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Methodologies for source attribution (SA) of foodborne illnesses comprise a 
rapidly expanding suite of techniques for estimating the most important source 
or sources of human infection. Recently, the increasing availability of whole 
genome sequencing (WGS) data for a wide range of bacterial strains has led to the 
development of novel SA methods. These techniques utilize the unique features 
of bacterial genomes adapted to different host types and hence offer increased 
resolution of the outputs. Comparative studies of different SA techniques 
reliant on WGS data are currently lacking. Here, we  critically assessed and 
compared the outputs of three SA methods: a supervised classification random 
forest machine learning algorithm (RandomForest), an Accessory genes-
Based Source Attribution method (AB_SA), and a Bayesian frequency matching 
method (Bayesian). Each technique was applied to the WGS data of a panel of 
902 reservoir host and human monophasic and biphasic Salmonella enterica 
subsp. enterica serovar Typhimurium isolates sampled in the British Isles (BI) 
and Denmark from 2012 to 2016. Additionally, for RandomForest and Bayesian, 
we explored whether utilization of accessory genome features as model inputs 
improved attribution accuracy of these methods over using the core genome 
derived features only. Results indicated that this was the case for RandomForest, 
but for Bayesian the overall attribution estimates varied little regardless of the 
inclusion or not of the accessory genome features. All three methods attributed 
the vast majority of human isolates to the Pigs primary source class, which was 
expected given the known high relative prevalence rates in pigs, and hence 
routes of infection into the human population, of monophasic and biphasic S. 
Typhimurium in the BI and Denmark. The accuracy of AB_SA was lower than of 
RandomForest when attributing the primary source classes to the 120 animal 
test set isolates with known primary sources. A major advantage of both AB_SA 
and Bayesian was a much faster execution time as compared to RandomForest. 
Overall, the SA method comparison presented in this study describes the 
strengths and weaknesses of each of the three methods applied to attributing 
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potential monophasic and biphasic S. Typhimurium animal sources to human 
infections that could be valuable when deciding which SA methodology would 
be  the most applicable to foodborne disease outbreak scenarios involving 
monophasic and biphasic S. Typhimurium.

KEYWORDS

source attribution, monophasic and biphasic Salmonella Typhimurium, machine 
learning, random forest, Bayesian modeling, Accessory genes-Based Source 
Attribution, bacterial genomics

1 Introduction

Salmonellosis is an infection of the gastrointestinal tract that can 
result in diarrhea, fever, abdominal pains, and occasionally death, and 
is caused by the enteric bacteria of the genus Salmonella. It is the 
leading bacterial foodborne enteric disease in the US (Andino and 
Hanning, 2015) and second most common in the EU after 
campylobacteriosis (Schirone and Visciano, 2021). Worldwide, it has 
been estimated that there are 93.8 million cases of salmonellosis a year 
and 155,000 deaths (Majowicz et al., 2010). Monophasic and biphasic 
Salmonella enterica subsp. enterica serovar Typhimurium and 
S. Enteritidis were the most commonly reported disease-causing 
serovars in human patients in Europe in 2021 (European Food Safety 
Authority (EFSA) and European Centre for Disease Prevention and 
Control (ECDC), 2022). In England in 2019, monophasic and biphasic 
S. Typhimurium and S. Enteritidis were responsible for approximately 
50% of non-typhoidal Salmonella infections in humans (UKHSA, 
2021). Worldwide, World Health Organization (WHO) reported 
monophasic and biphasic S. Typhimurium and S. Enteritidis as the 
two most frequently reported serovars isolated in clinical practice 
(Fàbrega and Vila, 2013).

Monophasic and biphasic S. Typhimurium is a generalist serovar 
capable of infecting a wide range of primary hosts (Ferrari et al., 2019) 
that act as asymptomatic reservoirs where the pathogen lives and 
multiplies but does not necessarily cause a disease. The full extent of 
potential primary hosts of this serovar is currently unknown 
(Lupolova et  al., 2017). Transmission of Salmonella leading to 
non-typhoidal salmonellosis could be direct, from the primary animal 
host, or indirect, from the food chain. Typically, Salmonella infections 
are due to the consumption of food items of animal origin (meat, 
diary, or eggs) from infected but asymptomatic primary animal hosts 
or consumption of fruits and vegetables contaminated with Salmonella 
due to the feces of an infected primary animal host (or, more rarely, 
human host) fouling the water used to wash the produce (Hald, 2013). 
Close contact with infected pets (dogs, cats, or horses) and cross-
contamination at the different stages of the food production and 
distribution chain, such as at an abattoir, food processing plant, or 
during transport and distribution, are indirect sources of human 
infections (Stein and Chirilã, 2017). Additionally, Salmonella has been 
shown to survive in farm environments for extended periods of time 
and has also been isolated from animal feed and feed ingredients 
(Andino and Hanning, 2015).

Given that salmonellosis infections caused by monophasic and 
biphasic S. Typhimurium represent a high disease burden in both the 
developed and developing countries, it is vital to accurately determine 

the primary source of infection to discern and disrupt the routes of 
transmission for both sporadic cases and outbreaks. Identifying the 
primary source of infection or outbreak of salmonellosis, or of 
foodborne diseases in general, can often be  difficult due to the 
potentially highly complex foodborne disease transmission pathways. 
This can be  because not all infected individuals display disease 
symptoms, or because patients are often not able to say with any 
degree of certainty that consumption of a specific food product 
resulted in contraction of the disease (Stein and Chirilã, 2017). Source 
attribution (SA) is a methodology that partitions the human disease 
burden of a (foodborne) infection to a specific source(s), in particular 
the primary host, but also the consumed food (i.e., the vehicle of 
infection) (Pires et al., 2009). For every clinical case this approach 
strives to assess and quantify the importance of each of the different 
potential primary sources.

