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Conservation tillage (CT) is an important agronomic measure that facilitates 
soil organic carbon (SOC) accumulation by reducing soil disturbance and plant 
residue mulching, thus increasing crop yields, improving soil fertility and achieving 
C neutrality. However, our understanding of the microbial mechanism underlying 
SOC fraction accumulation under different tillage practices is still lacking. Here, 
a 6-year in situ field experiment was carried out to explore the effects of CT and 
traditional tillage (CK) practices on SOC fractions in an eolian sandy soil. Compared 
with CK, CT increased the particulate OC (POC) content in the 0–30  cm soil 
layer and the mineral-associated OC (MAOC) content in the 0–20  cm soil layer. 
Moreover, tillage type and soil depth had significant influences on the bacterial, 
fungal and protistan community compositions and structures. The co-occurrence 
network was divided into 4 ecological modules, and module 1 exhibited significant 
correlations with the POC and MOC contents. After determining their topological 
roles, we identified the keystone taxa in the network. The results indicated that the 
most common bacterial taxa may result in SOC loss due to low C use efficiency, 
while specific fungal (Cephalotrichum) and protistan (Cercozoa) species could 
facilitate SOC fraction accumulation by promoting macroaggregate formation 
and predation. Therefore, the increase in keystone fungi and protists, as well as the 
reduction in bacteria, drove module 1 community function, which in turn promoted 
SOC sequestration under CT. These results strengthen our understanding of 
microbial functions in the accrual of SOC fractions, which contributes to the 
development of conservation agriculture on the Northeast China Plain.
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1 Introduction

Soils are the largest carbon (C) pool in the global terrestrial system and contain more than 
2,500 Gt of C (Banerjee et al., 2016). Global soil organic carbon (SOC) dynamics immensely 
influence soil productivity, greenhouse gas emissions and C neutrality (Tang et al., 2019; Duan 
et al., 2023). In agroecosystems, tillage practices are regarded as crucial agronomic regimes 
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that mediate SOC sequestration and depletion processes (Topa et al., 
2021). Traditional agricultural practices involve frequent tillage to 
accomplish achieve high crop productivity (Zhang et  al., 2019). 
However, high-intensity tillage not only decreases crop productivity 
but also leads to reduced soil fertility and sustainability and results in 
the loss of other agroecosystem services, causing soil erosion, water 
shortages or biodiversity decline (Raus et al., 2016). Hence, abundant 
attempts have been made to transition from traditional tillage to 
conservation tillage (CT) to increase the soil C stock of agroecosystems 
in recent years. In particular, CT practices, such as no-tillage or 
reduced-tillage, may minimize the degree and frequency of tillage 
passes and maintain an adequate soil surface covered with residues to 
reduce soil physical disturbance and increase the soil C sink capacity 
(Pearsons et al., 2023). Nevertheless, contrasting tillage practices cause 
changes in resource availability in the topsoil and subsoil, which leads 
to differences in SOC formation (Angers and Eriksen-Hamel, 2008). 
Therefore, elucidating the SOC sequestration mechanisms that occur 
under different tillage practices and at different soil depths is crucial 
for maintaining soil health and facilitating agroecosystem services.

Overall, the input of exogenous organic materials (i.e., manure and 
crop residues) is an essential prerequisite for SOC accumulation 
(Lehmann and Kleber, 2015). Many expert researchers have confirmed 
that the mechanisms underlying SOC accumulation are commonly 
attributed to physical protection by aggregates and chemical stabilization 
by soil minerals (Six et al., 2004). Correspondingly, semidecomposed 
exogenous large organic biopolymers are readily encapsulated by 
aggregates and form particulate organic carbon (POC); as biopolymers 
further decompose, the C monomers tend to be adsorbed by mineral 
surfaces and become mineral-associated organic carbon (MAOC) 
(Bastian et al., 2009; Herath et al., 2014). There is nearly a consensus 
regarding the disruption of topsoil aggregates due to frequent tillage, 
which leads to the loss of POC (Hewins et al., 2017). These conclusions 
also reflect the potential of using CT to increase SOC sequestration in 
agroecosystems. Several previous studies also suggested that traditional 
tillage practices involving straw return can transport crop residues to the 
subsoil, thus contributing to the accumulation of SOC in the subsoil to 
some extent (Zhang et al., 2013). This contradiction also illustrates the 
complexity of enhancing soil fertility through tillage practices. 
Achankeng and Cornelis (2023) found that climate, soil texture, rotation 
pattern, and crop type are all crucial factors to be considered under 
different tillage treatments in a meta-analysis, which increases the 
challenge for researchers in optimizing tillage practices. Therefore, to 
date, we  still lack a comprehensive understanding of the direct 
associations between tillage practices and SOC fractions.

