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Introduction: The identification of microbe–drug associations can greatly 
facilitate drug research and development. Traditional methods for screening 
microbe-drug associations are time-consuming, manpower-intensive, and 
costly to conduct, so computational methods are a good alternative. However, 
most of them ignore the combination of abundant sequence, structural 
information, and microbe-drug network topology.

Methods: In this study, we developed a computational framework based on 
a modified graph attention variational autoencoder (MGAVAEMDA) to infer 
potential microbedrug associations by combining biological information with 
the variational autoencoder. In MGAVAEMDA, we first used multiple databases, 
which include microbial sequences, drug structures, and microbe-drug 
association databases, to establish two comprehensive feature matrices of 
microbes and drugs after multiple similarity computations, fusion, smoothing, 
and thresholding. Then, we employed a combination of variational autoencoder 
and graph attention to extract low-dimensional feature representations of 
microbes and drugs. Finally, the lowdimensional feature representation and 
graphical adjacency matrix were input into the random forest classifier to obtain 
the microbe–drug association score to identify the potential microbe-drug 
association. Moreover, in order to correct the model complexity and redundant 
calculation to improve efficiency, we introduced a modified graph convolutional 
neural network embedded into the variational autoencoder for computing low 
dimensional features.

Results: The experiment results demonstrate that the prediction performance 
of MGAVAEMDA is better than the five state-of-the-art methods. For the major 
measurements (AUC =0.9357, AUPR =0.9378), the relative improvements 
of MGAVAEMDA compared to the suboptimal methods are 1.76 and 1.47%, 
respectively.

Discussion: We conducted case studies on two drugs and found that more 
than 85% of the predicted associations have been reported in PubMed. The 
comprehensive experimental results validated the reliability of our models in 
accurately inferring potential microbe-drug associations.
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1 Introduction

Microbes, including bacteria, viruses, archaea, fungi, and protists, 
are dynamic, diverse, and complex gene pools. These microbes form 
different microbiomes and inhabit different parts of the human body, 
such as the gut, mouth, vagina, and uterus (Huttenhower et al., 2012). 
Microbes are considered to be “forgotten” organs that are beneficial to 
humans, such as assisting the human body in regulating and 
promoting metabolism by providing protection against pathogens 
(Gill et  al., 2006). In addition, microbes play a crucial role in 
maintaining the ecological environment within organisms (ElRakaiby 
et  al., 2014). Abnormal growth or decline of microbes can affect 
human health, likely leading to obesity (de la Cuesta-zuluaga et al., 
2023), diabetes (Wen et  al., 2008), inflammatory bowel disease 
(Durack and Lynch, 2019), and even cancer (Schwabe and Jobin, 
2013). In recent years, many features of the microbiome and its 
potential roles in human health have been widely reported. For 
example, Sprockett et al. (2018) explored how preferential effects affect 
the microbial community of the gastrointestinal tract in early 
childhood, and Ximenez and Torres (2017) discussed the development 
of the microbiome in early life, spanning from pregnancy to birth and 
extending into the first years of life. In addition, gut microbial 
communities have been shown to play a key role in cardiometabolic 
disorders, neuropsychiatric disorders, and cancer. Moreover, some 
bacteria or viruses can cause very serious infectious diseases, such as 
COVID-19 (Xiang et al., 2020). Therefore, microbes are considered 
new therapeutic targets for precision medicine.

Currently, with the rapid increase in drug-resistant pathogenic 
microbes, it is urgent to determine the association between microbes 
and drugs to promote subsequent drug development (Ramirez et al., 
2016). Recent studies have demonstrated that microbes have an 
important role in modulating drug activity and toxicity, and drugs 
can, in turn, influence the diversity and function of microbial 
communities. There is increasing reporting on the relationship 
between microbes and drugs. For example, Haiser et al. (2013) noted 
that the intestinal actinomycete Eggerthella lenta is responsible for the 
inactivation of the cardiac drug digoxin. Yoon et al. (2019) noted that 
Enterococcus faecalis is highly sensitive to imipenem, amikacin, 
and piperacillin.

Although these microbe–drug associations are obtained from 
experimental methods, it is practically impossible to identify target 
microbes, which leads to the slow development of new drugs. In order 
to overcome this problem, most studies have been devoted to the reuse 
of known drugs and drug combinations. However, the emergence of 
drug-resistant microbes poses insightful challenges to drug 
development. Therefore, there is an urgent need to develop an effective 
method to infer target microbes with new drug associations. Since 
traditional wet-lab experiments are time-consuming, labor-intensive, 
and expensive, computer-based methods can be  an effective 
complement to provide accurate predictions of microbe–drug 
associations through computation.

At present, existing methods for predicting microbe–drug 
associations can be classified into three categories: based on network 
propagation, based on machine learning, and based on deep learning.

