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Motivation:High-throughput sequencing technology facilitates the quantitative

analysis of microbial communities, improving the capacity to investigate the

associations between the human microbiome and diseases. Our primary

motivating application is to explore the association between gut microbes

and obesity. The complex characteristics of microbiome data, including

high dimensionality, zero inflation, and over-dispersion, pose new statistical

challenges for downstream analysis.

Results: We propose a GLM-based zero-inflated generalized Poisson

factor analysis (GZIGPFA) model to analyze microbiome data with complex

characteristics. The GZIGPFA model is based on a zero-inflated generalized

Poisson (ZIGP) distribution for modeling microbiome count data. A link function

between the generalized Poisson rate and the probability of excess zeros is

established within the generalized linear model (GLM) framework. The latent

parameters of the GZIGPFA model constitute a low-rank matrix comprising a

low-dimensional score matrix and a loading matrix. An alternating maximum

likelihood algorithm is employed to estimate the unknown parameters, and

cross-validation is utilized to determine the rank of the model in this study. The

proposed GZIGPFA model demonstrates superior performance and advantages

through comprehensive simulation studies and real data applications.
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1 Introduction

The human microbiome is the collection of all microorganisms that live in and

associate with the human body, including bacteria, archaeobacteria, protists, and viruses,

distributed in the nasal cavity, oral cavity, skin, gastrointestinal tract, and genitourinary

tract. The growing significance of themicrobiome in ecosystems is increasingly recognized.

In particular, the relationship between gut microorganisms and human health has

garnered widespread scientific interest. Over time, an increasing number of studies have

demonstrated that dysbiosis of the gut microbial community is associated with complex

diseases, such as human gastrointestinal disorders (Willing et al., 2010; Machiels et al.,

2013; Knights et al., 2014), metabolic traits, diabetes (Turnbaugh et al., 2006; Wen

et al., 2008; Vijay-Kumar et al., 2010), obesity (McKnite et al., 2012; Carlisle et al.,

2013; Parks et al., 2013), and inflammatory bowel disease (Frank et al., 2007). These

investigations significantly contribute on exploring the causes and treatments of diseases.

Furthermore, complex interactions between hosts and microbiota are also observed in

various ecosystems. For example, in marine ecosystems, microbial communities associated

with seaweed play an vital role in the development, reproduction, function, and defense
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of seaweeds (Egan et al., 2013; Singh and Reddy, 2016). Therefore,

it becomes crucial to quantify the abundance of microbial taxa

and investigate the association between microbiota and diseases

or traits.

The development of high-throughput sequencing (HTS)

technology has been widely employed in microbial research,

enabling researchers to identify the composition and abundance of

microbial species directly (Kuczynski et al., 2011). Microbiome data

are typically generated by extracting samples from the specified

environment, followed by sequencing the 16S rRNA genes of the

DNA extracts using high-throughput sequencing technology. The

obtained sequence reads are compared with the reference 16S rRNA

database and assigned to Operational Taxonomic Units (OTUs)

based on a sequence similarity threshold (e.g., 97%; Tyler et al.,

2014). High-throughput sequencing data provide valuable insights

for investigating the relationship between the microbiome and the

host environment or clinical factors. As a motivating application,

we consider the gut microbiome data in Sun et al. (2019), which

explores the association between gut microbes and obesity. The

authors sequenced 16S rDNA genes of 48 individuals and obtained

a dataset with 895OTUs, where the number of variables (i.e., OTUs)

vastly exceeds the number of observations (i.e., the number of

samples). Moreover, we found that ∼45% of the OTU counts were

zero, and the variance of the data significantly exceeded the mean.

These characteristics are manifestations of high dimensionality,

zero inflation, and over-dispersion, which may distort downstream

analysis. However, many microbiome datasets exhibit the same

problems as the motivating data, posing challenges for statistical

analysis. Firstly, most microbiome data are non-negative counts

with a large number of zeros (i.e., zero-inflated; Xu et al., 2015;

Kaul et al., 2017). Some of these observed zeros result from

insufficient sequencing depth (i.e., library size, which is the total

number of reads obtained by per sample from equipment) or other

technical reasons that result in some taxa not being detected, and

others are the fact that some taxa are very rare and not present

in most samples (Silverman et al., 2020). Traditional statistical

methods may not accurately estimate the parameters of the data

distribution due to the preponderance of zeros, leading to biased

results (Campbell, 2021). Secondly, microbial abundance data only

represent relative information in observed samples and cannot

describe the abundance in the entire ecosystem (Mandal et al., 2015;

Gloor et al., 2017). Moreover, the sequencing depth varies among

samples, and even the variation between samples is magnitude

(Sims et al., 2014). Finally, microbiome data are typically over-

dispersed and high-dimensional (Kurtz et al., 2015; Xu et al., 2015;

Armstrong et al., 2022). The number of taxa in the OTUs table

may significantly exceed the number of observed samples, which

is a sign of high dimensionality. The high dimensionality of the

data may strain computational resources and increase the risk of

overfitting. Meanwhile, the standard model may underestimate the

true variation within the data when over-dispersion exists, leading

to inaccurate estimation and hypothesis testing (Robinson et al.,

2009; Love et al., 2014). Detecting associations between microbes

and diseases remains challenging because of the complex features of

microbiome data and the limitations of current statistical methods.

Therefore, it is necessary to develop novel statistical analysis

methods for the characteristics of microbiome data.

Zero-inflation and over-dispersion of count data have received

widespread attention from scholars recently. Wagh and Kamalja

(2017) briefly reviews different zero-inflated models for handling

count data and the performance of their parameter estimation,

which provides suggestions for selecting parameter estimation

methods for zero-inflated models. Motivated by zero-inflation

and over-dispersion problems, a zero-inflated negative binomial

(ZINB) mixed regression approach is proposed to analyze the data

on the length of stay for pancreas disorder (Yau et al., 2003).