Source attribution is an actively developing field, and some of the 
recent methodologies have been extensively reviewed in Pires et al. 
(2009), Mughini-Gras et al. (2018), and Mughini-Gras et al. (2019), 
including applying these methods for human salmonellosis (Pires 
et al., 2014). The increasing availability of whole genome sequencing 
(WGS) data for a wide range of bacterial strains calls for the 
development of SA methods that can effectively utilize the genomic 
data of isolates obtained from the potential primary hosts (i.e., 
sources) and human salmonellosis patients as inputs into SA models 
(Franz et al., 2016). In a review of integrating WGS data into SA and 
risk assessment of foodborne bacterial pathogens, Pasquali and 
colleagues concluded that the application of WGS data provides 
improved, more specific results that can be used in decision making 
(Pasquali et  al., 2021). Recent additions to this field include 
RandomForest: supervised classification machine learning algorithms, 
such as random forest (Lupolova et  al., 2017; Zhang et  al., 2019; 
Munck et al., 2020a; Guzinski et al., 2024); AB_SA: the Accessory 
genes-Based Source Attribution method, which is a multinomial 
logistic regression SA classifier (Guillier et al., 2020); and Bayesian: a 
Bayesian frequency matching method (the modified Hald method) 
(Arnold et al., 2021). As has recently been highlighted by Mughini-
Gras et al. (2019), there is an urgent need to compare and contrast 
different SA approaches in order to identify methods that are best 
suited to specific epidemiological scenarios and can most effectively 
and accurately identify the source(s) of infection. Our aim in this 
study was to critically assess and compare the outputs of the 
RandomForest, AB_SA, and Bayesian source attribution 
methodologies by applying each of them to the same animal (i.e., 
primary source) and human monophasic and biphasic 
S. Typhimurium datasets.

https://doi.org/10.3389/fmicb.2024.1393824
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Guzinski et al. 10.3389/fmicb.2024.1393824

Frontiers in Microbiology 03 frontiersin.org

The core genome consisting of 3,002 loci is highly conserved 
within distinct Salmonella enterica subsp. enterica isolates and serovars 
(Alikhan et al., 2018; Pearce et al., 2020). Accessory genomic elements 
include genetic material acquired via horizontal transfer, including 
extra-chromosomal plasmids, integrative and conjugative elements, 
replacement islands, prophages and phage-like elements, transposons, 
insertion sequences, and integrons (Ozer et  al., 2014). Therefore, 
different strains are likely to harbor different accessory genomic 
elements (Segerman, 2012). Utilizing the accessory genome of 
bacterial isolates has been suggested to be a useful source of model 
features for SA of monophasic and biphasic S. Typhimurium isolates 
(Lupolova et  al., 2017; Zhang et  al., 2019). To evaluate potential 
improvements in the accuracy of model predictions that included the 
accessory genome loci as model features, SA of the analyzed 
monophasic and biphasic S. Typhimurium isolates was performed 
with and without the accessory genome features when applying 
RandomForest and Bayesian.

2 Materials and methods

2.1 Selection of strains, MLST typing, and 
imputation of missing data

The 904 monophasic and biphasic S. Typhimurium isolates 
analyzed in this study (Supplementary Table S1) were collected as part 
of Work Package 4/7 of the EU’s Horizon 2020 COMPARE research 
project [Collaborative Management Platform for detection and 
Analyses of (Re-) emerging and foodborne outbreaks in Europe, grant 
number 643476]. Strain selection, whole genome sequencing, quality 
control of the sequenced data, and multilocus sequence typing of the 
core genome (cgMLST) and the core and accessory genome 
(wgMLST) loci for this set of isolates were described in Munck et al. 
(2020b). WGS data of the analyzed isolates was downloaded from 
NCBI GenBank (Short Read Archive) using the fasterq-dump 
function of sratoolkit v2.9.6-1.1 Serotypes of the analyzed isolates were 
confirmed with an in-house Animal and Plant Health Agency (APHA) 
in-silico serotyping pipeline.2 Pipeline outputs indicated that the 
isolates belonged to Achtman 7-core-gene MLST sequence type 19 
(ST19), ST34, ST128, ST213, ST313, ST323, ST376, ST568, ST2212, 
ST3228, ST3235, ST3239, ST4067 (all eBurst group 1: eBG1), and 
ST36 (eBG138) (Supplementary Table S1).

The dataset comprised 553 isolates sampled and sequenced in the 
British Isles [98.2% of the 274 British Isles (BI) animal isolates were 
from England and Wales] that were typed at 6,944 wgMLST loci and 
351 isolates sampled and sequenced in Denmark that were typed at 
6,426 wgMLST loci using BioNumerics. The combined dataset, 904 
isolates in total, comprised 420 isolates from confirmed human 
clinical cases, including from patients with travel history outside of 
the BI/Denmark, and 484 animal isolates, including isolates which 
originated from animals not raised in the BI or Denmark 
(Supplementary Table S1). The 484 animal isolates belonged to the 
following primary source classes: 43 isolates from Broilers, 22 from 

1 https://www.ncbi.nlm.nih.gov/books/NBK158900/

2 https://github.com/APHA-BAC/NextflowSerotypingPipeline

Cattle, 11 from Ducks, 16 from GameBirds, 11 from Layers (laying 
hens), 41 from OtherMammals (companion animals such as dogs or 
horses), 317 from Pigs, 2 from Reptiles, 7 from Sheep, and 14 from 
Turkeys (Supplementary Table S1). Six-thousand-and-thirty-six 
wgMLST loci were common to both the BI and Danish isolate datasets 
such that at least a single isolate from both geographical regions was 
typed at a locus. Of these, 4,232 loci were typed at a minimum of 60% 
of the 904 isolates and were selected for further analysis. The selected 
locus set comprised all 3,002 cgMLST loci from the EBcgMLSTv2.0 
scheme (Alikhan et al., 2018) and 1,230 out of 12,685 Applied Maths 
BioNumerics Salmonella MLST scheme wgMLST loci.3

Imputation of missing data at the 4,232 retained wgMLST loci was 
performed separately for the cgMLST and the accessory genome loci. 
Missing data for the cgMLST loci was assumed to have resulted from 
insufficient sequence coverage at a particular locus. The missForest R 
package (Stekhoven and Bühlmann, 2012), which performs 
non-parametric missing value imputation using random forest, was 
applied to impute missing data for the cgMLST loci using default 
parameters with exception of the ntree argument (number of decision 
trees per forest) which was set to 150. Imputation using missForest 
was performed separately for the 484 isolates from primary animal 
sources (0.4% missing data) and 420 isolates from human 
salmonellosis patients (0.8% missing data). For the accessory genome 
MLST loci the missing allele scores were all changed to “0,” which 
facilitated the utilization of patterns of missing data across the 
accessory genome dataset to differentiate between isolates from the 
disparate primary source classes. The most parsimonious explanation 
for the missing accessory genome alleles was that an isolate lacked the 
accessory genome element harboring a corresponding accessory 
genome MLST locus. The two Reptiles isolates were removed from the 
dataset prior to further analysis because of low numbers of samples 
for this primary source class.