 (1) Methods based on network propagation
Microbe–drug associations were predicted by constructing a 

heterogeneous network based on known microbe–drug associations, 
microbial similarity, and drug similarity. Zhu et al. (2021) designed an 
HMDAKATZ computational model based on KATZ measurements (Lei 

and Zhang, 2019) using the chemical structure of the drug to identify 
potential human microbe–drug associations. The drug was extracted by 
obtaining the chemical structure of the drug to calculate its similarity 
with other drugs. The Gaussian interaction profile kernel (van Laarhoven 
et al., 2011) was then used to calculate the similarity of microbes. Finally, 
the microbe–microbe similarity network, drug–drug similarity network, 
and microbe–drug similarity network were combined to construct a 
microbe–drug similarity network. The potential relationship between 
microbes and drugs was predicted using the KATZ algorithm. This 
model can correctly predict microbe–drug association relationships by 
using a simple metric for heterogeneous networks, but it is not applicable 
to predict new drugs without known microbial associations or isolated 
microbes without any known disease associations. Long et al. (2020) 
used rich biological information to construct a heterogeneous network 
of microbes and drugs and then utilized a framework based on graph 
convolutional networks to predict human microbe–drug associations. 
However, the similarity calculation of microbes (drugs) is still highly 
dependent on known microbe–drug association information, and the 
prediction accuracy is not high. Tan et al. (2022) first constructed a 
heterogeneous network by integrating known microbe–drug 
associations, microbial similarity, and drug similarity. Then, autoencoder 
modules based on GAE (Liu et al., 2022) and sparse autoencoder (Jiang 
et al., 2020) modules are used to learn the topological representation and 
attribute representation of nodes in the newly constructed heterogeneous 
network, respectively. Finally, based on these two node representations, 
two feature matrices for microbes and drugs are constructed separately, 
and they are used to calculate the possible association scores of microbe–
drug pairs. A novel computational model, GSAMDA, based on graph-
attentive networks and sparse autoencoder is proposed to infer potential 
microbe–drug associations, but this model is still not perfect for 
predicting matrices with sparse data.

 (2) Methods based on machine learning
Constructing microbial (drug) profiles uses microbial (drug) 

similarities and known microbe–disease associations, as well as 
designing classifiers to identify microbes associated with diseases. 
Jiang et  al. (2020) proposed a computational model based on 
neighborhood inference and restricted Boltzmann machine 
(Kirubahari and Amali, 2023). Neighborhood inference can leverage 
abundant similar information about microbes (drugs), while the 
restricted Boltzmann machine can learn the latent probability 
distributions hidden in known microbe–drug associations. Finally, 
integrated learning is used to combine the individual learners into a 
stronger predictor. However, this method is not sufficient to reveal the 
association between drugs and new microbes, or the association 
between microbes and new diseases, or without any associations. Ma 
and Liu (2022) integrated multiple sets of data to calculate the 
functional and semantic similarity of microbes, the structural 
similarity of drugs, and the information on microbe–drug associations. 
The hypergraph is constructed using strong neighborhood 
information. In order to improve the performance of the hypergraph, 
a simple volume is used to calculate the hyperedge weights. 
Hypergraph regularization is introduced to the generalized matrix 
decomposition model, and the higher-order structural information is 
used to improve the representation of the low-dimensional features. A 
kind of generalized matrix decomposition based on weighted 
hypergraph learning (WHGMF) is proposed for predicting potential 
microbe–drug associations, but using a fixed number of neighbors to 
construct the hypergraph may limit the adaptability of the model to 
some extent. In addition, WHGMF uses the generalized matrix 
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decomposition framework, which is not efficient computationally. 
Yang et al. (2022) proposed a multi-kernel fusion model based on a 
graph convolutional network, which uses graph convolution to extract 
multi-layer features, calculates kernel matrices by embedding features 
on each layer, and fuses multiple kernel matrices based on the average 
weighting method. Dual Laplacian regularized least squares (Wang 
et al., 2017) are then used to combine kernels in the microbial and 
drug spaces to infer new microbe–drug associations.

 (3) Methods based on deep learning
The complex heterogeneous network graph of microbe–drug 

associations was constructed by integrating multi-source 
bioinformatics data of microbes, drugs, and diseases to extract the 
non-linear features of microbes and drugs to achieve the prediction of 
microbe–drug associations. Li et  al. (2023) constructed a 
heterogeneous network of drugs, microbes, and diseases by using 
multiple sources of biomedical data, then developed a model with a 
matrix decomposition and a three-layer heterogeneous network to 
predict potential microbe–drug associations. However, the similarity 
networks of drugs, microbes, and diseases still have some noise, which 
leads to this model not being good enough, so there is still more room 
for improvement. Ma et al. (2023) constructed two heterogeneous 
microbe–drug networks using multiple similarity metrics of microbes 
and drugs, as well as known microbe–drug associations or known 
microbe–disease–drug associations, respectively, and then obtained 
the feature matrices of microbes and drugs. A computational model, 
GACNNMDA, based on a graph convolutional neural network was 
designed to predict the possible scores of microbe–drug pairs. 
However, this model did not take into account other relevant biological 
information (e.g., microbial sequences and drug similarity based on 
side effects), and the prediction accuracy is not high. Long et al. (2020) 
utilized a variety of sources of biomedical information to construct 
microbial and multiple networks of drugs. A new integrated 
framework of graph attention networks with hierarchical attention 
mechanism and node-level attention was developed for predicting 
microbe–drug associations from the constructed multiple microbe–
drug graphs, but still, there is noise in the features extracted from these 
similarities. So, this model needs to improve the prediction results.