However, in a few cases, the parameter estimation algorithm for the

ZINB regression model fails to converge (Lambert, 1992). A zero-

inflated generalized Poisson (ZIGP) regression model has been

proposed to model domestic violence data with too many zeros

(Famoye and Singh, 2006). It is a strong competitor to the Poisson

and negative binomial regression model when the count data is

over-dispersed. In addition, zero-inflated generalized Poisson and

zero-inflated negative binomial regression models were used in

QTLmapping studies for the count traits with excess zeros (Cui and

Yang, 2009; Moghimbeigi, 2015; Chi et al., 2020). More recently,

Tirozzi et al. (2022) used zero-inflation models to assess long-

term population trends and elucidate the effects of environmental

bias, over-dispersion, and zero-inflation on the population trend

estimates. These studies provide some inspiration for analyzing

microbiome data with complex characteristics.

In recent years, extensive research has been conducted by

scholars to address the challenges associated with microbiome

data, including zero inflation, high dimensionality, and over-

dispersion (Zhang et al., 2018; Xu et al., 2020; Jiang et al., 2023).

Two typical methods have been proposed to address the zero-

inflated structure of sequencing data. One method is replacing the

zeros with small non-zero positive number (pseudo count; Chen

and Li, 2013; Lin et al., 2014). However, the effects of creating

pseudo count has not been evaluated thoroughly when the data

contain excessive zeros. Besides, the choice of pseudo count may

impact subsequent analysis (Costea et al., 2014), and this approach

is not statistically rigorous. Moreover, the idea of multiplicative

replacement has been proposed. The non-parametric replacement

method can be used to adjust the data through multiplicative

modification under simple conditions (a small number of zeros;

Martín-Fernández et al., 2003). In other cases, more sophisticated

model-based methods can be utilized to replace zeros in the data

(Martín-Fernández et al., 2012). Recently, a Bayesian-multiplicative

treatment has been proposed to solve the problem of count zero,

which assumes a Dirichlet prior for the proportions and replaces

the zeros with posterior Bayesian estimates (Martín-Fernández

et al., 2014). The other standard and widely used method is

to construct a two-part model with a point probability mass at

zero along with another parametric distribution, such as zero-

inflated Gaussian model (Xu et al., 2015), zero-inflated lognormal

model (Sohn et al., 2015), zero-inflated Poisson model (Xu et al.,

2020), zero-inflated negative binomial model (Jiang et al., 2019;

Zhang and Yi, 2020), and many others (Peng et al., 2016; Tang

and Chen, 2018; Zeng et al., 2022; Jiang et al., 2023). The

advantage of this method is that an appropriate model can be

selected according to the nature of the data. For example, the

zero-inflated negative binomial model can effectively address the

issue of zero-inflated and over-dispersion in the data because
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the negative binomial provides a standard statistical model for

over-dispersed data.

The other well-known challenge for analyzing microbial data

is the high dimensionality of the data. Generally, the number

of taxa usually far exceeds the observed samples in the OTUs

table, which is a symbol of high dimensionality (Armstrong et al.,

2022). Therefore, dimensionality reduction technology is used to

map high-dimensional data into a potential low-dimensional space

while retaining the primary information in the data intact to

facilitate the subsequent analysis, which is a desirable preprocessing

step (Fan et al., 2015; Jasner et al., 2021).

Factor analysis, an extensively employed technique, serves

as a prominent method for dimensionality reduction of high-

dimensional data. Pierson and Yau (2015) proposed a zero-inflated

factor analysis (ZIFA) model to explicitly consider excess zeros in

Single-cell RNA-seq data. However, the ZIFA model preprocesses

count data via a normal transformation, which may overlook

its inherent count nature and potentially result in information

loss during the preprocessing step. Lee et al. (2013) developed

a Poisson factor model with offsets to explicitly incorporate the

special features that count nature and heterogeneous library size

(the total reads per sample). Subsequently, the negative binomial

factor regression model was proposed to reduce the dimensionality

of microbial abundance data, and then model the associations

of microbial abundance and host-associated features by including

only a subset of the predictors for a few latent factors (Mishra

and Müller, 2022). However, these two methods (Poisson factor

model and negative binomial factor model) are only suitable

for data that does not contain excessive zeros, which fail to

consider zero inflation. Sohn and Li (2017) proposed a GLM-

based ordination method for microbiome samples (GOMMS),

which employs a zero-inflated quasi-Poisson factor model to

dimensionality reduction and overcome the challenge of zero-

inflation. However, this method assumes that each taxa has a fixed

probability of zero, which is generally not easily satisfied. More

recently, Xu et al. (2020) proposed a factor analysis model based

on the zero-inflated Poisson distribution (ZIPFA), which can more

flexibly adapt to some characteristics of microbial data, such as

count value, excessive zeros, and high dimensionality. A significant

critique of Poisson models is the failure to accommodate over-

dispersion, which has been widely observed for microbiome data.

Following this line of research, we combined the zero-inflated

generalized Poisson distribution with factor analysis under the

framework of the generalized linear model to propose a GLM-

based zero-inflated generalized Poisson factor analysis (GZIGPFA)

model, which provides a valuable dimensionality reduction tool

for microbiome data. The GZIGPFA model can also address the

issues of over-dispersion and handle the zero-inflated structure.

Furthermore, our method models absolute abundance directly,

avoiding the information loss attributable to data transformation.

The rest of this paper is organized below. Section 2 presents

a new GZIGPFA model for handling microbiome data and

introduces methods for parameter estimation and rank selection.