2.2 Phylogeny construction

A phylogenetic tree was constructed for the 902 monophasic and 
biphasic S. Typhimurium isolates to assess the population structure 
and the distribution of isolates from different hosts and geographic 
regions of origin.

A multiple sequence alignment (MSA) for the 902 isolates was 
computed with snippy v4.6.0 (Seemann, 2020b) using S. Typhimurium 
eBG1, ST19, LT2 AE006468 as reference. Recombination events were 
removed using Gubbins v2.4.1 (Croucher et  al., 2014) and 
subsequently SNP-sites (Page et al., 2016) was used to extract the 
polymorphic sites. Phylogeny of the core single nucleotide 
polymorphism (SNP) alignment comprising 8,147 variable sites was 
constructed with RAxML-NG v1.0.2 (Kozlov et al., 2019) that was run 
with the GTR (generalized time-reversible) nucleotide substitution 
model plus gamma correction, searching 100 trees (50 random and 50 
parsimony-based starting trees). Branch support was assessed with 
3,000 bootstrap replicates (Felsenstein’s bootstrap proportions). iTol 
(Letunic and Bork, 2019) was used for tree display and annotation. 

3 https://www.applied-maths.com/sites/default/files/extra/Release-Note-

Salmonella-enterica-schema.pdf
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The tree was rooted at the biphasic S. Typhimurium eBG138, ST36 
(SRR8820637) outgroup strain.

SnapperDB (Dallman et al., 2018) was used to assign SNP address 
strain level nomenclature to each of the 902 analyzed isolates 
(Supplementary Table S1).

2.3 RandomForest: supervised 
classification random forest machine 
learning algorithm

RandomForest, a supervised classification random forest machine 
learning algorithm (Breiman, 2001), was applied to predict the 
primary source classes of 482 animal isolates using cgMLST loci only 
(RandomForestCG model), and separately, wgMLST loci 
(RandomForestWG model). Prior to running the RandomForestCG 
and RandomForestWG models, the animal isolate dataset was split 
randomly 75:25 into the training and test set with 362 and 120 isolates, 
respectively (Supplementary Table S1). The 75:25 split ratio was 
maintained for each of the nine primary source classes. Identical 
training and test set split was used for the RandomForestCG and 
RandomForestWG models. The primary sources of the training set 
isolates were supplied to the RandomForestCG and RandomForestWG 
models, whereas these data were withheld for the test set which was 
used to assess the predictive power of the models. Random seeds used 
in the modeling scripts and the modeling workflow were kept constant 
for RandomForestCG and RandomForestWG. The tidymodels 
ecosystem of R programming language packages for modeling and 
machine learning4 was used for all modeling work.

To facilitate faster algorithm running times and to avoid model 
overfitting, the number of model features (cgMLST or wgMLST loci) 
was greatly reduced by filtering out the redundant features in the 
training set. Monomorphic cgMLST/wgMLST loci were removed 
using the step_zv function prior to running the Boruta feature 
selection algorithm (Kursa and Rudnicki, 2010) using the step_boruta 
function of the recipeselectors R package (Pawley, 2022).

Tuning the mtry, min_n, and trees RandomForestCG and 
RandomForestWG model hyperparameters was performed on the 
training set by computing 50 models each for RandomForestCG and 
RandomForestWG. Each model was run with a unique configuration 
of randomly-selected hyperparameter values. For each combination 
of hyperparameter values, the performance of RandomForestCG and 
RandomForestWG was evaluated by resampling the animal isolate 
training set using 10-fold cross validation. RandomForestCG and 
RandomForestWG models with the optimal hyperparameter 
configuration displayed the highest roc_auc (area under the ROC 
curve). The tuned RandomForestCG and RandomForestWG models 
were then applied to predict the primary source classes of the test set 
isolates. Isolates were attributed to a primary source class with the 
highest probability of assignment, which ranged from zero to one. A 
test set roc_auc value of at least 0.70 (Hosmer et al., 2013) indicated 
that model tuning was performed satisfactorily, and the tuned 
RandomForestCG and RandomForestWG models could be applied 
to predict the primary sources of the 420 human isolates. Prior to that 

4 https://www.tidymodels.org/

step, the tuned RandomForestCG and RandomForestWG models 
were exposed to the entire animal isolate dataset, which enhanced the 
models’ predictive powers by using all available data for model 
training. Selection of model features for the entire animal isolate 
dataset was performed as described above. Ranking of model features 
by their importance was obtained for the tuned RandomForestCG 
and RandomForestWG models trained on the entire animal 
isolate dataset.

2.4 AB_SA: multinomial logistic model

Preparation of input files for the AB_SA multinomial logistic 
model was performed as described in Guillier et al. (2020). Genomes 
of the 902 monophasic and biphasic S. Typhimurium isolates were 
assembled with Shovill v.0.9.0 (Seemann, 2020a), with the depth and 
the gsize parameters set to 100 and 4.9M, respectively, and 
subsequently annotated using Prokka v1.14.6 (Seemann, 2014). The 
pangenome, computed with Roary v3.13.0 (Page et  al., 2015), 
comprised a total of 13,854 genes, of which 9,921 were the accessory 
genes. Subsequently, Scoary v1.6.16 (Brynildsrud et al., 2016) was run 
as detailed in Guillier et al. (2020). The p_value_cutoff argument was 
set to 0.2, which captured the following number of enriched genes 
(i.e., genes for which the presence/absence patterns were associated 
with a specific primary source) for each primary source class: 
Broilers—678 genes (lowest gene-specific naive p-value = 2.26E-16); 
Cattle—256 genes (lowest gene-specific naive p-value = 3.40E-07); 
Ducks—536 genes (lowest gene-specific naive p-value = 1.87E-19); 
GameBirds—623 genes (lowest gene-specific naive p-value = 2.26E-
10); Layers—271 genes (lowest gene-specific naive p-value = 1.18E-
07); OtherMammals—765 genes (lowest gene-specific naive 
p-value = 5.38E-10); Pigs—1,264 genes (lowest gene-specific naive 
p-value = 1.44E-27); Sheep—413 genes (lowest gene-specific naive 
p-value = 1.92E-07); Turkey—334 genes (lowest gene-specific naive 
p-value = 1.78E-10).