Soil microorganisms play an important role in SOC formation 
(Cotrufo et al., 2013; Sarker et al., 2018). Generally, when plant residues 
are applied, soil animal- and meso-fauna-driven fragmentation 
constitute the first stage of straw degradation (Gessner et al., 2010). 
Subsequently, bacteria and fungi successively regulate further 
degradation processes due to changes in C and N availability in the 
substrate (Wang et  al., 2021). In the early stage of decomposition, 
adequate amounts of labile straw C and nitrogen can sustain bacterial 
proliferation (Huang et al., 2017). With continuous plant decomposition, 
the microbial community synchronously undergoes succession. Fungi 
may be the dominant decomposers due to their potent ability to utilize 
recalcitrant straw components (Clemmensen et al., 2015). Therefore, 
many scholars consider the ratio of bacteria to fungi to be an important 
indicator of the straw decomposition process (Li J. W. et al., 2020; Zhao 

et al., 2021). Moreover, microbial diversity and module community was 
the key drivers of SOC turnover. Previous study found that bacterial, 
fungal protistan richness was significantly correlated with carbon use 
efficiency, microbial biomass carbon, microbial respiration and growth 
rate, which changed the SOC turnover process (Ma et al., 2024). Soil 
microbial module community also played an important role in 
influencing SOC. Numerous studies have demonstrated that the core 
microbial module community was involved in maintaining the stability 
of soil microbial function, promoting soil nutrient cycling and SOC 
accumulation; while the keystone species were the core to achieve them 
(Shi et al., 2020; Jiao et al., 2022). Therefore, keystone taxa-driven the 
changes of microbial module communities and diversity are pivotal 
factors leading to SOC turnover. In particular, soil bacterial and fungal 
communities are extremely sensitive to tillage practices. Li Y. et  al. 
(2020) reported that, compared with traditional tillage, minimum tillage 
increases fungal biomass and bacterial diversity, which may further 
influence residue decomposition. However, as major members of the 
soil microbiome, protists drive plant residue decomposition, and 
microbial community regulation has rarely been included in 
microbiome analyses associated with SOC fraction turnover (Geisen 
and Bonkowski, 2018). Specific protozoan taxa participate in aggregate 
formation and SOC turnover. According to the report of Pellegrino et al. 
(2021), CT increased the abundance of Alveolata and Cercozoa, which 
contributed to SOC accumulation by reshaping soil aggregates. 
Additionally, the top-down control of protists in the soil microfood web 
demonstrated great potential for influencing SOC turnover (Gao et al., 
2019). Therefore, a thorough empirical understanding of the microbial 
roles (including bacterial, fungal and protist roles) in SOC fraction 
sequestration under different tillage practices has not been achieved.

To bridge these gaps, eolian sandy soil located in the Northeast 
Plain, the largest grain-producing area in China, was selected as the 
research object. In recent years, the Northeast Plain has been facing 
continuous depletion of SOC stocks since the 1980s, when straw 
return was widely implemented (Wang et  al., 2018). Therefore, 
we conducted a 5-year in situ field experiment to reveal the effect of 
tillage practices on the microbial community, SOC fraction and maize 
yield at different soil depths. The soil samples were collected from the 
0–50 cm soil profile under CT and traditional tillage practices. In this 
study, we  determined the SOC fraction content and microbial 
community and attempted to explain the potential relationships 
between them. We hypothesized that (1) the SOC fraction content and 
microbial traits exhibit distinct responses to traditional and CT 
practices at different depths and that (2) specific microbial taxa may 
be involved in the turnover of SOC fractions.

2 Materials and methods

2.1 Experimental site

The experimental field was located in Dulbert Mongolian 
Autonomous County (46°54′N, 124°26′E), Daqing city, Heilongjiang 
Province, which has a semiarid monsoon continental climate. The mean 
annual precipitation and temperature are 400 mm and 5.6°C, 
respectively. According to the USDA soil taxonomy, the soils in the area 
are carbonate meadow soils. The basic nutrient contents of the soil before 
the experiment were as follows: 0.53 g kg−1 total nitrogen; 60.95 mg kg−1 
alkali-hydrolyzable nitrogen; 60.22 mg kg−1 available phosphorus; 
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44.51 mg kg−1 available potassium; and 9.52 g kg−1 SOC with a pH of 5.56. 
The cropping system used was single spring maize (Zea mays L.).