A simulation and comparison study are conducted in Section 3 to

demonstrate the performance of the proposed method. In Section

4, we apply our method to the gut microbial data to explore the

association between gut microbes and obesity. In Section 5, a

conclusion of this paper is drawn with a discussion of extensions

and areas for subsequent work.

2 Method

For i = 1, 2, . . . , n and j = 1, 2, . . . ,m, let yij denote the count

of the j-th taxon from the i-th individual, then, an n×mmicrobial

abundance matrix can be expressed as Y = (yij)n×m. Denote the ith

row of matrix Y as y(i) = (yi1, . . . , yim), refer to as the i-th sample

of sequencing data.

2.1 Zero-inflated generalized Poisson
factor model

The microbiome dataset typically presents as a highly

skewed non-negative count matrix with numerous zeros, often

characterized by over-dispersion. Therefore, we build statistical

models to address these issues for microbiome data.

The presence of zeros in microbiome data may be true absences

or undetected taxa. Considering the over-dispersion characteristics

of the data, we assume that the sequencing count yij follows the

zero-inflated generalized Poisson (ZIGP) distribution (Famoye and

Singh, 2006):

yij ∼

{
0, with probability φij,

GP(Tiλij,α), with probability 1− φij,
(1)

where φij is the zero-inflation parameter describing the

probability of excess zero; GP(Tiλij,α) is the generalized Poisson

distribution (Consul and Famoye, 1992; Famoye, 1993), with the

probability function

p(yij;Tiλij,α) =
1

yij!

(
Tiλij

1+ αTiλij

)yij (
1+ αyij

)yij−1
exp

{
−
Tiλij(1+ αyij)

1+ αTiλij

}
,

(2)

where λij and α are the mean and dispersion parameters of the

generalized Poisson part, respectively; Ti is the relative library size

of the i-th sample, which is utilized to regulate λij. Generally, there

are many representations of Ti (Anders and Huber, 2010; Eddy,

2011; Badri et al., 2020; Mishra and Müller, 2022). In this paper,

we take

Ti =

m∑

j=1

yij

/
median




m∑

j=1

y1j, . . . ,

m∑

j=1

ynj


 .

Next, the link between the zero-inflation probability φij and

the mean parameter λij is established according to Lambert (1992).

Typically, an increase in the number of zeros in the data results in

a smaller overall mean. Therefore, a negative relationship between

φij and λij is established, i.e.,

logit(φij) = −τ log(λij), (3)
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where τ is the shape parameter; logit(φij) and log(λij) are

the link functions for the probability of zero-inflation and the

mean of generalized Poisson in the generalized linear model

(GLM), respectively. Let 3 = (λij)n×m ∈ R
n×m and 8 =

(φij)n×m ∈ R
n×m be the matrix forms of λij and φij, respectively.

Therefore, the matrix form of Equation (3) can be expressed as

logit(8) = −τ log(3).

The ZIGP model (Equation 1) described above can

accommodate simultaneously zero inflation and over-dispersion

count data. Furthermore, upon review of the existing literature

about microbiome data analysis, the ZIGP model represents the

inaugural utilization of the zero-inflated generalized Poissonmodel

in microbiome datasets. In the following, we intend to solve the

prevalent issue of high dimensionality in the microbiome data

with a factor analysis model. Therefore, we propose a GLM-based

zero-inflated generalized Poisson factor analysis (GZIGPFA)model

to provide a suitable model for zero-inflated, over-dispersed, and

high-dimensional microbiome data.

Assume that matrix log(3) has a low-rank structure log(3) =

FLT with rank K (Lee et al., 2013), where F ∈ R
n×K is the factor

score matrix and F = (f T(1), . . . , f
T
(n))

T with f(i) = (fi1, . . . , fiK), i =

1, 2, . . . , n; L ∈ R
m×K is the loadingmatrix and L = (lT(1), . . . , l

T
(m))

T

with l(j) = (lj1, lj2, . . . , ljK), j = 1, 2, . . . ,m. Then, we consider the

following zero-inflated generalized Poisson factor model:





yij ∼ ZIGP(Tiλij,α,φij),

logit(φij) = −τ log(λij),

log(λij) = fi1lj1 + fi2lj2 + . . . + fiK ljK ,

(4)

where fik is an element of the matrix F, denoting the kth factor

score for the i-th sample; ljk is an element of matrix L, denoting

the loading of the jth taxon on the kth factor, where i = 1, 2, . . . , n,

j = 1, 2, . . . ,m, and k = 1, 2, . . . ,K. In this model, the logarithm is

the canonical link function in the generalized linear model (GLM)

framework (McCullagh and Nelder, 1989).

After the rank K is determined and the unknown parameters

α, τ , F, L in the model (Equation 4) are estimated, we reduce

the dimensionality of the microbiome dataset from m to K. The

score matrix F possesses an equivalent sample size to the original

microbiome dataset Y but only has K variables. In subsequent

work, it is easier to perform association analysis between disease

phenotypes and the low-dimensional score matrix, providing a

brief tool for investigating the relationship between microbiome

and disease.

2.2 An alternating maximum likelihood
algorithm

To estimate the unknown parameters α, τ , F, L in model

(Equation 4), we adopt a method that maximizes the ZIGP

likelihood function:

L(α, τ , F, L) =

n∏

i=1

m∏

j=1

[
φijI{yij=0} + (1− φij)p(yij;Tiλij,α)] , (5)

where p(yij;Tiλij,α) is the probability function of GP distribution

(Equation 2); log(λij) =
K∑

k=1

fikljk and logit(φij) = −τ log(λij).

In Equation (5), α, τ , F, L are the unknown parameters, and it

is challenging to maximize the likelihood directly. Therefore, we

consider an alternating maximum likelihood algorithm in the GLM

framework to estimate the parameters.