In order to overcome the inherent defects of the above three types 
of methods, the investigation set up a new microbe–drug association 
prediction model named MGAVAEMDA. This model uses a 
variational autoencoder and incorporates the modified graph 
convolutional network and graph attention network to improve 
prediction accuracy in a three-stage process.

The construction process of the MGAVAEMDA model is divided 
into three steps:

 (1) In this part, based on the downloaded microbe–drug associations, 
the structure information of drugs, and the sequence information 
of microbes. The microbe–microbe similarity matrix and the 
drug–drug similarity matrix are obtained through multiple 
similarity measures and data processing.

 (2) In this part, the microbe–microbe similarity matrix, drug–
drug similarity matrix, and microbe–drug similarity matrix 
are inputted into the modified graph variational autoencoder 
to learn the low-dimensional feature representations of 
microbes and drugs. The graph attention network is  
then introduced to extract important features using the 
attention mechanism to reduce dependence on other 
biological information.

 (3) In this last section, the random forest-based classifier was 
introduced to calculate the possible scores of microbe–drug 
associations. Those newly learned important feature 
representations are combined to form the inputs for the classifier. 
The final result of the model is voted on by each base classifier.

2 Materials and equipment

2.1 Microbe–drug associations

In this article, three different datasets, namely MDAD (Sun et al., 
2018), aBiofilm (Rajput et al., 2018), and DrugVirus (Andersen et al., 
2020), are used to test the predictive power of the MGAVAEMDA 
model. The MDAD dataset used in the model contains 2,470 
associations between 1,373 drugs and 173 microbes. The aBiofilm 
dataset used in the model includes 2,884 associations between 1,720 
drugs and 140 microbes. The DrugVirus database summarizes 
experimentally confirmed microbe–drug correlations, including 933 
associations between 175 drugs and 95 viruses.

Here, an adjacency matrix MD
i j� �R  was built to preserve the 

microbe–drug association information. The i represents the number of 
microbes and j  represents the number of drugs. If the microbes Mi and 
drugs Di are related, the entity MDij has a value of 1, otherwise it is 0.

 
MD

if a
oij

i j�
�
�
�

1

0

,

,

microbe M ssociated with durg D

therwise  
(1)

2.2 Sequence similarity of microbes

To calculate the sequence similarity of microbial genomes, BLAST 
(Altschul et al., 1990) can be used to perform a pairwise sequence 
alignment of microbial genomes. Briefly, the main function of BLAST 
is to discover regions of local similarity between sequences and then 
calculate the similarity using a local comparison algorithm (Smith and 
Waterman, 1981). For example, M m m mA A A A

a= 1 2
  and 

M m m mB B B B

b= 1 2
  are asked about the genome sequences of microbe 

A and microbe B, where a and b are the lengths of sequences MA and 
MB. BLAST creates the scoring matrix H a b�� �� �� �1 1  and sets the 
elements of the first row and column to zero. The element 
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in this scoring matrix are:
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(2)

where mA
i  represents the ith sequence value of microbe A, take the 

matrix H a b�� �� �� �1 1 , the maximum value is sw M MA B,� � . The 
similarity between microbe A and microbe B is shown in the 
following equation:
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According to the similarity between two or more microbes, the 
microbial similarity matrix MSS can be constructed.

2.3 Structural similarity of drugs

In this study, SIMCOMP2 was used to search (Hattori et  al., 
2010) for drug structure similarity. SIMCOMP2 search is a chemical 
structure search server that provides links to the KEGG PATHWAY 
database, which contains hand-drawn pathway maps with 
information on molecular interactions, reactions, and relationships. 
In the SIMCOMP2 search, by mapping the drugs in the dataset to the 
drugs in KEGG, the drug structure similarity can be obtained with a 
cut-off score of 0.01 to filter out drugs with a structure similarity 
score of 0.01 or higher. Then, matrix DSS is defined to preserve the 
structural similarity of drugs, where the element Dij  represents the 
drug d i� � and drug d j� �  similarity value.

2.4 Gaussian interaction profile kernel 
similarity of microbes

Gaussian interaction profile kernel similarity (Li et al., 2023) has 
been widely used in previous studies for the similarity of biological 
entities. Given the sparse nature of the similarity matrices of microbes 
and drugs obtained by the above methods, Gaussian interaction 
profile kernel similarity was constructed based on known microbe–
drug associations to obtain a more comprehensive microbial 
similarity. The matrix MGS represents the microbial Gaussian 
interaction profile kernel similarity, the matrix element 
MGS m i m j� � � �� �,  represents the Gaussian interaction profile kernel 
similarity of microbes m i� � and m j� �, which is calculated as follows:

 ( ) ( )( ) ( ) ( )( )2
jMGS m ,m exp γ= − − mi m i m jA A

 
(4)

where Am i� � represents the ith column vector of the adjacency 
matrix MD  as the spectrum kernel for the interactions of microbe 
m i� �, γm  represents the normalized kernel bandwidth of microbe, 
which can be  normalized by the parameter �m

