrichment in POS. The ordinate is the pathway, and the abscissa is the enrichment factor (the number of differential 
metabolites in the pathway divided by the total number of metabolites in the pathway). The larger the value, the more significant the enrichment. 
(D) Bubble plot of KEGG enrichment in NEG. (E) KEGG pathway interaction network diagram in POS. Mutually related pathways are depicted using 
identical colors. (F) Interaction network diagram of KEGG pathways in NEG.

FIGURE 6

Transcriptome and metabolome association analysis. (A) Heat map of the correlation between gene expression and metabolite abundance. 
(B) Network diagram of the correlation between gene expression and metabolite abundance. The yellow line indicates a positive correlation, and the 
purple line indicates a negative correlation.
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dehydrogenase), ALD6 (cytosolic aldehyde dehydrogenase), ARO10 
(phenylpyruvate decarboxylase), PDCs (pyruvate decarboxylase), 
ADH4 (alcohol dehydrogenase isoenzyme type IV), ADH5 (Alcohol 
dehydrogenase isoenzyme V), BDH2 (alcohol dehydrogenase), TPI1 
(triose phosphate isomerase), HXT2 (glucose transporter), FBA1 
(fructose 1,6-bisphosphate aldolase), and GDH2 (NAD+-dependent 
glutamate dehydrogenase).

3.5 Effect of single gene knockout on the 
production of higher alcohols

First, DEGs and differential metabolites were obtained through 
single-omics analyses such as PCA and differential enrichment 
analysis. Based on the changing characteristics of gene expression at 
different omics levels, DEGs and different metabolites were subjected 
to O2PLS analysis and various correlation analyses to explore the 
potential molecular connections between different omics levels. 
Starting from the target differential metabolites related to the 
anabolism of higher alcohols, the associated differential genes were 
obtained and combined using existing research and trend analysis. 
Ten target DEGs (ADH4, GDH2, SER33, PDC6, LEU2, CHA1, ARO10, 
TIR1, BDH2, and ADH5) were chosen for the knockout experiments. 
Single-gene knockout strains were constructed to explore the effect of 
their knockout on the production of higher alcohols. The total alcohol 
synthesis in each knockout strain was lower than that in the original 
strain (Figures  7A,B). Among them, the EC1118a-ADH4, 
EC1118a-SER33, and EC1118a-ADH5 knockout strains showed a 
more significant reduction effect, with the total higher alcohol content 
reduced by 16.479, 15.620, and 14.771%, respectively. For isobutanol, 
only the EC1118a-SER33 knockout strain showed a decreasing trend 
and the effect was significant with a reduction of 71.346%; whereas for 
isoamyl alcohol, the EC1118a-ADH4 and EC1118a-TIR1 knockout 
strains showed a significant reduction of 21.003 and 17.334%, 
respectively. Regarding 2-phenylethanol, the effects of 
EC1118a-GDH2, EC1118a-CHA1, and EC1118a-ARO10 knockout 

were more significant, with reductions of 25.198, 18.234, and 18.016%, 
respectively.

4 Discussion

Once entering the cell, SO2 can bind to proteins, coenzymes 
(NAD+ and FAD+), vitamins, and various metabolites (acetaldehyde, 
glucose, oxaloacetate, and α-ketoglutarate); thereby, preventing them 
from being further catabolized as substrates of metabolic pathways, 
leading to the appearance and prolongation of the lag phase (Herrero 
et al., 2003; Machín et al., 2004). This aligns with our experimental 
findings, where a significant increase in SO2 inhibited strain growth 
and prolonged the lag period. The fluctuating trend observed in 
higher alcohol production, initially increasing before subsequently 
decreasing, is consistent with the previously reported findings (Bloem 
et al., 2016; Ochando et al., 2020). The appropriate levels of SO2 may 
stimulate the production of pyruvate, a precursor to higher alcohol 
carbon metabolism. This process may protect α-acetolactate (a 
precursor to higher alcohols) from oxidative decarboxylation, a 
process in which diacetyl (a competitive precursor substance for the 
sugar metabolism of higher alcohols) is formed (Ochando et al., 2020). 
This process is conducive for the generation of higher alcohols. In 
contrast, excessive SO2 concentrations inhibit strain growth and cause 
a lag phase, affecting the anabolism of higher alcohols and 
other substances.