2.2 Field trial design and soil sampling

The experimental trial was set up in 2017 in accordance with a 
randomized complete block design with three replicates. Each field 
plot was covering an area of 64 m2 (4 m × 16 m). Before the experiment, 
all the plots were treated with N-P-K fertilizers, and straw was 
removed via shallow tillage to 25 cm. Traditional tillage (CK): the plots 
were plowed with large machinery, and a five-share turning plow tilled 
the soil to 25 cm after harvest at October (amount of maize stover 
return about 7,200 kg ha−1); and CT: no-tillage with 100% straw mulch 
after harvest at October (amount of maize stover mulch about 
7,600 kg ha−1). A straw crusher was used to crush the straw into 
fragments with lengths less than 10 cm before mulching. Except for 
the field surface drilling of maize in October, the no-tillage plots 
remained undisturbed, and maize straw was evenly distributed over 
the field surface after harvest every year. Chemical fertilizers were 
applied in May, and the N-P2O5-K2O application rates ranged from 
180–115–75 kg hm−2. All the other normal management practices 
were consistent between the treatments during the experiment.

Soil profiles were excavated at a depth of 50 cm in October 2022 in 
each replicate plot. Soil samples were collected at depths of 0–10, 
10–20, 20–30, 30–40, and 40–50 cm. Three soil samples were collected 
from each plot. The three soil samples were placed into the same 
sterile plastic bag and mixed to create one composite sample. All the 
samples were immediately transported to the laboratory in an 
incubator with ice packs. Each soil sample was divided into two parts: 
one part was stored at −80°C for DNA extraction, and the remaining 
part was air-dried for use in the additional chemical analyses. The 
basic chemical properties of the soils under different tillage practices 
and at different depths in 2022 are shown in Supplementary Figure S1.

2.3 Basic soil properties, SOC fractionation, 
and soil aggregate isolation

The basic chemical properties of the soil were measured using the 
method described by Lu (2000). The soil pH was measured at a 1:2.5 
soil: water ratio for 30 min. The SOC concentration was determined 
using K2Cr2O7 digestion, and total nitrogen was determined by the 
Kjeldahl method. Available phosphorus and potassium were 
determined using molybdenum blue colorimetric and flame 
photometry methods, respectively.

SOC fractionation was determined using a method described by 
Yu et al. (2017). First, the SOC was further fractionated into POC and 
MAOC. Generally, 5.0 g (dry weight) of soil was dispersed by adding 
30 mL of 0.5% sodium hexametaphosphate solution and centrifuging 
at 200 r min−1 for 18 h. Thereafter, the POC and MAOC fractions were 
obtained by passing the samples through 53-μm filters. All the 
fractions were dried (50°C), and POC and MAOC were measured 
using K2Cr2O7 digestion.

The wet sieving method was used to separate the water-stable 
aggregates (Six et al., 2002). First, the soil samples were gently broken 
apart into small pieces along natural break points, and the fragmented 
samples were subsequently placed on top of a 0.25-mm sieve and 

soaked in deionized water for 5 min. The samples were subsequently 
separated at an amplitude of 3 cm and a frequency of 30 cycles per min 
for a duration of 2 min by a wet-sieving apparatus. Afterward, the 
aggregate subsamples above each sieve were obtained as follows: 
macroaggregates (>0.25 mm), microaggregates (0.053–0.25 mm), and 
silt and clay fractions (<0.053 mm). After wet sieving, all the aggregates 
were immediately oven-dried at 60°C and weighed.

The mean weight diameter (MWD) was used to describe the 
aggregate stability and was calculated by the following formula:

 MWD Xi Wi� � �

where Xi represents the average diameter of each aggregate size 
and Wi represents the proportion of each aggregate weight relative to 
the total sample weight after wet sieving. The upper limit of the 
macroaggregate diameter was 2 mm.

2.4 DNA extraction and 16S, ITS and 18S 
amplification and sequencing

Total DNA was extracted from 0.5 g of soil using a Fast DNA Spin 
Kit for Soil (MP Biomedicals, CA, United States) in accordance with 
the manufacturer’s instructions. Each treatment contained three 
replicates. The extracted DNA samples were stored at −80°C for 
molecular analysis.

High-throughput sequencing was performed using the Illumina 
MiSeq sequencing platform (Illumina, Inc.). Both the forward and 
reverse primers were tagged with adapter and linker sequences, and 
8-bp barcode oligonucleotides were added to distinguish the 
amplicons derived from different soil samples.

The primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 
907R (5′-CCGTCAATTCMTTTRAGTTT-3′) were chosen to amplify 
the 16S rRNA genes in the V4–V5 hypervariable region. PCR was 
conducted in a 50-μL reaction mixture containing 27 μL of ddH2O, 
2 μL (5 μM) of each forward/reverse primer, 2.5 μL (10 ng) of template 
DNA, 5 μL (2.5 mM) of deoxynucleoside triphosphates, 10 μL of 5× 
Fastpfu buffer, 0.5 μL of bovine serum albumin, and 1 μL of TransStart 
Fastpfu polymerase (TransGen, Beijing, China). The PCR procedure 
was 94°C for 5 min; 30 cycles of 94°C for 30 s, 52°C for 30 s and 72°C 
for 30 s, followed by 72°C for 10 min (Biddle et al., 2008).