� . It is calculated 
as follows:

 
( ) ( )
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= =
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2.5 Gaussian interaction profile kernel 
similarity of drugs

Similar to microbes, the Gaussian interaction profile kernel 
similarity of drugs was calculated. The matrix DGS represents the drug 

Gaussian interaction profile kernel similarity, and the matrix element 
DGS d i d j� � � �� �,  represents the Gaussian interaction profile kernel 

similarity of drugs d i� � and d j� �. It is calculated as follows:

 
( ) ( )( ) ( ) ( )( )2DGS d , d j exp γ= − − d d i d ji A A

 
(6)

where Ad i� � represents the ith column vector of the adjacency 
matrix MD as the spectrum kernel for the interactions of drug d i� �, 
where γ d  represents the normalized kernel bandwidth of drug.

2.6 Similarity fusion

As mentioned above, the similarity of microbes and drugs in 
different aspects is calculated separately. In order to obtain their 
comprehensive similarity matrix, the similarities from different 
perspectives need to be  fused. The integrated similarity matrix of 
microbes is constructed as follows:

 

M

M M
if M

M otherwise

S ij
SS ij GS ij
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2
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(7)

The integrated similarity of microbes is the similarity of the Gaussian 
interaction profile of microbes MGS ij� � if the sequence similarity of 
microbes ( ) 0,=MSS ij  otherwise, it is half of the sum of the two.

Similarly, the integrated similarity matrix of drugs is calculated 
as follows:

 

DS ij
DSS ij DGS ij

DSS ij

DGS ij
� � �
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� �

�

�
�

�
�

2
0,

,

if

otherwise  

(8)

2.7 Data processing

In order to reduce noise or fluctuations in the data and make it 
easier to subsequently analyze the data trends, the combined similarity 
matrices of microbes and drugs obtained above were smoothed, and 
for microbes and drugs, the smoothing matrices were calculated using 
the following formula:

 SMA X X X nn� � � ��� �1 2 . /  (9)

where X1 to Xn are the data points within the window, usually 
from the past n  time points. n  is the size of the window, which 
determines the number of data points to be computed within the 
window. X1 to Xn correspond to the data within the microbial 
similarity matrix. Similarly, MS ij� �  to MS i j n�� �� � , the same for 
drugs. Subsequently, several experiments were conducted for the 
choice of window, and the optimal window value was obtained. By 
summing the data points within the window and dividing by the 
window size n, a simple moving average at time point j  can 
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be  calculated. This smoothing technique helps to observe trends, 
reducing noise and sudden fluctuations for a better understanding of 
the long-term trend of the data.

The composite matrix was obtained after the curve of the microbe 
and drug was smoothed. The data were binarized to reduce its 
complexity, where continuous-type data were transformed into a 
process containing only two values of data (0 and 1). In binarization, 
a threshold value is selected, and then each value in the data is 
compared with that threshold value. If the data are equal to or greater 
than the threshold, it is mapped to 1. If the data are less than the 
threshold, it is mapped to 0. In this way, the data are converted into 
binary form, which is analyzed in the next step. In this study, different 
thresholds are selected for microbes and drugs, mth represents the 
microbe threshold, and dth represents the drug threshold. The 
binarization matrix of microbes is calculated as follows:

 
MS ij

MS ij mth� � � � � ��
�
�

1

0

,

,

if

otherwise  
(10)

The binarized matrix for the same drug is calculated as follows:

 
DS ij

DS ij dth� � � � � ��
�
�

1

0

,

,

if

otherwise  
(11)

Finally, the binarized similarity matrix is transformed into an 
adjacency matrix and feature matrix, where the adjacency matrix 
represents the connectivity of the graph and the feature matrix 
represents the features of each node. In the next step, both the 
adjacency matrix and feature matrix are put into MGAVAEMDA for 
low-dimensional feature extraction.

3 Methods

3.1 MGAVAEMDA framework

The flowchart of the MGAVAEMDA model is shown in Figure 1, 
based on a graph-attentive variational autoencoder. The model is 
divided into three main steps: (1) construct the similarity networks of 
microbes and drugs, respectively; (2) extract the feature 
representations of microbes and drugs using the modified graph 
attention variational autoencoder (MGAVAE); and (3) embed the 
combination of microbe and drug representations into the random 
forest classifier to obtain the final prediction scores.

3.2 Variational autoencoder

MGAVAE can reconstruct the node attributes and graph structure 
of structured graph data through an encoder and decoder. MGAVAE 
can be used to extract the low-dimensional features of microbes and 
drugs. The MGAVAE model consists of multiple encoding and decoding 
layers, which have the same number of layers, and the multiple encoders 
can improve the learning ability of the model.

The input of MGAVAE is the feature matrix MX  or DX  and the 
adjacency matrix MA orDA calculated form the comprehensive 

microbial or drug similarity matrix MS  or DS  and the microbe–drug 
similarity matrix MD. The key point of the variational autoencoder is 
the application of a two-layer graphical neural network structure for 
generating low-dimensional representations. The first layer of the neural 
network is used to compute a low-dimensional feature matrix X :

 
X GCN X,A LeakyReLU AXW� � � � � � 

0  
(12)

 A �
� �
d Ad

1

2

1

2  (13)

where A  is the symmetric normalized adjacency matrix, 
Leaky LURe  is the activation function, and W0 is the weight 
parameter of this layer of graph neural net.