The MNLTrainTest function of AB_SA was adapted to fit the 
maxGenes argument, which is the number of enriched genes to 
consider per primary source class. This was done by maximizing the 
accuracy of predictions and minimizing the Akaike information 
criterion (AIC). We selected a maxGenes from 1 to 12, i.e., 1 to 12 
(source-enriched) genes with the lowest naive p-value (below 0.05 for 
all 108 genes) for association (presence or absence) with each of the 
nine primary source classes. Next, the 482 animal isolate dataset was 
split into 100 random training and test sets (70:30 ratio) by bootstrap 
resampling; each of the 100 AB_SA multinomial logistic models was 
trained on its respective training set and then predicted the primary 
source class of each of the test set isolates. The average proportion of 
correct predictions was taken as the accuracy of AB_SA for each 
maxGenes value (from 1 to 12). The AB_SA multinomial logistic 
model ran with each maxGenes value was then trained on the entire 
animal isolate dataset and the AIC was extracted from the multinom 
function of the nnet package within AB_SA. The AB_SA multinomial 
logistic model with the optimal number of maxGenes (nine) was 
subsequently fitted on the entire animal isolate dataset and applied to 
predict the primary sources of the unknown (human) samples. Each 
human isolate was assigned to the primary source class with the 
highest membership probability and secondary sources were 
not considered.
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The AB_SA multinomial logistic model with the optimal set of 
predictors was also applied to predict the primary source classes of the 
RandomForestCG/RandomForestWG test set isolates (after being 
trained on the RandomForestCG/RandomForestWG training set 
isolates) for a direct comparison between AB_SA and 
RandomForestCG or RandomForestWG (only the outputs of the 
better performing model out of RandomForestCG or 
RandomForestWG were compared to AB_SA) on a set of isolates for 
which the primary sources were known.

2.5 Bayesian: frequency matching 
approach (the modified Hald method)

To assess the source attribution at a national level, Bayesian (the 
modified Hald method) was used. This is a frequency matching 
approach that has been used to determine source attribution for many 
countries (Hald et al., 2004; Glass et al., 2016; Mughini-Gras et al., 
2014; Mullner et al., 2009), and has also previously been applied to 
WGS data (Arnold et al., 2021).

Briefly, Bayesian uses the relative frequency of occurrence of 
bacterial subtypes in the animal and human case data to infer the 
proportion of human cases that derive from each animal source. 
Specifically, it is assumed that human cases from source i and subtype 
j, Oij, follow a Poisson distribution with mean λij, which was given by:

λij = p q aij i j

where pij represents the prevalence of type i in food type j, qi 
represents the relative virulence of each bacterial subtype, and aj 
represents the relative likelihood of infection for each food source.

Bayesian was applied to the WGS data of monophasic and 
biphasic S. Typhimurium isolates sampled from primary animal hosts 
and human salmonellosis patients in the BI and Denmark using the 
following subtyping approaches, the first three of which are described 
in more detail in Arnold et al. (2021):

 ∙ 7-core-gene MLST
 ∙ SNP distance (SNP address) (Dallman et al., 2018)
 ∙ Hierarchical clustering based on cgMLST using EnteroBase 

(HCC cgMLST) (Zhou, et al., 2019)
 ∙ Hierarchical clustering based on wgMLST using a bespoke R 

programming language script to replicate the hierarchical 
clustering algorithm of EnteroBase (HCC wgMLST) (Zhou, 
et al., 2019)

Bayesian allows for priors to be included for each of the model 
parameters. In the present study, vague priors (beta distributions with 
both parameters equal to 1) were used for all parameters.

2.6 Source attribution method comparison

The degree of overlap between the DNA sequences representing 
two sets of genes/loci: cgMLST or wgMLST loci retained after 
RandomForestCG/RandomForestWG feature selection steps and the 
nine AB_SA source-enriched genes, was compared as described below.

Sequences of allele ‘1’ (i.e., the very first allele representing each 
locus) for each of the cgMLST or wgMLST loci used as 
RandomForestCG/RandomForestWG model features were obtained 

from EBcgMLSTv2.0 scheme or from Applied Maths BioNumerics 
Salmonella MLST scheme, respectively. Sequences of the nine source-
enriched genes used by AB_SA were obtained from the centre.fnn 
Prokka output files. For each gene, DNA sequence was extracted for 
a single animal isolate belonging to a primary source class that the 
gene was associated with according to Scoary (first isolate on a list of 
isolates ordered by their GenBank accession numbers). For the gene 
that Scoary indicated was associated with the Ducks primary source 
class, the DNA sequence was obtained from a human isolate as that 
gene was absent in all isolates from Ducks in our dataset. A fasta file 
with the sequences of all RandomForestCG/RandomForestWG 
model features and a fasta file with sequences of the nine AB_SA 
source-enriched genes were compared for the degree of sequence 
overlap using the blaster R package (Tamminen et al., 2021). Blaster 
was run with both files as a query and as a db, and with minIdentity 
set to 0.75.

The degree of similarity between the RandomForestCG/
RandomForestWG and AB_SA assigned primary source class 
predictions for the 120 animal test set and 420 human isolates was 
assessed by inspecting the primary source class each of these isolates 
was assigned to by the two methods. Additionally, the RandomForestCG/
RandomForestWG, AB_SA, and Bayesian source attribution methods 
were compared for the overall proportion of human isolates assigned to 
the different primary sources for the entire dataset and after splitting the 
human samples by the “Data Owner” (Supplementary Table S1), thus 
either UKHSA (the BI) or SSI (Denmark).