In order to obtain the initial F and L, we apply the singular

value decomposition (SVD) to the log-transformed matrix Ỹ and

obtain the singular, i.e., log(Ỹ) = U6VT . Set Lold = VT and Fold =

(U(,1)611,U(,2)622, . . . ,U(,K)6KK), where 6kk, k = 1, . . . ,K is the

kth diagonal element of 6.

Step 1: Assuming that factor score matrix F is known as Fold,

a ZIGP regression model is fitted with the jth column of matrix Y

(denoted by yj) as the response and Fold as a covariate matrix, the

regression model can be written as





yj ∼

{
0, with probability φj,

GP(Tλj,α), with probability 1− φj,

log(λj) = FoldlT(j),

logit(φj) = −τ log(λj),

where the vector T = (T1,T2, . . . ,Tn) is the relative library size

vector; the regression coefficient vector l(j) = (lj1, lj2, . . . , ljK) is the

jth row of the factor loading matrix Lnew = (lT(1), l
T
(2), . . . , l

T
(m))

T ;

the vectors λj and φj are the jth column of the matrices 3

and 8, respectively.

To estimate the unknown parameter vector θ = (τ ,α, l(j))
T

of the regression model, we should maximize the likelihood

function. However, the explicit solution of each parameter cannot

be obtained by directly using the maximum likelihood estimation

method. Therefore, we perform parameter estimation of the

regression model with the EM algorithm. The detailed procedure

of the EM algorithm is given in Appendix A.

Since matrix Y has m columns, we need to fit m GLMs to

obtainm rows of Lnew. However, the proposed model assumes that

the τ and α remain the same across all m different GLMs. To

accommodate this, we combine y1, . . . , ym into a column vector

and solve all m models simultaneously to obtain the globally

optimal τ and α values.

After estimating τ ,α and L, we continue to update F. The

process is similar to Step 1.

Step 2: Fit a ZIGP regressionmodel with the ith row of matrixY

(denoted by y(i)) as the response and the estimated loading matrix

L = Lnew from the previous step as a covariate, the regression

model can be written as





y(i) ∼

{
0, with probability φ(i),

GP(Tiλ(i),α), with probability 1− φ(i),

log(λ(i)) = f (i)L
newT ,

logit(φ(i)) = −τ log(λ(i)),

where Ti is the relative library size of the ith sample; the regression

coefficient vector f (i) = (fi1, fi2, . . . , fiK) is the ith row of the factor

score matrix Fnew = (f T(1), f
T
(2), . . . , f

T
(n))

T ; the vectors λ(i) and φ(i)
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are the ith row of the matrices 3 and 8, respectively. Next, the

parameters α, τ , and f (i) in the regression model are estimated by

the EM algorithm. The specific process is similar to Step 1.

Since matrix Y has n rows, we need to fit n GLMs to obtain

n rows of Fnew. However, the proposed model assumes that the

τ and α remain the same across all n different GLMs. Therefore,

similar to step 1, we combine y(1), . . . , y(n) into a column vector and

solve all n models simultaneously to obtain the globally optimal τ

and α values.

Step 3: Apply the singular value decomposition

(SVD) method to the FnewLnewT to obtain a new

Fold, and repeat the above alternating algorithm

until convergence.

When the percentage of total likelihood difference between

two iterations is less than a certain small value, the algorithm

terminates; otherwise, we continue to update F, L, τ and α until

convergence. In the ZIGP regression step, we will use the EM

algorithm to estimate the parameters. Therefore, the likelihood

increases due to the nature of the EM algorithm used in regression

estimation (Dempster et al., 1977; Wu, 1983). The likelihood

remains the same in the SVD step. Overall, the algorithm is

guaranteed to converge. In the Step 3, we apply SVD to

FnewLnewT , which ensures the uniqueness and the orthogonality

of the updated components. We briefly summarize the alternating

maximum likelihood algorithm under the GLM framework in the

“Algorithm 1” box.

Initialize:

• Replace all zeros in matrix Y with column means,

and the replaced matrix is represented as Ỹ.

• Apply the SVD to the log(Ỹ) to obtain the

singular vectors, i.e., log(Ỹ) = U6VT; Set Fold =

(U(,1)611,U(,2)622, . . . ,U(,K)6KK ).

Update:

(1) Fit m ZIGP regression models with yj, j = 1, 2, . . . ,

m as the response and the score matrix Fold as

the covariates to obtain the estimates for lj

through the EM algorithm. Denote that loading

matrix is Lnew = (lT(1), l
T
(2), . . . , lT(m))

T with l(j) =

(lj1, lj2, . . . , ljK ).

(2) Fit n ZIGP regression models with y(i), i = 1, 2,

. . . , n as the response and the loading matrix Lnew

as the covariates to obtain the estimates for f (i)

through the EM algorithm. Denote that the factor

score matrix is Fnew = (f T(1), f
T
(2), . . . , f

T
(n))

T

with f (i) = (fi1, fi2, . . . , fiK ).

(3) Apply SVD method to FnewLnewT to obtain a

new Fold

(4) Repeat from step 1 to step 3 until

convergence.

Algorithm 1. GZIGPFA algorithm.

2.3 Rank estimation

We use the N-fold cross-validation suggested by Li et al.

(2018) to determine the optimal number of factors, i.e., the

rank K of model (Equation 4). The idea is to randomly divide

the entries of a data matrix into N non-overlapping parts. We

systematically exclude one block at a time and utilize the remaining

data to estimate the unknown parameters with varying ranks.

Subsequently, we compute the likelihood of the model using the

data of the excluded block. Finally, we sum up the likelihood of all

N folds to obtain the total cross-validation (CV) likelihood of the

model with rank k and calculate the CV likelihood for every rank

k. The rank that provides the maximum CV likelihood is chosen

as the optimal rank. The procedure of rank selection is briefly

summarized in the “Algorithm 2” box.