The fungal ITS1 region was amplified using the primer pair ITS1F 
(CTTGGTCATTTAGAGGAAGTAA)/ITS2 
(GCTGCGTTCTTCATCGATGC). The 50-μL reaction mixture 
contained 1 μL (30 ng) of DNA, 4 μL (1 μM) each of forward/reverse 
primer, 25 μL of PCR Master Mix, and 16 μL of ddH2O. PCR 
amplification was conducted at 98°C for 3 min, followed by 30 cycles 
of 98°C for 45 s, 55°C for 45 s, and 72°C for 45 s, with a final extension 
at 72°C for 7 min (Ghannoum et al., 2010).

The eukaryotic V4 region was amplified using the primer pair 
V4_1f (CCAGCASCYGCGGTAATWCC)/TAReukREV3 (ACTTTCG 
TTCTTGATYRA). PCR was performed in a 20 μL volume consisting 
of 4 μL of 5× reaction buffer, 2 μL of dNTPs (2.5 mM), 0.8 μL of each 
primer (10 μM), 0.4 μL of FastPfu Polymerase, 10 ng of DNA template, 
and ddH2O to reach the final volume. PCR amplification was 
conducted at 95°C for 5 min, followed by 30 cycles of 95°C for 30 s, 
55°C for 30 s, and 72°C for 45 s, with a final extension at 72°C for 
10 min. To construct the protistan amplicon sequence variant (ASV) 
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table, we removed sequences belonging to Rhodophyta, Streptophyta, 
Metazoa, and Fungi (Stoeck et al., 2010).

Raw Illumina amplicon reads were processed using the QIIME2 
Core 2019.7 distribution. The Divisive Amplicon Denoising Algorithm 
(DADA2) pipeline implemented in the QIIME 2 platform was used to 
conduct sequence quality control, which included quality filtering 
reads, denoising reads, merging forward and reverse reads, removing 
chimeric reads, and assigning reads to ASVs. The Silva 138 Bacterial 
16S rRNA gene database, the UNITE Fungal ITS database, and the 
Protist Ribosomal Reference (PR2) database v4.14.0 were used to 
classify the representative sequences of ASVs (Ghannoum et  al., 
2010). All singletons and nonfungal ASVs were removed, and each 
sample was rarefied to 30,000, 36,000, and 44,000 sequences for the 
bacterial, fungal and eukaryotic diversity analysis. The alpha diversity 
and Bray–Curtis distances for principal coordinate analysis of the soil 
microbial community were calculated after all the samples were 
rarefied to the same sequencing depth.

2.5 Statistical analysis

Crop yield and soil biochemical and other relevant properties 
under different tillage practices were subjected to the chi-square test 
for independence of variance. Significant differences were determined 
by one-way analysis of variance (ANOVA) based on the post hoc 
Tukey test at the 5% level. Prior to ANOVA, the normality and 
homogeneity of variance were tested by the Kolmogorov–Smirnov test 
and Levene’s test, respectively. If normality was not met, log or square-
root transformation was carried out. One-way ANOVA was performed 
using SPSS 21.0 (SPSS, Inc., Chicago, IL, United States).

Principal component analysis (PCA) was used to determine and 
evaluate the changes in the community structure of the soil 
microbiome via the R (ver 4.2.3) package “vegan.” To characterize the 
patterns of soil microbial interactions, we constructed a co-occurrence 
network with the “igraph” and “WGCNA” R packages. We constructed 
microbial networks using bacteria, fungi and protists with relative 
abundances greater than 0.01%; screened nodes with Pearson’s 
correlations greater than 0.6 and p < 0.05; performed modular analysis 
based on the connectivity between nodes; visualized the network 
using Gephi (ver. 0.9.2); and calculated information on network 
topological features. The within-cluster connectivity (Zi) and among-
cluster connectivity (Pi) of different clusters were calculated using the 
R packages “reshape2,” “igraph,” “ggrepel,” “dplyr,” and “Rcpp” and 
filtered for peripherals (Zi  ≤ 2.5, Pi  ≤ 0.62), connectors (Zi  ≤ 2.5, 
Pi > 0.62), cluster hubs (Zi > 2.5, Pi ≤ 0.62), and network hubs (Zi > 2.5, 
Pi > 0.62) (Deng et al., 2012). ASVs in module hubs, connectors and 
network hubs may be  regarded as the microbial keystone taxa of 
network systems (Deng et al., 2012). An interactive platform “Gephi” 
(default parameters set) was used to identify the modules (ecological 
clusters) of soil taxa strongly interacting with each other.