3 Results

3.1 Phylogenetic tree and population 
structure of the studied isolates

Phylogenetic analysis grouped the 902 analyzed animal and human 
monophasic and biphasic S. Typhimurium isolates into nine main clades 
(Figure 1), with three of the most basal clades comprising just a couple 
of isolates each. The most obvious split on the tree involved separation 
of the monophasic S. Typhimurium isolates (blue isolate labels on 
Figure 1) from biphasic S. Typhimurium isolates (black isolate labels on 
Figure 1). The clade comprising almost exclusively the monophasic 
S. Typhimurium isolates was the largest clade of the phylogenetic tree, 
and, as expected, it was the clade with the shallowest branches indicating 
low levels of genetic diversity amongst the isolates. The maximum 
pairwise SNP distance amongst the 540 isolates that comprised the 
monophasic S. Typhimurium clade was 44 SNPs, whereas the maximum 
SNP distance between two biphasic S. Typhimurium isolates was 462.

Human isolates were clustered with the primary source (i.e., 
animal) isolates in all major clades of the tree, including the clade 
comprising almost exclusively the monophasic S. Typhimurium 
isolates, thus indicating that this dataset was suitable for exploring 
quantitative source attribution approaches as the primary sources of 
the investigated human isolates were likely to be present amongst the 
nine primary source classes. Similarly, there was no clear clustering of 
the isolates by their primary source class, although the large clade 
comprising mostly the monophasic S. Typhimurium isolates was 
made up largely of isolates sampled from Pigs and human clinical 
cases. Isolates sampled from the BI and Denmark were intermixed 
throughout the tree, as were the RandomForest training and test set 
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isolates, thus indicating that these datasets were not biased toward 
isolates with specific genomic signatures (Figure 1).

3.2 RandomForestCG and 
RandomForestWG training and test set 
model performance

Comparison of the overall accuracy, kappa, and roc_auc model 
performance metrics generated by the tuned (optimal) 
RandomForestCG and RandomForestWG models showed that 
RandomForestWG correctly assigned a greater proportion of the 362 
training set (88.4% RandomForestCG vs. 94.8% RandomForestWG 
correct assignment) and 120 test set (82.5% RandomForestCG vs. 85% 
RandomForestWG correct assignment) animal isolates (Table  1), 

indicating improved RandomForest performance with the inclusion 
of the accessory genome loci as model features. Detailed description 
of the features retained by RandomForestCG and RandomForestWG 
and comparison of how the two models assigned the training and the 
test set animal isolates to the different primary source classes is 
provided in the Supplementary Text and Supplementary Tables S2A,B.

3.3 Application of RandomForestWG to 
predict the primary source classes of 
human isolates

The optimal RandomForestWG model (test set roc_auc = 0.89 and 
kappa = 0.70; Table 1) assigned 19 of the 420 human isolates to the 
Broilers primary source class (4.5%), 19 isolates were assigned to 

FIGURE 1

Outgroup strain (SRR8820637) rooted maximum likelihood phylogenetic tree featuring 902 animal and human biphasic S. Typhimurium (black isolate 
label) and monophasic S. Typhimurium (blue isolate label) isolates used for the source attribution method comparison study. The phylogeny is based 
on core polymorphic SNPs derived from a multisequence alignment. Innermost annotation ring specifies isolate host, second annotation ring specifies 
isolate assignment to a primary source class according to the RandomForestWG model, third annotation ring specifies whether an (animal) isolate was 
from the training or the test RandomForest dataset, and the outermost annotation ring specifies country of sampling of the analyzed isolates (APHA/
UKHSA for the British Isles isolates and DTU/SSI for the Danish isolates). Bootstrap branch support values between 80 and 100% are shown on the tree.
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Cattle (4.5%), 5 to Ducks (1.2%), 11 to GameBirds (2.6%), 13 to Layers 
(11.2%), 299 to Pigs (71.2%), 2 to Sheep (0.5%), and 5 to Turkey 
(1.2%) (Figure 2 and Supplementary Table S3). The 279 BI human 
isolates were assigned to all nine primary source classes, with majority 
of the BI human isolates (64.2%) assigned to Pigs (Figure 3A and 
Supplementary Table S11). The 141 Danish human isolates were 
assigned to four primary source classes (Broilers, Ducks, Layers, Pigs), 
of which the vast majority (85.1%) were also assigned to Pigs 
(Figure 3B and Supplementary Table S12).

The highest probability of assignment of a human isolate to a 
primary source class was low (below 0.50) for 106 of the 121 human 
isolates assigned to primary sources other than Pigs (Figure 2 and 
Supplementary Table S3). 85.5% BI and 95% Danish human isolates 
were assigned to the Pigs primary source class with a probability of 
assignment value greater than 0.50. These patterns were likely driven 
by the fact that the RandomForestWG training set was dominated by 
the Pigs primary source class isolates (Supplementary Table S1).

3.4 AB_SA

When fitting maxGenes: the number of enriched genes considered 
per primary source class, the optimum solution, both in terms of 
maximum accuracy and minimizing the AIC, was a single gene per 
host species with quality of fit reducing as maxGenes increased 
(Table 2). Therefore, AB_SA was run with a total of nine genes: srlE_2 
encoding PTS system glucitol/sorbitol-specific EIIB component (soft 
core gene); hypE encoding carbamoyl dehydratase HypE (soft core 
gene); thi4 encoding thiamine thiazole synthase (soft core gene); 
kdgT_2 encoding 2-keto-3-deoxygluconate permease (shell 
(accessory) gene); ghxP encoding guanine/hypoxanthine permease 
GhxP (soft core gene); and four “groups of genes,” which all encoded 
hypothetical proteins (accessory genes, two of which were cloud and 
two were shell genes) (Supplementary Table S4).

When applying the AB_SA multinomial logistic model with a 
single gene per host species to predict the primary source classes of 
the 420 human isolates, Pigs were predicted as the primary source 
98% of the time as 411 human isolates were assigned to Pigs, 7 to 
Ducks, 1 to OtherMammals, and 1 to Turkey (Figure  4 and 
Supplementary Table S5). Every one of the human isolates that AB_
SA assigned to OtherMammals, Pigs, and Turkey and three of the 
isolates assigned to Ducks were attributed to these primary source 
classes with probability of assignment values exceeding 0.50. 

However, for four of the seven human isolates assigned to Ducks the 
probability of assignment values were below 0.50 and for 93 of the 
411 human isolates assigned to Pigs the probability of assignment 
values were below 0.60, which indicated uncertainty of the AB_SA 
multinomial logistic model when assigning a subset of human 
isolates to these primary source classes (Figure  4 and 
Supplementary Table S5).