Set the candidate rank set K = {1, . . . ,m};

Randomly split Y into N folds, with indicates

contained in I[1], I[2], . . . , I[N];

for k ∈ K do

for t = 1, . . . ,N do

• Eliminate the elements with index I[t] in Y

and estimate the unknown parameter with rank k

(i.e., θ
[−t]
k

) using the GZIGPFA algorithm;

• Calculate the likelihood of the model with

rank k in the t-th fold using the elements with

index I[t] in Y;

end for

Sum up the likelihood of all N folds to obtain

the CV likelihood of the model with rank k;

end for

Calculate the CV likelihood of every rank across N

folds;

Choose the rank that provides the maximum CV

likelihood as the optimal rank.

Algorithm 2. N-fold cross-validation for rank estimation.

3 Simulation studies

The performance of our proposed GZIGPFA method is

demonstrated through a simulation study. We compare the

GZIGPFA method with four other methods:

• ZIPFA (Zero-inflated Poisson factor analysis): This method

uses a zero-inflated Poisson factor analysis model for reducing

the dimension of the microbiome data while accommodating

the zero-inflated nature of the data (Xu et al., 2020).

• log-PCA (log-principal component analysis): The data is

preprocessed by replacing all zeros with a small value and

then taking a logarithm of the transformed data. After that,

the data is processed by performing a principal component

analysis (PCA).

• PSVDOS (Poisson Singular Value Decomposition with

Offset): The method is an efficient algorithm for estimating
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FIGURE 1

Plots of simulation parameters. (A) The heatmap of true log(3) matrix. The rows represent samples, and the columns represent taxa. (B) True left

singular vector matrix F. The rows correspond to the samples, and the columns denote factors. (C) True right singular vector matrix L. The rows

correspond to the taxa, and the columns denote factors.

the Poisson factor model, which addresses the issue of sample

normalization through the use of unknown offset parameters

(Lee et al., 2013).

• GOMMS (GLM-based ordination method for microbiome

samples): This method uses a zero-inflated quasi-Poisson

factor model, which accounts for characteristics of

microbiome data (e.g., highly skewed non-negative counts

with excessive zeros) while reducing dimensionality (Sohn

and Li, 2017).

3.1 Simulation design

We followed the design of Xu et al. (2020) to simulate

microbiome datasets. A sequence data of n samples and m taxa is

generated according to model (Equation 4). We simulate n = 200

different samples measured on m = 100 taxa. The rate matrix 3

follows: log(3) = FLT , where the F ∈ R
n×3 is a left singular vector

matrix, and L ∈ R
m×3 is a right singular vector matrix. To generate

matrix F, we create a 200-by-3 matrix F such that:

Column 1: F(36 : 80, 1) = 2, F(81 : 140, 1) = 1.7,

Column 2: F(1 : 35, 2) = 1.8, F(36 : 80, 2) = 0.9,

Column 3: F(1 : 35, 3) = 1.7, F(36 : 200, 2) = 0,

with all the other entries being 0, and then jitter all the entries

by adding random noises generated from N(0, 0.062). Similarly, to

generate matrix L , we create a 100-by-3 matrix L such that:

Column 1: L(1 : 60, 1) = 0, L(61 : 100, 1) = 1.7,

Column 2: L(36 : 60, 2) = 1.7, L(61 : 100, 2) = 1,

Column 3: L(1 : 25, 3) = 1.7, L(26 : 100, 2) = 0.9,

with all the other entries being 0, and then jitter all the entries

by adding random noises generated from N(0, 0.052). Figure 1A

displays the heatmap of the true log(3) matrix, and the three

columns of F and L are shown in the columns of Figures 1B, C,

respectively. Each row in Figure 1B corresponds to one sample, and

Figure 1C shows the heatmap of the right singular vector matrix L,

in which each row indicates one taxon profile.

After the matrices F and L are generated, 3 can be obtained

according to 3 = exp(FLT). Next, a zero-inflated sequencing

matrix Y was generated from the following ZIGP model,

f (yij;α, λij,φij,Ti) = φijI{yij=0} + (1− φij)GP(yij;Tiλij,α),

where λij is an element of the matrix 3; the scaling parameter Ti

and the dispersion parameter α were set to 1 and 0.2, respectively;

the probability of excess zero φij is obtained by establishing the

link between φij and λij. Firstly, we consider the scenario with the

relationship between φij and λij established in Section 2, that is,

• Scenario 1: logit(φij) = −τ log(λij).

Furthermore, to more comprehensively evaluate the robustness of

the proposedmethod, we further considered generating sequencing

data under several misspecified scenarios. First, consider two

common links to φij and λij, which are mentioned in Lambert

(1992) besides Scenario 1:

• Scenario 2: log{− log(φij)} = τ log(λij).

• Scenario 3: log{− log(1− φij)} = τ log(λij).

In addition, we set up a scenario along the lines in Sohn and Li

(2017), namely, each taxon has a fixed probability φj independent

of the λij:

• Scenario 4: φj ∼ Uniform(τ − 0.10, τ + 0.10).

Finally, considering that actual microbiome data may come from

different distributions, we set up two misspecified scenarios
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FIGURE 2

Cross-validation to choose the rank in the GZIGPFA model. (A) The CV likelihood of the GZIGPFA model under scenarios 14 with a 20% zero-inflated

probability. (B) The CV likelihood of the GZIGPFA model under scenarios 14 with a 40% zero-inflated proportion. (C) The CV likelihood of the

GZIGPFA model under scenarios 5 and 6 with 20% and 40% zero-inflated proportions. The proposed method provides maximum CV likelihoods with

rank 3 under all simulation scenarios.

for generating microbiome data from other distributions, that

is, the data come from the ZIP and ZINB distributions, and

the relationship between the φij and λij follows the setup in

Scenario 1:

• Scenario 5: yij ∼ ZIP distribution, and logit(φij) =

−τ log(λij).