Metabolic pathways related to the synthesis of higher alcohols that 
are enriched in transcriptome DEGs mainly include carbon and 
pyruvate metabolism. Results of the trend analysis demonstrated that 
compared with SO2 concentrations of 30 mg/L, ADH4 gene expression 
in the 60 mg/L and 90 mg/L SO2 experimental groups was upregulated 
by 2.31-fold and downregulated by 1.95-fold. The expression of ADH5 
was upregulated by 1.5-fold and downregulated by 0.68-fold. During 
higher alcohol synthesis, ADH4 and ADH5 encode the alcohol 
dehydrogenases 1 (Adh1) and 2 (Adh2), respectively. Alcohol 
dehydrogenase reduces aldehydes to their corresponding alcohols 

FIGURE 7

Histogram and heat map depicting higher alcohol production in single gene deletion strains. (A) The production of isobutanol, isoamyl alcohol, 
2-phenylethanol, and the cumulative concentration of higher alcohols (total higher alcohols) after deleting the ADH4, GDH2, SER33, PDC6, LEU2, 
CHA1, ARO10, TIR1, BDH2, and ADH5 gene strains. (B) The log2 value of the ratio of higher alcohols between each recombinant strain and the parent 
strain was used to construct a heat map. Red indicates an increase in the metabolite content, and green indicates a decrease in the metabolite content. 
Color intensity represents the amount of upward or downward adjustment. The darker the color, the greater the proportional increase or decrease in 
the metabolite. The scale bar on the right depicts the maximum or minimum rate of change. The data are the mean ± SD from three biological 
replicates.
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(Bae et al., 2016), and high expression levels of ADH4 and ADH5 
increase alcohol dehydrogenase activity, which is beneficial for the 
synthesis of higher alcohols. The expression of the ALD6 gene was 
downregulated by 1.91-fold and upregulated by 0.22-fold. The ALD6 
gene encodes aldehyde dehydrogenase, which catalyzes the 
dehydrogenation and oxidation of aldehydes to generate their 
corresponding acids. Downregulation of this gene leads to an increase 
in alcohol content (Zheng et al., 2020). Saccharomyces cerevisiae can 
use either the shikimate pathway for the de novo synthesis of 
phenylalanine, or it can convert L-phenylalanine under the catalysis 
of two aminotransferases (Shen et al., 2016). In the anabolic pathway, 
pyruvate can be used to synthesize isoleucine, leucine, valine, and 
α-keto acids through the branched-chain amino acid anabolic 
pathway, thereby generating higher alcohols. In the tricarboxylic acid 
cycle, the addition reaction of oxaloacetate and amino groups 
produces aspartic acid. The enzymatic reaction of aspartic acid 
produces threonine. Moreover, threonine and glycine can 
be interconverted through the action of threonine aldolase to generate 
α-ketobutyrate (Nishimura et  al., 2018). Metabolomic analyses 
revealed that core metabolic pathways and differential metabolites 
correlate with the anabolism of higher alcohols, this indirectly reflects 
the potential of these metabolites to influence higher 
alcohol production.

GDP1 (NAD-dependent glycerol-3-phosphate dehydrogenase) 
plays a key role in the synthesis of glycerol and intracellular 
glycerol accumulation in response to high osmotic stress 
(Hubmann et al., 2011). The expression of GPD1 was downregulated 
by 1.11- and 0.57-fold, at 60 and 90 mg/L SO2, respectively. Low 
expression of GPD1 leads to a reduction in the flow of metabolites 
of carbon metabolism to glycerol, which may also indicate an 
increase in the flow of these metabolites to higher alcohols, thereby 
facilitating their synthesis. At high SO2 levels, yeast must reduce 
cellular stress and “consume” sulfite, resulting in a higher flux 
through the pentose phosphate pathway (Ochando et al., 2020). 
This results in a greater de novo anabolic flux of phenylpyruvic acid 
and a higher accumulation of phenylethyl alcohol and its 
corresponding ester [phenylethyl acetate] (Cadière et al., 2011). In 
the present study, the high yield of phenylethanol at high SO2 
content supports this hypothesis. Pyruvate kinase (CDC19) 
catalyzes the final step of glycolysis, converting 
phosphoenolpyruvate into pyruvate; triose phosphate isomerase 
(TPI1) catalyzes the interconversion of dihydroxyacetone 
phosphate and glyceraldehyde 3-phosphate, intermediates in 
glycolysis that lead to pyruvate. The expression of CDC19 was 
increased by 1.16- and 0.24-fold, and that of TPI1 by 1.28- and 
0.48-fold, by 60 and 90 mg/L SO2, respectively, which may increase 
pyruvate concentration.