In the second layer of the graph neural network, the mean and 
variance vectors of the feature matrix are computed using the weight 
parameter W1:

 � �� � � �GCN ,X A AXW1 (14)

 log� �
2

1� � � �GCN X A AXW,  (15)

where the mean and variance share the same class of weight 
coefficients. A reparameterization method is used to compute the 
obtained low-dimensional features:

 Z � �� � �  (16)

where � � � �Norm 0 1,  represents the standard normal distribution. 
Here, the decoder is implemented in terms of the matrix inner product, 
and hence the adjacency matrix is reconstructed as follows:

 
P AZ Z Z|

T� � � �� ��
 

(17)

Finally, the loss function contains two types of errors. The first type 
is the reconstruction error, which measures the direct similarity of the 
input and output adjacency matrices. The second type of error is to 
make the initial label q and the predicted label p as close as possible. The 
mathematical expression for the loss function is as follows:

 
L E p A KL q Z X A p ZZ� � ��� �� � � � � �� �� �q |,X|,A |Z |, |,log 

 (18)

where KL .� � represents the Kullback–Leibler divergence between 
two probability distributions. Finally, the generated low-dimensional 
features are integrated to obtain the final input for the prediction model.

3.3 Graph convolutional neural networks

In this article, modified graph convolution (MGC) is embedded 
into a variational autoencoder for computing low-dimensional 
features. Modified graph convolution is modified on the original 
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graph convolution neural network (GCN) to correct the model 
complexity and redundant computation. The calculation is simplified, 
and the efficiency is improved by reducing the collapsed weight 
matrices and non-linearities between successive layers, where the 
convolution kernel is modified as follows:

Y Softmax S SSXM M Softmax S XMMGC
K K� � � �� � � �� � � �1

 
(19)

where S is the normalized adjacency matrix, X  is the feature 
matrix, M  is the weight matrix, and Softmax  represents the 
normalized exponential function.

3.4 Graph attention networks

The graph attention network learns the representation of nodes 
on the graph through the attention mechanism, assigning different 
learning weights to different neighboring nodes so that the 

correlation between node features is better integrated into the 
model and better prediction performance is obtained (Bian et al., 
2021). It uses the graph as an input, including the structural 
information of the graph and the graph node features. For a 
two-part graph consisting of microbe and drug associations, the 
node features are constructed as Z

Z
Z
m

d
�
�

�
�

�

�
�

, and the adjacency 

matrix of the graph is constructed as follows:
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�

�
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�

0

0
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(20)

where A is the association matrix of microbes with drugs.
A linear transformation of the input features to enhance their 

expressiveness is defined as follows:

 � � �Z Z WZ  (21)
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FIGURE 1

The flowchart of the MGAVAEMDA model.
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where WZ  is a learnable weight matrix.
The core idea of graph convolutional networks is to aggregate 

domain information to update node features. Considering that the 
importance of different nodes is not the same, a self-attention 
mechanism is used on the nodes to compute the non-normalized 
attention coefficient eij  using the current node i and its first-order 
neighboring node j , defined as follows:

 
e LeakyReLU Z Z Wij i j e� � �� � �� �



 
(22)

where   represents the concatenation operation, Leaky LURe  is 
the activation function, andWe is the learnable matrix.

The attention coefficient after using the softmax normalized 
exponential function is calculated as follows:

 

a
e
eij
ij

k N
ik

i

�
� �
� ��

exp

exp

  

(23)

where Ni  represents the node i  of the first-order 
neighbor node.

The first-order neighborhood features are updated by aggregating 
the l  aggregation of first-order neighborhood features with attention 
coefficients in the layer, updating the l +1 node features of the layer, 
which are defined as follows:
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(24)

Utilizing multi-head attention to expand model capabilities and 
stabilize the learning process. In this process, the initial node features 
have a dimension of Zm, first, the initial nodes are replicated to obtain 
M  feature matrices of size N Zm,� �, where N represents the number of 
nodes. Each replicated feature matrix is then processed with different 
weight matrices WZ

h to compute the outputs of M  attention heads. The 
dimension of each attention head’s output is the same as the initial node 
feature dimension. Subsequently, the outputs are concatenated to obtain 
l +1 layer output feature of dimension N M Zm, �� �. The output feature 
of each node i can be calculated as follows:

 

1
1 ( )+
= ′= ⋅∑

i

l M l l h
i Zh ik ik

k N
Z LeakyReLU a Z W

  
(25)

where WZ
h represents the weight matrices; each attention head 

has its own weight matrix. During model training, weight matrices are 
randomly initialized and continuously adjusted through optimization 
algorithms to minimize the model’s loss function and obtain suitable 
weight matrices.