• Scenario 6: yij ∼ ZINB distribution, and logit(φij) =

−τ log(λij).

We evaluated the simulation results for all the scenarios above

at light zero inflation (20%) and higher zero inflation (40%),

respectively.

3.2 Simulation results

First, the performance of the proposed method for rank

estimation in all scenarios is examined. A 10-fold cross-validation

is performed on the data generated in each scenario separately to

compute the cross-validation likelihood for different ranks. The

rank estimation results of the GZIGPFA method for all simulation

scenarios are displayed in Figure 2. It can be seen from Figure 2 that

the proposed method provides the maximum CV likelihood with

rank 3 in all simulation scenarios. Figure 2 shows that the proposed

method is accurate in the rank estimation under the given model

[Model (Equation 4)] and performs well under the misspecified

scenarios, indicating the robustness of the GZIGPFA method.
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TABLE 1 The mean of loss values and standard errors (in the parenthesis) for the five methods under di�erent scenarios.

Scenario Zero (%) GZIGPFA ZIPFA log-PCA PSVDOS GOMMS

Scenario (1) 20% 6.9878 (1.4968) 10.7800 (1.8965) 10.2970 (0.1332) 26.4999 (0.0594) 92.5108 (207.740)

40% 12.7542 (7.1569) 13.2471 (2.9255) 16.7528 (0.1516) 26.6175 (0.0843) 102.689 (238.263)

Scenario (2) 20% 8.9129 (3.2038) 10.8945 (2.0912) 10.7148 (0.1366) 26.5064 (0.0581) 87.5358 (166.145)

40% 10.2343 (4.8788) 13.5586 (3.3809) 17.7686 (0.1339) 26.7447 (0.1101) 91.5380 (144.401)

Scenario (3) 20% 7.1095 (1.2251) 10.8162 (1.8302) 10.0293 (0.1294) 26.5015 (0.0644) 99.1790 (183.318)

40% 21.5684 (8.9917) 12.1517 (2.5438) 15.8540 (0.1635) 26.5817 (0.0819) 114.108 (243.236)

Scenario (4) 20% 10.2995 (0.9843) 11.5437 (2.1585) 12.0547 (0.2186) 26.5496 (0.0694) 78.4083 (114.947)

40% 9.8594 (4.7380) 13.0524 (3.0187) 17.5302 (0.2297) 26.7168 (0.0957) 100.821 (241.874)

Scenario (5) 20% 1.9069 (0.0882) 2.0074 (0.0686) 5.7243 (0.1271) 26.2521 (0.0052) 4.7897 (0.0036)

40% 3.9383 (0.2266) 3.2860 (0.2841) 13.0891 (0.1697) 27.2165 (0.2778) 10.5189 (0.0140)

Scenario (6) 20% 2.9830 (0.1168) 3.3560 (0.2495) 6.4711 (0.1243) 26.2505 (0.0030) 6.0003 (0.0013)

40% 4.4550 (0.3200) 4.5013 (0.5164) 13.7113 (0.1683) 26.6065 (0.3625) 10.0941 (0.0107)

The best results in each setting are in boldface.

Next, a comprehensive comparison of the GZIGPFA method

with other approaches (ZIPFA, log-PCA, PSVDOS, and GOMMS)

is presented to illustrate the superior performance of the proposed

method in depth. For each simulation scenario, 200 replicates

are performed. The Frobenius norm of the error matrix (denoted

as loss value) is utilized to evaluate the effectiveness of each

method. The loss values of several methods in all simulation

scenarios are listed in Table 1. Table 1 shows that the GZIGPFA

method has a small loss in most simulation scenarios, indicating

that the proposed method is effective. In Scenarios (1)–(4), the

performance of all four methods is significantly better than the

GOMMS method. In addition, we find that the convergence effect

of the GOMMS method is poor when there are more zeros in

the data. In scenario (5), ZIPFA outperforms GZIGPFA when the

zero percentage is high (40%) because this scenario essentially

favors ZIPFA by using the ZIP model. In Scenario (6), the data is

generated by the ZINB model, and the PSVDOS method performs

the worst among the five methods because this method cannot

consider over-dispersed and zero-inflated data. In addition, the

GOMMS method performs second only to GZIGPFA and ZIPFA

in Scenario (6) because GOMMS is based on the zero-inflated

quasi-Poisson, which is intrinsically closer to ZINB. Overall, our

method performs better than competing methods, even in the

misspecified scenarios.

Finally, we show the heatmaps of the true log(3) and the

estimated log(3) of several methods in Figure 3 to visualize the

performance of the GZIGPFA method, and we also display the

clustering effects of several methods at the taxa (top) and sample

(left side) levels. Since the GOMMS method performs poorly in

Table 1, only the estimation and clustering results of the four

methods GZIGPFA, ZIPFA, log-PCA, and PSVDOS are presented

in Figure 3. Panel (a) in Figures 3A, B displays the true log(3)

used in the simulation. The phylogenetic tree on the left side of

the heatmap shows the clustering of the sample, which falls into

four clusters. Similarly, the phylogenetic tree above the heatmap

shows the clustering of the taxa. The clustering pattern is obtained

by applying the complete linkage hierarchical clustering analysis

to F and L (Wilkinson and Friendly, 2009). Figures 3A, B show

the estimation and clustering effects of the four methods when the

zero-inflated proportion is low (20%) and high (40%) in Scenario

(1), respectively. GZIGPFA method (Panel b in Figures 3A, B)

offers the best approximation to the true signal, and it gives the

accurate clustering result, which is as expected, as the dataset was

designed in a way that takes advantage of the unique features of

GZIGPFA. The log(3) estimated by the log-PCA method (Panel

d in Figures 3A, B) is far from the true value (Panel a) and is

the worst performer among several methods. Meanwhile, log-PCA

fails to capture the right sample clustering when the zero-inflated

proportion goes from 20 to 40%. The log-PCA performs poorly

overall because it does not consider the underlying distribution and

excessive zeros.