Linear regressions between SOC fractions and the microbial 
community modules were conducted to determine the relationships 
between microbial communities and SOC fraction contents using 
Origin 2018. The microbial module community variation data were 
quantified by the PCA 1 axis. Heatmaps were constructed to reveal the 
potential associations between keystone taxa richness and SOC 
fraction content via the “heatmap.2” function in the R package 
“ggplots.”

3 Results

3.1 Crop yields, aggregate size 
distributions, and SOC fractions

Overall, CT had a positive effect on crop yield and SOC fraction 
content. After 5 consecutive years of different tillage practices, the 
maize yield, aggregate stability and SOC fraction content changed 
significantly (Supplementary Figures S2, S3); Figure 1). However, no 
significant changes were found before 2021. Compared with those in 
CK, the maize yields in CT significantly increased in 2021 and 2022 
(Supplementary Figure S2, p < 0.05).

Different tillage practices changed the aggregate size distribution 
and stability (Supplementary Figure S3). CT significantly increased 
the proportion of macroaggregates at the 0–30 cm soil depth (p < 0.05) 
and decreased the proportion of microaggregates at the 0–20 cm soil 
depth (p < 0.05). However, no changes were observed in the silt and 
clay fractions under the different treatments. Additionally, the MWD 
was greater under CT than CK at 0–30 cm depth, while there were no 
significant changes at 40–50 cm depth.

SOC, POC, and MAOC contents were also affected by tillage 
practice (Figure 1). Generally, CT significantly increased the SOC, 
POC, and MAOC contents in the topsoil (0–20 cm layer, p < 0.05, 
except for MAOC in the 10–20 cm layer). Moreover, the POC content 
was significantly greater under CT than CK. No significant changes 
were observed in the 30–50 cm layer under the different 
tillage practices.

3.2 Microbial community, co-occurrence 
network, and keystone taxa

PCA was used to evaluate the changes in the soil microbial 
community under the different tillage practices 
(Supplementary Figures S4, S5). The results indicated that the soil 
communities changed significantly under the different tillage practices 
and at different soil depths (except for tillage practices on the protistan 
community). Generally, the effect of soil depth on microbial 
communities was observed mainly along the PCA 1 axis, while the 
effect of tillage practices on microbial communities was observed 
mainly along the PCA 2 axis.

Although soil microbial community compositions were changed 
after different tillage practices and depths, Proteobacteria, 
Acidobacteriota, Actinobacteriota, and Gemmatimonadota were the 
main phyla of bacteria, contributing more than 60% of the total 
bacterial abundance (Supplementary Figure S6A). Generally, with the 
increase of depth, the relative abundance of Proteobacteria decreased 
gradually. Ascmycota, Basidiomycota, and Mortierellomycota were 
the main phyla of fungi, contributing almost 80% of the total fungal 
abundance (Supplementary Figure S6B); while protist were composed 
mainly of Intramacronucleata, Cercozoa, Chlorophyta, and 
Apicomplexa (Supplementary Figure S6C).

A co-occurrence network was constructed to reveal the 
connections between specific microbial species (Figure 2). We found 
four dominant ecological modules (Figure 2A). Modules 1, 2, 3, and 
4 contained 225, 182, 160, and 124 nodes, respectively. Among the 
four modules, protists and fungi accounted for the greatest 
proportion of microbial species in module 1, while bacteria accounted 
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for the highest proportion of microbial species in module 3 
(Figure 2B). Additionally, the percentage of intraspecies edges was 
greater in module 3 than in the other modules, while module 1 
contained more interspecies edges than did the other modules 
(Figure 2C).

ZP plots were constructed to identify the topological roles of each 
node in the co-occurrence network. A total of 30 microbial taxa 
(including 13 bacteria, 11 fungi and 6 protists) were detected as 
keystone species (Figure  3). Nineteen keystone taxa belonged to 
module 1, and modules 2 and 3 each contained 2 keystone taxa. The 
information for the selected keystone taxa is displayed in 

Supplementary Table S1. The bacterial keystone species mainly 
belonged to Proteobacteria (7 taxa), the fungal keystone species 
mainly belonged to Ascomycota (6 taxa), and the protist keystone 
species mainly belonged to Cercozoa (2 taxa).

3.3 Relationships between microbial traits 
and SOC fractions

To determine the potential relationships between the microbial 
communities of specific modules and SOC fractions, we constructed 

FIGURE 1

Soil organic carbon (A), particulate organic carbon (B), and mineral-associated organic carbon (C) contents at various depths under different soil tillage 
treatments. *p  <  0.05; CT, conservation tillage; CK, traditional tillage.