One issue of note is that the presence/absence of a source-
enriched gene in a human clinical case isolate did not necessarily 
predict that the host species for which the gene was enriched was the 
primary source. Rather, the coefficients of the AB_SA multinomial 
logistic model dictated the prediction of primary source classes of the 
human isolates (Supplementary Table S6). For example, the ghxP gene 
was in the AB_SA multinomial logistic model as it was the top 
enriched gene for the Sheep primary source class. However, the 
coefficient for Sheep for this gene was the lowest out of all primary 
source classes, i.e., ghxP presence/absence (in the human isolates) 
actually reduced the probability that Sheep were predicted as the 
source (Supplementary Table S6). We also noticed that the intercept 
coefficient for the Pigs primary source was very dominant, which is 
why, almost regardless of the presence/absence of certain genes, Pigs 
were most likely to be  predicted as a primary source class of the 
human isolates.

A couple of method modification approaches were attempted to 
improve the results of AB_SA but no enhancements in the accuracy 
were obtained. For details see the Supplementary Text.

3.5 Bayesian ran with different subtyping 
approaches

Bayesian ran with the HCC wgMLST subtyping approach was 
very discriminatory between samples, linking no human and 
animal isolates for an HCC distance of 10 or 20 for either the BI or 
Danish isolates (Supplementary Tables S7, S8), and linking only 
one human and animal isolate in the BI at an HCC distance of 50 
(Supplementary Table S7). For Denmark, no isolates for GameBirds, 
OtherMammals, Sheep, or Turkey had the same subtype as a 
human isolate for any of the subtyping approaches 
(Supplementary Table S8), whereas for the BI most subtyping 
methods had at least one isolate from each animal source of the 
same subtype as a human isolate, except GameBirds for SNP10 
(SNP address subtyping approach) and the HCC wgMLST 

TABLE 1 Number of retained features, optimal model hyperparameters, and model performance metrics for the RandomForestCG and 
RandomForestWG models.

RandomForestCG RandomForestWG

Number of model features (training set) 60 79

Best model (optimal hyperparameters) mtry = 70, trees = 409, min_n = 3 mtry = 43, trees = 1,297, min_n = 4

Training set accuracy 0.88 0.95

Training set kappa 0.77 0.90

Test set accuracy 0.83 0.85

Test set kappa 0.66 0.70

Test set roc_auc 0.81 0.89

Number of model features (full dataset) 69 106
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FIGURE 2

The RandomForestWG generated assignment of the 420 monophasic and biphasic S. Typhimurium human isolates to nine primary source classes. 
Each vertical bar represents a single human isolate. The color composition of each bar reflects the probability of assignment of an isolate to each of 
the nine primary source classes. The more uniform the color the higher the probability of assignment of an isolate to a single primary source class. The 
isolates are ordered by their probability of assignment to the Cattle, followed by the Pigs, OtherMammals, Sheep, Broilers, Ducks, GameBirds, Layers, 
and Turkey primary source classes.

FIGURE 3

Source attribution (%) estimates of the 420 human isolates to nine primary source classes for three source attribution methods applied to monophasic 
and biphasic S. Typhimurium WGS data from the British Isles (A), and from Denmark (B).
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subtyping approach at an HCC distance of 50 or less 
(Supplementary Table S7).

There was little overall difference in the attribution between the 
different subtyping approaches with most human cases being found 
to come from Pigs (Figure 5). However, for Denmark the second most 
common source was estimated to be  Broilers, with very little 
contribution from the other sources (Figure  3B and 
Supplementary Table S12). For the BI, OtherMammals was the second 

most common source with small contributions from all the other 
sources (Figure 3A and Supplementary Table S11).

3.6 Comparison of the three source 
attribution methods applied in this study

Blaster searches did not identify any genes/loci that were used for 
SA by both RandomForestCG/RandomForestWG and AB_SA.

RandomForestWG performed better than AB_SA when 
predicting the primary sources of the 120 test set animal isolates for 
all classes except for Pigs (Supplementary Figure S1 and 
Supplementary Table S9). In fact, AB_SA did not correctly classify any 
test set isolates from the Broiler, Cattle, Ducks, GameBirds, Layers, 
OtherMammals, Sheep, or Turkey primary source classes, whereas 
RandomForestWG was 100% accurate in assigning the Ducks, Layers, 
and Sheep test set isolates. RandomForestWG correctly assigned 
98.7% Pigs test isolates, whereas AB_SA achieved 100% accuracy for 
this primary source class (Supplementary Figure S1 and 
Supplementary Table S9).

Of the 420 human isolates, 297 (70.7%) were assigned by both 
RandomForestWG and AB_SA to the same primary source class 
(Supplementary Table S10), and this exclusively involved assignment 
of human isolates to the Pigs primary source class.

Comparison of how the three methods assigned the 420 human 
isolates revealed that the main differences were between AB_SA and 
the other two methods. AB_SA assigned 97.9% human isolates to the 
Pigs primary source class for both the BI (Figure  3A and 
Supplementary Table S11) and Danish isolates (Figure  3B and 
Supplementary Table S12). There was reasonable agreement between 

TABLE 2 The mean overall accuracy and AIC values generated by the 
AB_SA multinomial logistic models ran with different numbers of genes 
enriched in each of the nine primary source classes (maxGenes).

maxGenes Accuracy AIC

1 0.66 1208.45

2 0.66 1268.90

3 0.64 1335.78

4 0.63 1406.63

5 0.61 1486.96

6 0.61 1555.72

7 0.60 1634.14

8 0.59 1692.10

9 0.60 1766.05

10 0.59 1869.55

11 0.59 1968.25

12 0.59 2017.01

The optimal AB_SA multinomial logistic model, with the highest mean overall accuracy and 
the lowest AIC (in bold) was the one with a single enriched gene per primary source class.

FIGURE 4

The AB_SA generated assignment of the 420 monophasic and biphasic S. Typhimurium human isolates to nine primary source classes. Each vertical 
bar represents a single human isolate. The color composition of each bar reflects the probability of assignment of an isolate to each of the nine 
primary source classes. The more uniform the color the higher the probability of assignment of an isolate to a single primary source class. The isolates 
are ordered by their probability of assignment to the Cattle, followed by the Pigs, OtherMammals, Sheep, Broilers, Ducks, GameBirds, Layers, and 
Turkey primary source classes.
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Bayesian and RandomForestWG, although Bayesian assigned fewer 
Danish human isolates to Pigs and a larger number to Broilers 
compared to the RandomForestWG computed assignments (Figure 3B 
and Supplementary Table S12).