4 Application to the gut microbiome
data

Empirical research has demonstrated that mice and humans

harbor similar microbiota at high taxonomic levels (Ley et al.,

2008; Krych et al., 2013). Therefore, laboratory mice can be used

to simulate the human gut environment for experiments and

to explore the mechanisms of host-microbial interactions in a

data-driven manner when studying human gut microbes. In this

section, the GZIGPFA model is applied to the mouse gut microbial

dataset (Sun et al., 2019) to explore the association between gut

microbes and obesity. Microbial datasets were extracted from 48

male mice. The mice were divided into the blank group, high-

fat control group, and probiotic experimental group, in which

the blank group was fed normal chow, the high-fat control group

and the probiotic experimental group were fed a high-fat diet

for 4 weeks to establish an obesity model for the mice, and

the probiotic experimental group was fed high-fat chow plus

probiotic capsules starting from the 5th week of the successful

modeling, while the high-fat control group continued to be fed

high-fat chow. At the end of the 8th week, various indicators
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of the mice were measured, including weight, body length, total

cholesterol, endotoxin, etc. The samples were first amplified with

a set of primers targeting the 16S rDNA V4 region. Then, the

original data were subjected to operational taxonomic unit (OTU)

clustering and species classification analysis based on valid data.

According to the results of OTU clustering, species annotation was

performed for the representative sequences of each OTU, and the

corresponding species information and species-based abundance

were obtained. Then, we reduced the dimensionality of the dataset

with the proposedGZIGPFAmethod to extract the common factors

and further explore the association between the common factors

and obesity.

FIGURE 3 (Continued)
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FIGURE 3 (Continued)

The heatmap of true log(3) and the estimated log(3) from di�erent methods in Scenario 1. The phylogenetic tree on the top and left show the

clustering of taxa and samples, respectively. (A) The zero-inflated proportion is 20%. (B) The zero-inflated proportion is 40%. The rows and columns

of all heatmaps represent samples and taxa, respectively.

We selected body weight, total cholesterol, and endotoxin as

three responses from the measured indicators of mice, where

the weight of mice can intuitively reflect the degree of obesity.

Obesity caused by a high-fat diet is often accompanied by

hyperlipidemia, and total cholesterol (TC) is widely employed

clinically as an indicator for measuring blood lipids. Endotoxin,

also known as lipopolysaccharide (LPS), is a critical factor in the

systemic inflammatory reaction. When the intestinal microbiota is

imbalanced and harmful bacteria increase, the body is susceptible

to endotoxemia, and sustained low-level endotoxemia is the leading

cause of obesity and metabolic disorders. Therefore, we will focus

on the relationship between the gutmicrobial community and three

responses (weight, TC, and LPS).

We applied 10-fold cross-validation on microbial abundance

data. Figure 4 shows that CV likelihood reaches the maximum

point at a rank equal to 3, so we will use three factors in the
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FIGURE 4

Cross validation to choose the number of factors in real data

analysis.

following analysis. We performed GZIGPFA fitting with a rank

of 3 on the microbiome data. The algorithm converged after 6

iterations and obtained score matrix estimates (F) and loading

matrix estimates (L). We can compute log(3) = FLT according

to the estimates of F and L, and the zero-inflated probability

matrix 8 can be obtained through the relationship between 3

and 8 assumed in Section 2.1 [i.e., logit(8) = −τ log(3)]. The

total probability of zero for each count is estimated as φ̂ij +

e−Tiλ̂ij/(1+α̂Tiλ̂ij). We reorder the total zero probability matrix and

plot the corresponding heatmap (Figure 5A). In Figure 5A, the

bottom right indicates the large values of total zero probability (red

points), and the small total zero probability values are sorted to the

top left (blue points). Meanwhile, the rearrangement of the true

data is plotted in Figure 5B, where non-zero values are shown in the

top left (blue points) and zeros in the bottom right (white points).

We compare the predicted probability of zeros with the distribution

of zeros in the real data. The significant similarity between the red

part in Figure 5A and the white part in Figure 5B shows that the

proposed method captures the structure of excess zeros well.

To determine the association between the three factors

obtained through GZIGPFA dimensionality reduction and the

three responses (weight, TC, and LPS), a linear model was fitted in

which each response was regressed on all three factors, respectively.

The p-values corresponding to different factors and responses are

listed in Table 2. In addition, we demonstrate the results of the other

comparison methods (ZIPFA, log-PCA, PSVDOS, and GOMMS)

introduced in Section 3. It can be observed in Table 2 that the

GZIGPFA and log-PCA methods can identify factors significantly

associated with each response, while ZIPFA and PSVDOS failed to

provide significant factors for TC and LPS. In addition, GOMMS is

also unable to find factors associated with LPS. In particular, all five

methods identified factors (factors 2 or 3) associated with weight,

indicating that gut microbiome composition may be an essential

factor influencing weight. Furthermore, factor 2 was a significant

predictor of all responses in our proposed method, suggesting a

potential link between obesity diseases and gut microbiome.