FIGURE 2

Co-occurrence network analysis of bacterial, fungal and protistan ASVs under different tillage practices and at different soil depths. (A) Multitrophic 
network including multiple ecological modules. The colors of the nodes represent different ecological modules; the percentages of bacterial, fungal 
and protistan ASVs (B); and the intraspecies and interspecies relationships (C) in each module.
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correlations between the microbial community module connections 
and the SOC fractions. Figure 4 shows that there were significant 
correlations between microbial module communities and POC 
content (R2 = 0.74 for module 1 and R2 = 0.68 for module 2) and 
MAOC content (R2 = 0.51 for module 1 and R2 = 0.44 for module 2). 
However, no significant associations were detected between the SOC 
fractions and the other microbial module communities.

Heatmaps revealed close associations between the richness of 
keystone taxa and SOC fractions (Figure 5). Overall, the bacterial 
richness demonstrated significant negative correlations with the POC 
and MAOC contents (except for BASV 147) (Figure 5A). There were 
significant positive correlations between FASV945 richness and SOC 
fraction contents (POC and MAOC), as well as between FASV945 
richness and MAOC content. FASV95 richness was negatively 
correlated with MAOC content (Figure 5B). Moreover, the richness of 
PASV45 and PASV17 was positively correlated with the POC content, 
and the richness of PASV45 was also positively correlated with the 
MAOC content (Figure 5C).

In the present study, we  selected keystone species that were 
significantly associated with the SOC fraction content for further 
analysis. The richness of keystone taxa was sensitive to the different 
tillage practices (Supplementary Figure S7). Compared with CT, CK 
increased the richness of bacterial keystone taxa by 21.51–520.75%. 
The richness of BASV8256 decreased by 32.15% under CK compared 
with that under CT (Supplementary Figure S7A). Compared with CK, 
CT increased the richness of FASV945 and FASV95 by 58.81 and 
42.81%, respectively, and decreased the richness of FASV946 by 
82.61%. In addition, compared to that under CK, PASV17 and 
PASV45 richness increased by 97.79 and 12.97%, respectively, under 
CT (Supplementary Figure S7B).

4 Discussion

CT has been considered a sustainable technique for properly 
managing soil and hence maintaining agroecosystem services by 
minimizing tillage operations to effectively avoid water infiltration 

and erosion (Müller et al., 2009). In this study, we compared crop 
yields, SOC fraction contents and microbial traits under different 
tillage practices and investigated the relationships between SOC 
fractions and microbial functions. The results of this research 
strengthen our understanding of SOC accumulation under different 
tillage practices on the Northeast China Plain.

4.1 Response of SOC fractions and maize 
yields to different tillage practices

The effect of tillage practices on crop yields has been studied 
frequently; however, no consistent conclusions have been drawn. It 
was reported that no- or minimum-tillage practices led to a 0–30% 
reduction in yields in Europe, which was affected by crop type, tillage 
technique, soil texture and crop rotation (Alaoui et al., 2020). Another 
study revealed that shallow tillage (8 cm strip depth) achieved the 
greatest yields (Licht and Al-Kaisi, 2005). This is mainly because 
shallow tillage can be a neutral solution to the problem of late seed 
emergence due to no-tillage by reducing soil disturbance (Araya et al., 
2021). Notably, based on a 17-year experiment, CT practices increased 
maize yields by 12.2 to 20.1% (Ren et al., 2024), which was consistent 
with our results (Supplementary Figure S2). This can be explained 
partly by the fact that the CT method is generally implemented with 
straw residue left on topsoil while minimizing soil disturbance, which 
favors soil nutrient accumulation, moisture retention and temperature 
increase, resulting in faster seed emergence (Licht and Al-Kaisi, 2005). 
In summary, although optimizing tillage practices requires 
consideration of factors such as crop rotation and soil texture, CT 
increases crop yield in maize monoculture systems in the eolian sandy 
soil of the Northeast China Plain.

SOC is the key to soil fertility and is sensitive to changes in tillage 
practices (Figure 1). Lehmann and Kleber (2015) proposed a soil 
continuum model indicating that the input of exogenous organic 
materials (such as plant residues) is a prerequisite for SOC 
accumulation. Thus, the finding that CT can improve topsoil OC 
fractions is no surprise. However, the POC and MOC contents were 

FIGURE 3

ZP plot showing the distribution of ASVs based on their module-based topological roles. The topological role of each ASV was determined according 
to the scatter plot of within-module connectivity (Z) and among-module connectivity (P).
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not consistent. No-tillage practices improved the POC content in the 
0–30 cm soil layer. Undecomposed and semidecomposed plant 
residues are the “core” of POC, which is encapsulated by 

macroaggregates (Samson et al., 2020). Therefore, the formation of 
macroaggregates and the accumulation of POC are generally 
complementary. The data on the distribution of aggregate sizes in the 

FIGURE 4

Links between the soil community of each module within the co-occurrence network and the SOC fraction content. The links between soil microbial 
community of module 1-4 with particulate organic carbon were sown in A-D; the links between soil microbial community of module 1-4 with mineral-
associated organic carbon were sown in E-H.
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present study also validate this view (Supplementary Figure S3). An 
increased proportion of macroaggregates provides physical protection 
for POC and thus favors POC accumulation. CK practices disturb the 
physical structure at 0–25 cm soil depths through frequent plowing, 
thus destroying the formation of macroaggregate structures (Jat 
et al., 2019).