4 Discussion

In this study, we  compared three source attribution methods 
(RandomForest, AB_SA, and Bayesian) that were applied to the same 
dataset comprising monophasic and biphasic S. Typhimurium isolates 
collected from different primary animal hosts and patients during 
2012–2016  in the BI and Denmark (Table  3). The three methods 
showed a different level of confidence in attributing source of human 
infections, based upon the methods’ different approaches in using the 
high-resolution molecular subtyping schemes reliant on the WGS data 
for attribution to primary animal sources.

Applying RandomForest to predict the primary sources of the 420 
human isolates indicated that using both the core and accessory 
genome loci as model features (RandomForestWG) resulted in 
improved model performance over a model that utilized just the core 
genome loci as model features (RandomForestCG) (Table 1). In the 
entire wgMLST set of 4,232 loci, just 29.1% belonged to the accessory 
genome, but in a set of loci retained after feature selection implemented 
prior to running RandomForestWG, the accessory genome loci 
comprised in excess of 40% of the retained features. Zhang et  al. 
(2019) similarly obtained a high proportion of accessory genome loci 
amongst the top 50 source predicting features that were applied to 
predict the primary sources of biphasic S. Typhimurium isolates with 

a random forest machine learning algorithm, with 40 of the top 50 
features classed as accessory genes. These results provided a strong 
indication that the accessory genome loci were preferentially retained 
after the feature selection step, possibly because accessory genes play 
an important role for adaptability of bacterial pathogens to different 
host species. It has been established that the large accessory genomes 
of certain S. enterica serovars can be host-restricted, with both gene 
acquisition and loss contributing to the degree of host specificity 
(Lupolova et al., 2017). Furthermore, previous studies have identified 
accessory genome features, such as genomic islands and transposons, 
that were suggested to encode genes which may contribute to host 
specificity and transmission of certain Salmonella serovars (Switt 
et al., 2012).

The optimal RandomForestWG model assigned 64.2% BI and 
85.1% Danish human isolates to the Pigs primary source class 
(Figures 3A,B and Supplementary Tables S11, S12). Similar results 
were generated for a dataset that comprised largely the same Danish 
monophasic and biphasic S. Typhimurium isolates (Munck et  al., 
2020a). The authors of the Danish study applied machine learning 
algorithms ran with cgMLST loci as model features and a Bayesian 
frequency matching approach for which the Salmonella subtype was 
discriminated by serotyping, a multiple locus variable number tandem 
repeat analysis (MLVA) profile, and a phenotypic resistance profile, to 
perform source attribution of the analyzed human samples. These 
methods assigned 86.5 and 72.5% of the attributed human isolates to 
the Pigs primary source class, respectively (Munck et  al., 2020a). 
Moreover, in the study described herein RandomForestWG did not 
assign any of the Danish human isolates to the Cattle, GameBirds, 
OtherMammals, Sheep, and Turkey primary source classes (Figure 3B 

FIGURE 5

Bayesian estimates of source attribution of the 420 monophasic and biphasic S. Typhimurium human isolates to nine primary source classes using the 
HCC cgMLST and HCC wgMLST (A), and SNP address and 7-core-gene MLST (B) subtyping approaches.
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and Supplementary Table S12). In the model training set, there was 
just a single isolate originating from Danish cattle and there were no 
Danish isolates from the GameBirds, OtherMammals, Sheep, or 
Turkey primary sources, which therefore precluded RandomForestWG 
from recognizing these primary source classes if they were of Danish 
origin. Therefore, the similarity of outcomes between 
RandomForestWG and those reported in the Danish study, and the 
fact that no Danish human isolates were assigned by RandomForestWG 
to (Danish origin) primary source classes not represented in the 
model training set, provided further comparative confidence in the 
performance of RandomForestWG.

AB_SA had a lower overall accuracy than RandomForestWG 
when applied to the animal isolate test set, suggesting it was less 
effective as a predictive source attribution tool for the human isolates 
in the present study (Table 3 and Supplementary Table S9). One 
possible reason for this is the different approach taken by AB_SA 
and RandomForestWG when selecting the subset of genes to 
be included in the model. AB_SA selected nine genes of presumed 
biological importance for adaptation to specific host types, however, 
the selection might not have corresponded with the genes which 
would have provided optimal performance in terms of prediction. 
RandomForestWG on the other hand utilized pre-selected features 
(MLST loci) that contributed most to the predictive power of the 
model. In this work, one gene per primary host (thus nine genes in 
total) was selected as optimal for the AB_SA multinomial logistic 
model as running AB_SA with higher maxGenes parameter values 
(up to 12 genes per primary source class, i.e., 108 genes in total, were 
tested) produced greater variability in the predicted outputs resulting 
in lower predictive power. A contributing factor may have been a 
highly imbalanced dataset on which AB_SA was trained on as it was 
dominated by the Pigs primary source class isolates. It is possible 
that if the training data were more equally weighted between the 
disparate host species, then the optimal maxGenes value would have 
been higher, possibly resulting in improved AB_SA predictions.

Bayesian is useful at providing a population level estimate of source 
attribution, which could be used to inform policy as to where to focus 
efforts on surveillance and control. For Bayesian, the overall attribution 
estimates varied little regardless of which subtyping approach was used 
to type the isolates (Figure 5 and Supplementary Tables S7, S8). This 
suggests that Bayesian, combined with 7-core-gene MLST data, can 

provide a time-efficient method at evaluating overall source attribution, 
with Bayesian being quicker to implement and run when compared to 
RandomForestCG/RandomForestWG or AB_SA, and 7-core-gene 
MLST being easier to generate than the SNP address or HCC cgMLST 
and HCC wgMLST subtyping approaches. One weakness of Bayesian 
is the difficulty in validating the method (Table 3). For the methods 
that infer attribution at an individual isolate level, it is possible to 
generate test data sets and verify the method’s performance on a 
subsample of the data where the source is known. This approach 
cannot be applied to Bayesian as this method only estimates source 
attribution at a population level and animal isolates, from subtypes 
where there are no human cases, do not contribute to the estimate at 
all. It also means that Bayesian utilizes the source attribution data less 
efficiently, as much of it will not contribute to the final source 
attribution estimates, and it also cannot be used to infer attribution at 
an isolate level unlike RandomForestCG/RandomForestWG and AB_
SA. Hence, Bayesian is not applicable to individual case investigations.