3.5 Random forest

The random forest algorithm is a well-known integrated learning 
method. The core idea is to build a forest in a random way, which 

consists of many decision trees, and the decision trees are used as the 
base classifiers to form a large multi-classifier. When test data were 
inputted into the model, the output categories of multiple decision 
trees were voted to get the final prediction. A decision tree is actually 
a process of node split, which starts from the root node and 
continuously splits downward. Knowing that the dataset can no longer 
be split, the decision tree stops growing.

The core idea is to select n  samples from the training set as a 
training subset and then generate a decision tree, which is a base 
classifier, the above process is repeated a total of n times, generating n  
decision trees to form the final random forest. Each base classifier can 
participate in decision-making and for classification. The final result 
of the model is decided by the voting of each base classifier, and the 
class label with the largest number of votes for the classification result 
is selected.

4 Results

4.1 Evaluation indicators

In this article, five-fold cross-validation and ten-fold cross-
validation will be used to evaluate the prediction performance of the 
computational model. In the case of the five-fold cross-validation, the 
specific steps are as follows: first, all the microbe–drug association 
pairs were divided into five subsets. Each subset was saved individually 
as a test set; in turn, the remaining four subsets were used as a training 
set instead of selecting a microbe–drug association pair from them as 
a test sample. After cross-validation of the model, the receiver 
operating characteristic (ROC) curve is usually plotted, and the AUC 
(area under the ROC curve) is calculated to visually assess the 
predictive performance of the computational model. For a 
comprehensive evaluation of this computational model, we  also 
evaluate its performance using accuracy (Acc), precision (Pre), recall 
(R), F1 score, and area under the accuracy-recall curve (AUPR).

The formula for Acc, Pre, R, and F1 score is as follows:
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TP TN

TP TN FP FN
�

�
� � �  

(26)
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where TN is true negative, indicating the number of microbe–
drug non-associations correctly identified by the model in the negative 
samples. TP is true positive, indicating the number of microbe–drug 
associations correctly identified by the model in the positive samples. 
FN is false positive, indicating the number of microbe–drug 
non-associations incorrectly predicted as microbe–drug 
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non-associations by the model in the positive samples. FP is false 
positive, indicating the number of microbe–drug associations 
incorrectly predicted as microbe–drug associations by the model in 
the negative samples and the number of microbe–drug associations in 
the negative sample.

The curves of ROC and AUPR for MGAVAEMDA obtained after 
five-fold and ten-fold cross-validation are shown in Figure 2.

As can be seen from the results of the figure, the AUC and 
AUPR values of the MGAVAEMDA model on ten-fold cross-
validation are 0.52 and 0.35% points, which is higher than the five-
fold cross-validation. These data indicate that the MGAVAEMDA 
model utilizes more training data using ten-fold cross-validation. 
It can more accurately evaluate the performance of the 
MGAVAEMDA model in the prediction of microbe–
drug association.

4.2 Influence of parameter selection

The analysis of the parameters can quantitatively assess the 
stability of the model (Li et al., 2020). In order to obtain more accurate 
prediction results, the influence of different parameters on the 
prediction results was analyzed through experiments. The parameters 
are divided into three parts: the parameters in MGAVAE, the 
parameters in the random forest classifier, the parameters of the 
binarization threshold, and the parameters of the smooth window.

4.2.1 Parameter selection in MGAVAE

4.2.1.1 Hidden layer dimension
The fixed learning rate k  was set at 0.01 according to the 

literature to analyze the effect of hidden layer dimension d  on the 
performance of MGAVAEMDA. For each d� 32 64 128 256, , ,� � , 
five-fold cross-validation, the corresponding AUC and AUPR 
values are obtained, as shown in Figure 3 Graph A. According to 
Figure 3, the higher the hidden layer dimension, the smaller the 
error, but it will increase the complexity of the model and may also 

be overfitting. From the data, when the dimensionality increases 
from 32 to 128, the performance of MGAVAEMDA increases with 
it. When the dimensionality is 256, the values of AUC and AUPR 
are 1.17 and 1.07% points lower than the dimensionality of 128, 
respectively. The values of AUC and AUPR of the model are 
maximum when the dimension is 128. Therefore, setting the 
hidden layer dimension d to 128 ensures the model prediction 
performance and saves time cost.

4.2.1.2 Learning rate
Fix the hidden layer dimension d to 128 and change the learning rate 

to a common value. For each k� 0 001 0 005 0 01 0 05. . . ., , ,� � , five-fold 
cross-validation, the corresponding AUC and AUPR values are obtained, 
as shown in Figure 3, Graph B. According to Figure 3, the values of AUC 
and AUPR are highest when the learning rate k  is 0.01.

4.2.2 Parameter selection in the classifier

4.2.2.1 n_estimators
n_estimators is the number of weak learner. Generally speaking, 

if n_estimators is too small, it is easy to underfit. If n_estimators is too 
large, it is easy to overfit, so we usually choose a moderate value. For 
random forest, increasing the number of “sub-models” (n_estimators) 
can significantly reduce the variance of the overall model and will not 
have any effect on the bias or variance of the sub-models. The accuracy 
of the model increases with the increase in the number of sub-models, 
and there is an upper limit to the increase in accuracy because the 
reduction is the second term of the overall model variance formula. 
In this article, in order to obtain the optimal n_estimators, for every 
n estimators_ � 10 50 100 150 200, , , ,� � , five-fold cross-validation, the 
corresponding AUC and AUPR values are obtained, as shown in 
Figure 3 Graph C. According to Figure 3, when n_estimators increase 
from 10 to 100, the performance of MGAVAEMDA increases with it 
from 100 to 200. The performance of MGAVAEMDA decreases with 
it, and when the value of n_estimators is 100, the accuracy arrives at 
the highest level and the overall variance is the smallest. Therefore, 
n_estimators is set as 100.