It is speculated that SO2 acts indirectly as a transcriptional 
regulator, and the addition of SO2 may induce the production of 
pyruvate, promote the secretion of pyruvate, and protect 
α-acetolactate from oxidative decarboxylation to diacetyl. The 
availability of carbon metabolic precursors in the synthesis of higher 
alcohols such as pyruvate and α-acetolactate and the accessibility of 
redox cofactors involved in metabolic processes facilitate the 
synthesis of volatile substances such as higher alcohols (Herrero et al., 
2003; Bloem et al., 2016). Further experiments are needed to verify 
the dynamic analysis of higher alcohol carbon metabolism precursors 

such as pyruvate and α-acetolactate during the fermentation process, 
as well as monitoring the impact of SO2 addition on redox 
homeostasis and redox cofactors.

In S. cerevisiae, α-keto acids are converted into aldehydes within 
the cytoplasm through α-keto acid decarboxylase encoded by genes 
such as PDCs, ARO10, and THI3. These aldehydes are then synthesized 
into higher alcohols via the catalysis of alcohol dehydrogenases such 
as ADHs. Additionally, aldehydes can also be dehydrogenated and 
oxidized to form their corresponding acids via aldehyde 
dehydrogenases encoded by ALDs. Therefore, higher alcohol 
production can be reduced, by reducing the decarboxylase and alcohol 
dehydrogenase levels while increasing the activity of aldehyde 
dehydrogenase (Dzialo et  al., 2017). The SER33 gene 
(3-phosphoglycerate dehydrogenase and alpha-ketoglutarate 
reductase) catalyzes the first step in the biosynthesis of serine and 
glycine (Kobayashi et  al., 2022), whereas the TIR1 gene (cell wall 
mannoprotein) is related to the maintenance of the plasma membrane 
and cell wall (López-Malo et al., 2015). The role of the SER33 and TIR1 
genes in the regulation of higher alcohol metabolism in the EC1118a 
strain is currently unclear. Further studies are required to fully 
understand their role in the synthesis of higher alcohols. The GDH2 
gene encodes NAD+-dependent glutamate dehydrogenase, which 
degrades glutamate into ammonia and α-ketoglutarate, regulating the 
metabolism of branched-chain amino acids. The knockout of this gene 
affects the formation of 2-phenylethanol, and the results of Wang et al. 
(2021) support this conclusion.

5 Conclusion

This study reports the effect of the initial concentration of 
SO2 on higher alcohol metabolism in yeast. As the initial SO2 
content increased, the total higher alcohol production initially 
increased and then decreased. Transcriptome and metabolome 
correlation analyses showed that the addition of SO2 affected 
carbon metabolism, amino acid metabolism, pyruvate 
metabolism, glycolysis/gluconeogenesis, the pentose phosphate 
pathway, and other metabolic pathways related to the synthesis 
of higher alcohols. SO2 affects the availability of carbon 
metabolism precursors and the accessibility of redox cofactors, 
which indirectly affects the synthesis of higher alcohols. 
Combining correlation and trend analyses of DEGs and 
metabolites, we  screened 10 genes to construct single-gene 
knockout strains and found that the total alcohol content of the 
modified strains was lower than that of the original strains. 
ADH4, SER33, and GDH2 genes were found to be significant in 
the production of higher alcohols in S. cerevisiae. These results 
lay the foundation for studying the mechanism of initial SO2 
addition in the synthesis of higher alcohols in S. cerevisiae. The 
discovery of new target genes will aid in the construction of new 
strains with lower alcohol production.
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