The present study has a number of strengths. The large dataset of 
monophasic and biphasic S. Typhimurium cases and a substantial 
dataset of isolates from major food animals, sampled in the BI and 
Denmark and over a long time period (Supplementary Table S1), have 
allowed us to identify Pigs as the leading source of monophasic and 
biphasic S. Typhimurium infections in both countries. This was 
achieved with each of the three applied source attribution methods. 
Using WGS data for attribution to primary animal hosts/reservoirs is 
also a strength since more possible transmission routes for potential 
Salmonella (including, but not limited to, monophasic and biphasic 
S. Typhimurium) infection can be captured. One of the weaknesses of 
the study could be that the majority of animal isolates in the dataset 
belonged to the Pigs primary source (see Supplementary Text for 
discussion of potential influence of unbalanced dataset on 
RandomForestWG performance). We only had sufficient samples to 
estimate the relative frequency of monophasic and biphasic 
S. Typhimurium in other primary hosts, which may have influenced 
the estimated trend in source attribution by the different methods. 
However, this is consistent with the relative frequency of monophasic 
and biphasic S. Typhimurium isolations from the animal species each 
year in the BI (APHA, 2022) and also in Denmark.

Each of the three methods used in this study had its own advantages 
and disadvantages (Table 3). (1) While RandomForestWG was the most 

TABLE 3 The advantages and disadvantages of three source attribution methods: RandomForestWG, AB_SA, and Bayesian, that were applied to the 
same dataset comprising monophasic and biphasic S. Typhimurium isolates collected from different primary animal hosts and human salmonellosis 
patients during 2012–2016 in the BI and Denmark.

Source attribution method Advantages Disadvantages

RandomForestWG -highest accuracy of the animal isolate primary 

source class test set predictions

-provides primary source class predictions at an 

individual isolate level

-model tuning requires comprehensive computing resources and/or time 

(approximately 1 week in the present study), although once a model has 

been tuned the prediction of primary sources for a set of human isolates 

is comparatively rapid

AB_SA -a lot less computationally intensive than 

RandomForestWG

-provides primary source class predictions at an 

individual isolate level

-lower accuracy of the animal isolate test set predictions in comparison 

to RandomForestWG

-therefore, less effective as a predictive source attribution tool for the 

human isolates in the present study

Bayesian -quickest to implement and run

-useful at rapidly providing a population level 

estimate of source attribution

-difficult to validate the method as it only provides primary source class 

predictions at a population and not at an individual level

-utilizes data from different subtyping approaches inefficiently as much 

of the data will not contribute to the final source attribution estimates
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accurate in predicting the correct primary source classes of the test set 
animal isolates, tuning the model required close to a week of running time 
on a 16 core, 64 Gb RAM virtual machine. To boost the accuracy of the test 
set predictions, and ultimately, of the predictions of the primary sources of 
isolates sampled from human salmonellosis patients, it would 
be advantageous to add additional isolates from each of the nine primary 
source classes and/or additional primary source classes into the animal 
isolate training set. If such actions were taken, the computing resources and 
hence the associated costs or the time required for model tuning (there is 
an inverse relationship between the resources/costs and model tuning 
time) would be expected to increase to an even greater degree. However, 
once the model tuning phase has been completed, the tuned model could 
then be rapidly applied to predict the primary sources of a set of human 
isolates, as that step takes only a fraction of the time required for model 
tuning. (2) AB_SA uses an enrichment step to find the most relevant genes 
for multinomial logistic model predictions, and is orders of magnitude less 
computationally intensive than RandomForestWG. In this study, AB_SA 
had the lowest accuracy of primary host prediction when applied to the 
animal test set isolates. Sanchez-Pinto et al. (2018) reported that logistic 
regression methods require less data than other classification methods, for 
example random forest, to achieve stability and using a more balanced 
dataset might refine the model and improve statistical power and the 
ability to identify more relevant model predictors. (3) Predictions of the 
primary animal hosts by Bayesian were comparable to RandomForestWG 
outputs, with Bayesian also being much less computationally intensive 
than RandomForestWG, however with the caveat that Bayesian was only 
able to provide predictions at a population and not an individual isolate 
level. Ongoing routine surveillance of Salmonella (monophasic and 
biphasic S. Typhimurium, and other serovars) in food producing animals 
collected in a consistent sampling frame would improve the sample size 
and data quality for prevalence and SA estimates and allow the models 
underpinning each of the three tested source attribution methods to 
be updated regularly to monitor trends and provide timely guidance for 
food safety authorities as (re)-emerging Salmonella isolates with increased 
epidemiological potential change the risk associated with specific 
animal reservoirs.

The results generated in this study, and identification of the 
strengths and weaknesses of the three source attribution methods 
applied to a monophasic and biphasic S. Typhimurium isolate 
dataset, have substantial applicability to monophasic and biphasic 
S. Typhimurium public health responses. Being able to accurately 
produce SA predictions at the population level allows for the 
distribution of resources and pathogen control policy on the 
appropriate sources of infection. By identifying pigs as the main 
source of monophasic and biphasic S. Typhimurium, and thus a 
major source of human salmonellosis, it highlights the need to 
control the risk of transmission from pigs through the application 
of hygiene controls, especially at the slaughterhouse, to limit 
foodborne spread. Additionally, when identifying the likely source 
of infection, especially when epidemiological evidence is complex 
or lacking, it is important to produce a rapid result and so 
identifying the useful performance and speed of Bayesian was 
valuable. In cases where it is vital to obtain primary source 
predictions for human isolates at an individual rather than 
population level, application of RandomForest to predict the 
primary sources of human isolates should be strongly considered. 
Importantly, to rapidly achieve high accuracy human isolate 
primary source class predictions, the RandomForest model should 

be  tuned and trained on a comprehensive selection of primary 
animal sources and isolates per primary source class.
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