FIGURE 2

Five-fold and ten-fold cross-validation results of MGAVAEMDA.
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4.2.3 Parameter selection in the smoothing 
window

4.2.3.1 Smooth window size n
Using a smoothing window to reduce the feature noise in the 

similarity matrix may lead to the loss of useful information in the 
similarity network. Adjusting the size of the smoothing window is the 
key. Too large a window may lead to loss of detailed information, while 
too small a window may not be effective for noise reduction. Therefore, 
several experiments are needed in the smoothing process to find the 
most suitable window size. For each n�� �3 5 7 9, , , , five-fold cross-
validation, Figure 3 Graph D shows that when the window size is 5, 
AUC, AUPR, and Acc are the highest, so smooth window is set as 5.

4.2.4 Parameter selection in binarization

4.2.4.1 Thresholds (mth) and (dth)
The mth and dth are the threshold points for binarization of 

microbe-integrated similarity networks and drug-integrated 
similarity networks, respectively. Higher thresholds can 
effectively reduce the noise in the similarity network but also 
eliminate the useful information in the similarity network. As 
shown in Figure  4, the performance of the model gradually 
improves with the increase of mth and dth, and the AUC and 
AUPR reach the maximum when mth and dth reach 0.8 and 0.7, 
respectively. In order to ensure that there is more useful 
information in the similar network and to achieve the best 

FIGURE 3

Graph A: AUC and AUPR values for different hidden layer dimensions. Graph B: AUC and AUPR values for different learning rates. Graph C: AUC and 
AUPR values for different n_estimators. Graph D: AUC, AUPR, and Acc values for different windows.

https://doi.org/10.3389/fmicb.2024.1394302
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2024.1394302

Frontiers in Microbiology 10 frontiersin.org

performance of the model, this article considers that it is most 
appropriate to set mth and dth to 0.8 and 0.7, respectively.

4.3 Comparison of different datasets

In order to further verify the prediction ability of the 
MGAVAEMDA model, this article conducted extension experiments 
on both aBiofilm and DrugVirus, two microbe–drug databases. After 
the five-fold cross-validation, the ROC curves and AUPR curves of the 
three datasets were obtained, which are shown in the following figure. 
As shown in Figure 5, MGAVAEMDA achieved AUC values of 0.9357, 
0.8563, and 0.8490 and AUPR values of 0.9378, 0.8601, and 0.8550 on 
the MDAD, aBiofilm, and DrugVirus datasets, respectively. The 
experimental results showed that MGAVAEMDA achieved AUC 
values and AUPR values that achieved more than 0.8400 and 0.8500 
prediction results on different datasets. The results indicate that the 
model is robust and can be applied to different scales of data.

4.4 Comparison with existing methods

Under the same dataset conditions, the performance of 
MGAVAEMDA is compared with five advanced models: 
HMDAKATZ, GATECDA (Deng et al., 2022), NTSHMDA (Luo 
and Long, 2020), EGATMDA, and GCNMDA using AUC, AUPR, 
Acc, Pre, R, and F1 score as the evaluation indicators, and the 
parameters involved are selected to be  the optimal ones 
recommended in the respective models. The ROC curves and 
AUPR curves after the five-fold cross-validation are shown in 
Figure 6.

MGAVAEMDA is superior to the other five groups of comparison 
experiments, as shown in Figure 6. The AUC values are higher by 4.6, 
5.54, 3, 1.76, and 2.92%, and the AUPR values are higher by 4.42, 5.33, 
2.66, 1.47, and 2.54%, respectively. For the other four evaluation 
indicators, MGAVAEMDA is also better than the other five 
comparison experiments.

Thus, the MGAVAEMDA model has better predictive performance.

FIGURE 4

Performance with different combinations of the two hyperparameters.

FIGURE 5

Comparison of prediction results on different datasets.
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4.5 Ablation experiments

Ablation experiments are performed by progressively removing 
modules from the model to assess how much these modules contribute 
to the overall performance.

(1) To verify the effect of the introduced self-attention 
mechanism, reconstruction loss function, and KL divergence loss 
function on the three times improvement of the prediction 
accuracy of the model MGAVAEMDA, this article conducts four 
sets of comparative experiments: (1) Group 1: introducing the KL 
divergence loss function; (2) Group  2: introducing the 
reconstruction loss function; (3) Group  3: introducing the 
attention mechanism; (4) Group 4: blank experiment.