We consulted the literature to explain the factors obtained by

GZIGPFA. By searching for gut microbes and obesity keywords on

PubMed, some review articles were screened to identify microbes

related to obesity. To identify microbes associated with obesity by

searching for gut microbes and obesity keywords on Pubmed and

filtering some review articles. After a full-text review of 116 papers,

Pinart et al. (2021) concluded that Firmicutes and Bacteroidetes are

the two microorganisms that mainly affect obesity at the phylum

level. Therefore, factors 2 and 3 significantly associated with the

obesity phenotype in the association analysis may be summarized as

Firmicutes and Bacteroidetes. In conclusion, the proposed method

can help the experimenter to determine the approximate factors

affecting the experiment in advance.

Finally, in order to demonstrate that the proposed model does

the absence of over-prediction problems, we additionally selected

a response for analysis, i.e., tumor necrosis factor-alpha (TNF-α),

which is not directly related to obesity. As can be seen from Table 2,

all these methods did not identify factors significantly related to

TNF-α, indicating that there is no over-prediction problem.

5 Discussion

Dimensionality reduction is a prevalent preprocessing step

in high dimensional microbiome analysis. In this paper, we

propose a new GLM-based zero-inflated generalized Poisson factor

analysis model to analyze high-dimensional microbiome count

data. This method explores the correlation between microbial taxa

and response variables, and focuses on selecting a few common

factors that summarize the majority of variable information,

thus one can mitigate the high dimensionality problem and the

computational expenses. The GZIGPFA model can simultaneously

consider the zero-inflation, over-dispersion, and high-dimensional

characteristics of microbial data. Meanwhile, the model directly

models absolute abundance data, avoiding the problem of

information loss during data conversion. We establish a link

function between generalized Poisson expectation and true zero

probability within the GLM framework, and perform parameter

estimation using the alternating maximum likelihood algorithm.

The rank of themodel was determined via cross-validationmethod.

In addition, we performed simulation studies under different

scenarios and compared the GZIGPFA method with existing

methods to validate the performance of the proposed method.

In the analysis of gut microbiome data, the proposed method

identified microorganisms significantly associated with obesity.

The novelty of the GZIGPFA method is reflected in

the combination of the ZIGP model and the factor analysis

model, which provides more possibilities for future microbial-

related analysis work. Furthermore, upon review of the existing

literature pertaining to microbiome data analysis, our proposed

approach represents the inaugural utilization of the zero-inflated

generalized Poisson model in microbial datasets, which expands

the methodological options of researchers for addressing complex

microbiome datasets. In addition tomicrobiome data, the proposed

method can be used for other count data such as micro RNA
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FIGURE 5

Comparison of predicted probability of zeros and real zero distribution in the dataset. (A) The heatmap of predicted zero probability. (B) The heatmap

of the binary real data value. Blue points are non-zero values and white points are zeros. The rows and columns of both heatmaps represent samples

and taxa, respectively.

data, single-cell RNA-seq data, etc. In addition, other suitable

models can be extended to the framework of this article to provide

more statistical methods for the analysis of high-dimensional

microbiome data in the future.

The work presented in this paper remains subject to certain

limitations. In this paper, a cross-validation method is used for

rank estimation, which is accompanied by a high computational

cost, although the results have high accuracy. In future work,

the process of rank estimation can be further optimized to

improve computational efficiency. In addition, the GZIGPFA

model proposed in this article can only extract common factors

associated with obesity phenotypes from numerous microbial taxa.

The meaning of common factors needs to be determined based

on existing prior information, and the interpretation of the actual

meaning of each factor is not absolute. We can further extend our

approach to provide a more comprehensive tool for the analysis of

microorganisms in the future. Finally, although the performance

of the log-PCA method in real data analysis closely resembles that
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TABLE 2 The P-values corresponding to di�erent factors and response variables in di�erent models.

Response Factor GZIGPFA ZIPFA log-PCA PSVDOS GOMMS

Factor 1 0.2874 0.3727 0.3551 0.5600 0.0810

Weight Factor 2 0.0004∗∗∗ 0.4077 0.0003∗∗∗ 0.0482∗ 0.9480

Factor 3 0.0281∗ 0.0008∗∗∗ 0.0493∗ 0.1706 0.0260∗

Factor 1 0.1243 0.2850 0.5406 0.8740 0.0684

LPS Factor 2 0.0171∗ 0.2530 0.0092∗∗ 0.1460 0.4635

Factor 3 0.7297 0.1050 0.7876 0.660 0.2885

Factor 1 0.4014 0.7030 0.8232 0.3290 0.0099∗∗

TC Factor 2 0.0076∗∗ 0.5972 0.0035∗∗ 0.1430 0.9905

Factor 3 0.7657 0.0504 0.5464 0.6070 0.1704

Factor 1 0.6075 0.0705 0.6760 0.7870 0.7837

TNF-α Factor 2 0.7743 0.0873 0.6760 0.4050 0.5351

Factor 3 0.9345 0.4159 0.5480 0.3520 0.2076

∗∗∗ , ∗∗ , and ∗ denote the significance level takes 0.001, 0.01, 0.05, respectively.

of our method, it employs a strategy of replacing zeros in the data

with pseudo counts. However, there is no consensus on how to

choose the pseudo count, and it has been shown that the choice of

pseudo count can affect the conclusions of a microbiome analysis

(Costea et al., 2014; Paulson et al., 2014). The gut microbiome data

that we used in real data analysis contains ∼45% zeros, which is

moderately zero-inflated. Perhaps the strategy of replacing zeros

has less impact on the results, which may be the main reason why

we did not show a clear advantage. Once a dataset shows a serious

zero-inflated trend, the log-PCA method may become unstable. In

the field of microbiology, it is common for microbiome data to be

severely zero-inflated (Paulson et al., 2013; Silverman et al., 2020).

Due to sharing restrictions on these data, we do not conduct a

practical demonstration in this article.
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