When the large biopolymers in the residues further 
decomposed, the small biopolymers and C monomers (such as root 
exudates and microbial necromass) can be  adsorbed to the soil 
mineral surface and become MAOC (Lehmann and Kleber, 2015). 
In addition to straw return, microbial and maize biomass are 
important factors that cannot be  ignored. As a supplementary 
exogenous C source in the soil, straw inevitably increases MAOC 
content after further degradation of residues (Vogel et al., 2014). 
Posteriorly, CT decreases the soil structure distribution and 
increases the soil density, which promotes the growth of crop roots 
to a certain extent (Shi et al., 2012). In addition, the crop yield data 
imply a well-developed root system that has secreted more organic 
matter (Van den Putte et  al., 2010). With respect to microbial 
biomass, minimum tillage and residue retention increase the soil 
microbial population size due to the adequate energy supply and 
appropriate stoichiometry and result in MAOC sequestration in 
topsoil under CT practices (Ren et  al., 2024). In summary, soil 
microbiomes play an irreplaceable role in straw degradation and 
SOC turnover. Therefore, revealing the microbial mechanisms 
responsible for SOC fraction accumulation under different tillage 
practices is crucial for improving soil fertility.

4.2 Microbial keystone species-driven SOC 
fraction sequestration by regulating 
specific module community functions

CT changed the soil microbial diversity and community, which 
subsequently affected SOC formation and accumulation. We found 
that soil depth affected the soil bacterial, fungal and protistan 
communities much more than did tillage practice 
(Supplementary Figure S4). This is partly because the soil layer has the 
greatest influence on the changes in nutrient accessibility and 
availability rather than tillage practices (Kong et al., 2011). As soil 
depth increases, nutrient pools decrease, and mineral protection 
increases, leading to increased difficulty in nutrient acquisition by soil 
microorganisms (Modak et al., 2019). As a result, oligotrophs may 
become the dominant species in the community.

Microbial communities were classified into different functional 
modules by identifying soil taxa strongly interacting with each other 
(Figure  2), which can indicate important ecological processes, 
different niches, and habitat preferences. Each module in a network is 
considered a functional unit that conducts an identifiable task (Chen 
et al., 2019). In the present study, strong relationships were observed 
between the SOC fractions and the microbial community in modules 
1 and 2, which indicated the potential function of SOC turnover 
(Figure 4). A previous study demonstrated that microbial keystone 
species have great explanatory power in terms of network (module) 
structure and function (Delgado-Baquerizo et al., 2018). Thus, it is 

FIGURE 5

Relationships of SOC fraction contents with the richness of bacterial (A), fungal (B), and protistan (C) keystone species.
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necessary to explore the function of keystone species within modules 
1 and 2. However, more than two-thirds of the identified keystone 
species belong to module 1 communities (19/30), while only two 
keystone species (2/30) belong to module 2 communities 
(Supplementary Table S1). Therefore, it is more meaningful to study 
the function of keystone species-driven module communities on SOC 
turnover in module 1 community.

Microbial keystone taxa also exhibited significant correlations 
with SOC fractions (Figure 5). Among the bacteria, Rhizobiales_
Incertae_Sedis (BASV7693) and Reyranellaceae (BASV11161) 
within module 1 were identified as Proteobacteria, which 
encompasses typical copiotrophs with low C use efficiency that 
leads to straw C loss (Dove et  al., 2021). A previous study 
demonstrated that Gaiellaceae (BASV7998) richness is recognized 
as an indicator of the carbon-to-nitrogen ratio due to its ability to 
utilize labile C (Duan et al., 2021). Therefore, the increase in the 
above bacterial taxa indicated negative effects on straw-derived OC 
accumulation. Moreover, only the Sphingomonadaceae richness 
exhibited a positive association with the POC and MAOC contents. 
This was likely because Sphingomonadaceae can consume various 
C sources and become major exopolysaccharide contributors, 
which provide a source for MAOC formation (Lan et al., 2022). 
Compared with bacteria, fungi generally exhibit greater C use 
efficiency and straw decomposition ability (Clemmensen et al., 
2015). The richness of Cephalotrichum (FASV945) and 
Herpotrichiellaceae (FASV946) in module 1 was conducive to POC 
and MAOC sequestration. As typical saprophytic fungi, 
Cephalotrichum and Herpotrichiellaceae are often considered to 
play roles in straw degradation, pathogen control, and crop growth 
promotion and are considered important indicators of soil health 
(Zhang et al., 2022). Zhang et  al. (2023) indicated that 
Cephalotrichum was enriched after straw addition and promoted 
straw decomposition and SOC accumulation in saline-alkaline 
soils. Most Cephalotrichum species are known for their 
saprotrophic function in decomposing plant materials 
(Woudenberg et al., 2017), corresponding with our results that the 
Cephalotrichum played a dominant role in POC and MAOC 
sequestration. In addition, higher abundance of Cephalotrichum 
led to the higher fungal diversity (Wang et  al., 2023). Jin et  al. 
(2022) found that Cephalotrichum exerted significant inhibitory 
effects on several pathogenic bacteria. Due to these strong abilities, 
Cephalotrichum abundance was also considered as the biomarker 
of soil health. Therefore, we speculated that the increase in the 
abundances of Cephalotrichum can accelerate straw degradation 
and that the early and late products favor the formation of POC 
and MAOC, respectively.