After five-fold cross-validation, the ROC curves and AUPR 
curves of the four group comparison experiments were obtained, 
which are shown in Figure 7. As can be seen in Figure 7, both the 
AUC and AUPR values obtained from the MGAVAEMDA model 
are better than the results from four groups of comparison 
experiments. Among them, the AUC value of the first group is 
34.81% higher than that of the fourth group. The AUPR value is 
35.11%, which is higher than the results of the fourth group. It 
indicates that the addition of the KL divergence loss  
function reduces the error and improves the optimization ability 
of the model. The AUC value of the second group is 38.21% 

higher than that of the fourth group. The AUPR value is 38.65% 
higher than that of the fourth group, which indicates that the 
addition of the reconstruction loss function also reduces the 
error and improves the optimization ability of the model. The 
AUC value of the third group is 35.39%, higher than that of the 
fourth group. The AUPR value is 35.69 higher than that of the 
fourth group, indicating that the addition of the self-attention 
mechanism reduces the dependence on other information and 
significantly helps in the fusion of microbe medicines. The  
AUC value of the MGAVAEMDA is higher than that of groups 1, 
2, and 3 by 6.73, 3.33, and 6.15%, and the AUPR values were 6.24, 
2.70, and 5.66%, higher than those of the first, second, and third  
groups, respectively. Those results indicate that the  
combination of the KL divergence loss function. The 
reconstruction loss function and the self-attention mechanism 
can obtain more useful information, which can improve the 
prediction accuracy of the model. All the groups have shown that 
the introduction of the KL divergence loss function, 
reconstruction loss function, and attention mechanism is  
crucial for the improvement of the prediction accuracy 
of MGAVAEMDA.

(2) To verify the effect of the introduced modified graph 
convolutional neural network on improving the computational 
efficiency of the model MGAVAEMDA. This article sets up a 

FIGURE 6

PR curve, ROC curve, Pre, ACC, R, and F1 score curves comparison of the proposed model and existing models.
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comparative experiment with fixed hardware equipment. The 
running time of the model without modification is 422 s, and the 
running time of the model after modification is 353 s, which is 
significantly improved, indicating that the introduction of the 
modified graph convolutional neural network improves the 
computational efficiency of the model.

4.6 Case studies

To evaluate the predictive effectiveness of the MGAVAEMDA 
model, two case studies were conducted using ceftazidime and 
curcumin. After calculating the predicted microbes associated 
with these two drugs, the top 10 microbes were screened after 
arranging the obtained association prediction scores in 
descending order, as shown in Tables 1, 2.

The prediction data of the above two tables were obtained from the 
MGAVAEMDA model by searching the PMID database for relevant 
literature and reports. The data in the table show that among the top 10 
microbes predicted in the MGAVAEMDA model with ceftazidime and 

curcumin, 10 and 7 each have been confirmed in the literature. Among 
them, curcumin-mediated EDTA blue light PDI has a strong inhibitory 
effect on Streptococcus mutans in planktonic culture. It is expected to be a 
promising technique for disinfection of oral tissues due to its unclear 
targeting mechanism (Nima et al., 2021). Curcumin has an inhibitory 
effect on urease activity in Proteus mirabilis (Prywer and Torzewska, 
2012), and the addition of curcumin increases the induction time and 
decreases the growth efficiency of guano stones as compared to the 
absence of curcumin. Curcumin has been used in the case of Proteus 
mirabilis-induced growth of guano crystals in association with urinary 
stone formation, which has been shown to have great potential for further 
research. The case study further validates that the MGAVAEMDA model 
has a good performance in identifying microbe-associated drugs and has 
a certain application value.

5 Conclusion

In this study, the MGAVAEMDA model was set up by using the 
variational autoencoder, modified graph convolutional neural 

TABLE 1 Top 10 microbes related to ceftazidime.

Ranking Name of microbe PMID number

1 Stenotrophomonas maltophilia 37615040

2 Haemophilus influenzae 6376458

3 Shigella flexneri 31519769

4 Escherichia coli 37574665

5 Pseudomonas aeruginosa 34990760

6 Bacillus subtilis 31420587

7 Mycobacterium tuberculosis 28875168

8 Mycobacterium avium 28922808

9 Streptococcus pneumoniae serotype 4 8126192

10 Proteus vulgaris 19802966

TABLE 2 Top 10 microbes related to curcumin.

Ranking Name of microbe PMID number

1 Streptococcus mutans 23778072

2 Proteus mirabilis 21808656

3 Vibrio anguillarum 31930829

4 Pseudomonas aeruginosa 32421995

5 Haemophilus influenzae 27538525

6 Vibrio cholerae 35140698

7 Burkholderia cenocepacia Unverified

8 Enterococcus faecalis 34320428

9 Burkholderia multivorans Unverified

10 Eikenella corrodens Unverified

FIGURE 7

Comparison of ablation experimental results.
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network, and graph attention network to realize the microbe–drug 
association prediction through two-stage fusion.

The case study indicates that the MGAVAEMDA model can 
overcome the shortcomings of other models, such as long training 
 
 times and low prediction accuracy. Moreover, the MGAVAEMDA 
model has better prediction performance.

The predicted performance of the model will be improved after 
more biological datasets are integrated in the future, so this model’s 
practical application will increase.
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