In addition, protists can influence SOC accumulation through 
direct or indirect effects (Pellegrino et al., 2021). Our results revealed 
that Cercozoa (PASV45 in module 1) may be a possible participant 
that was significantly positively correlated with POC (p < 0.05) and 
MAOC (p < 0.001). Pellegrino et al. (2021) reported that CT practices 
increase the abundance of Cercozoa partly via several abiotic factors, 
such as soil moisture, clay content and N availability. As expected, 
Cercozoa are important consumers of straw residues, which promotes 
the fragmentation of straw to facilitate further decomposition and is 
a prerequisite for organic carbon accumulation (Gessner et al., 2010). 
These authors also indicated that Cercozoa was the keystone taxon in 
macroaggregates and was positively correlated with SOC by promoting 

residue decomposition (Delgado-Baquerizo et al., 2020). Moreover, 
Cercozoa was also thought to have been an important driving force in 
the formation of macroaggregates by reshaping the pore sizes in the 
soil (Berisso et  al., 2012). Therefore, according to the theory of 
interaction between SOC and aggregate structure, Cercozoa-driven 
straw fragments can be encapsulated by aggregates and become the 
core of aggregate formation. The formation of aggregates provides 
physical protection for POC, which is conducive to POC 
accumulation. This conclusion is also consistent with previous reports 
that Cercozoa are crucial microorganisms in macroaggregate taking 
part to long-term sequestration and storage of SOC (Pellegrino et al., 
2021). Another study indicated that Cercozoa species exhibited the 
highest numbers of links with bacteria and fungi through the 
construction of co-occurrence networks, which implied that they were 
potentially vital to soil food webs (microbiome predation) (Kou et al., 
2020). Cercozoa are phagotrophs that may consume Acidobacteria, 
Proteobacteria, and Ascomycota and consequently increase microbe-
derived C. Furthermore, Ma et al. (2024) confirmed that protozoa can 
regulate microbial carbon use efficiency and SOC formation by 
regulating fungal, bacterial and keystone module communities 
through structural equation model analysis. Among these factors, the 
Cercozoa-driven protozoan community was the most influential 
factor. Accordingly, Cercozoa mediated POC and MAOC 
accumulation, mainly through macroaggregate formation and 
microbial necromass supply.

After comparing the richness of the selected keystone species, our 
results showed that C-accumulating microbes were enriched under 
CT. Specifically, compared with CK, CT decreased the abundances of 
most keystone bacterial taxa and increased the abundances of specific 
fungal and protistan species in module 1 of the network, which 
promoted the sequestration of SOC fractions by straw degradation, 
aggregate formation and predation effects. As a consequence, soil 
bacteria, fungi and protistan taxa all participate in SOC turnover 
under different tillage practices, while the appointed keystone species-
driven community of module 1 facilitated POC and MOC 
accumulation under CT.

5 Conclusion

In this study, we demonstrated the associations between microbial 
keystone taxa and SOC fractions under different tillage practices. 
Compared with CK, continuous 6-year CT significantly increased 
maize yields, aggregate stability, and POC (0–30 cm) and MAOC 
(0–20 cm) contents. Tillage practice and soil depth both influence 
bacterial, fungal and protistan communities, which might change the 
turnover of SOC fractions. The co-occurrence network indicated that 
the connectivity of module 1 was significantly related to POC and 
MAOC contents CT increased the richness of specific fungal 
(Cephalotrichum) and protistan (Cercozoa) species and thus 
promoted SOC fraction accumulation through straw degradation, 
macroaggregate formation and predation effects. The selected 
bacterial taxa were enriched in the CK treatment and resulted in SOC 
loss due to low C use efficiency. Taken together, our results revealed 
that stimulating the function of keystone taxa can drive the function 
of the module 1 community in SOC accumulation under CT practices, 
which is beneficial for maintaining soil fertility and productivity in 
eolian sandy soils on the Northeast China Plain.
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