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Identifying the origin of a food product holds paramount importance in ensuring

food safety, quality, and authenticity. Knowing where a food item comes from

provides crucial information about its production methods, handling practices,

and potential exposure to contaminants. Machine learning techniques play a

pivotal role in this process by enabling the analysis of complex data sets to

uncover patterns and associations that can reveal the geographical source of a

food item. This study aims to investigate the potential use of explainable artificial

intelligence for identifying the food origin. The case of study of Mozzarella di

Bufala Campana PDO has been considered by examining the composition of

the microbiota in each samples. Three di�erent supervised machine learning

algorithms have been compared and the best classifier model is represented

by Random Forest with an Area Under the Curve (AUC) value of 0.93 and the

top accuracy of 0.87. Machine learningmodels e�ectively classify origin, o�ering

innovative ways to authenticate regional products and support local economies.

Further research can explore microbiota analysis and extend applicability to

diverse food products and contexts for enhanced accuracy and broader impact.
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1 Introduction

With the burgeoning demand for high-quality, region-specific products, the need
to ensure the origin and treceability of food products plays a pivotal role in ensuring
authenticity, quality, and safety in the global food supply chain (Gallo et al., 2021).
The concepts of food traceability and origin are closely interlinked and hold pivotal
significance in ensuring food safety and transparency throughout the production
process but also supports local economies and encourages sustainable agricultural
practices. They are integral in guaranteeing that foods are safe, genuine, and adhere
to quality standards. Traceability refers to the ability to follow the journey of a
product along the entire supply chain, encompassing detailed information about its
production, processing, packaging, distribution, and sale (del Rio-Lavín et al., 2023).
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On the other hand, the origin of food products indicates the specific
location where they were cultivated, manufactured, or processed.
Understanding the origin of a food item is essential for various
reasons, including ensuring its safety, quality, and sustainability.
Presently, determining the origin of a food product relies on
diverse methods and tools. Collaboration among producers,
distributors, and other stakeholders in the supply chain is crucial
to ensuring transparency and accuracy in disclosing the origin
of food products (Corallo et al., 2020). Some food products may
acquire origin certifications, such as the Protected Designation of
Origin (PDO) in Europe or other regional certifications, which
verify that the product originates from a specific geographical
area and complies with designated standards (Badia-Melis et al.,
2015). Analyzing the intricate ecosystem of microorganisms
inhabiting food, known as the food microbiota, can be a useful
tool for understanding the safety, quality, and characteristics
of food products of foods. This diverse microbial community,
comprising bacteria, fungi, and viruses, is influenced by various
factors such as geographical location, production methods, and
processing techniques. A fundamental aspect of harnessing
the food microbiota for product origin lies in its dynamic
composition, which reflects the unique environmental conditions
and production practices of each food item. By scrutinizing the
microbiota composition of food samples, distinctive microbial
signatures indicative of their origin or production environment
can be discerned. Recent advancements in molecular biology
and sequencing technologies have revolutionized our ability to
characterize the food microbiota with unprecedented precision
and speed. High-throughput sequencing methods, including next-
generation sequencing, facilitate rapid and accurate identification
of microbial species present in food samples (Reuter et al.,
2015). Comparative analysis of microbiota profiles among
different food samples enables the identification of subtle
variations that serve as valuable markers for product origin.
Specific microbial strains or community structures may be
linked to particular regions or production facilities, offering
distinctive identifiers for food products. Moreover, the food
microbiota serves as a sentinel for monitoring food quality
and safety along the supply chain (Guidone et al., 2016).
Alterations in microbial composition or abundance can signal
potential contamination or spoilage incidents, enabling prompt
interventions to mitigate risks and uphold food safety standards.
In addition to conventional laboratory techniques, emerging
methodologies such as metagenomics and metatranscriptomics
provide comprehensive insights into the food microbiota. These
cutting-edge approaches enable holistic analysis of all microbial
genetic material within a sample, facilitating deeper understanding
of microbial dynamics and functions (Cao et al., 2021). The use
of machine learning in food classification and origin represents a
significant step forward in ensuring the safety and authenticity of
food products. Firstly, machine learning enables the development
of predictive models that can differentiate between different
types of foods based on specific characteristics. By leveraging
machine learning algorithms, it becomes possible to process
vast amounts of data, including information on production

practices, environmental factors, and biochemical compositions,
to accurately predict the origin of a food product. For example,
using data from chemical, sensory, or genetic analyses, models can
be trained to recognize the presence of contaminants or identify
the geographical origin of a food. Furthermore, the application
of machine learning to food classification offers numerous
opportunities to enhance food safety, ensure product authenticity,
and optimize the identification of food origin. The integration of
machine learning and microbiota offers an innovative approach
to understanding the complexity of interactions between the
microbiome and food. By analyzing microbiome data using
machine learning algorithms, it is possible to identify patterns
and associations that can be valuable for enabling the develop
preventive strategies to reduce risks and improve the nutritional
quality of foods. The application of machine learning techniques
in the field of food microbiota presents multiple opportunities
to analyze large amounts of microbiological data, identify
patterns and associations between microbial composition and food
characteristics, predict food quality and safety, to understanding
microbial dynamics and search for solutions to promote health
(Bellantuono et al., 2023; Papoutsoglou et al., 2023). Through
data analysis and the development of predictive models, crucial
challenges in the food industry can be addressed, promoting
greater transparency and trust among consumers. Explainable
Artificial Intelligence (XAI) algorithms are useful to make artificial
intelligence (AI) models understandable and interpretable to
humans, because many machine learning and AI models often
operate as “black boxes,” making it difficult to understand how
and why they produce certain predictions or decisions. The goal
of XAI is to provide explanations and insights into the operation
of AI models, enabling users to understand the reasons behind
their predictions or decisions. This is particularly important in
contexts where transparency, accountability, and trust in AI are
crucial. In Explainable Artificial Intelligence (XAI), trustworthiness
plays a role in ensuring the reliability and transparency of AI
models. It refers to the degree of confidence and faith users
have in the explanations provided by the model regarding its
predictions and decision-making processes. XAI techniques may
include SHapley Additive exPlanations (SHAP) analysis that seek
to translate the internal workings of AI models into understandable
human explanations (Novielli et al., 2024). This research delves into
the crucial realm of preserving and authenticating the geographical
origin of Mozzarella di Bufala Campana PDO, specifically focusing
on the provinces of Salerno and Caserta. The characteristic that
will be used for data analysis is the abundance of bacteria
present in the microbiota of the samples. This information will
be crucial for identifying any patterns or correlations between
bacterial composition and the geographical origin of Mozzarella di
Bufala PDO. By utilizing data analysis techniques such as machine
learning (Monaco et al., 2021; Papoutsoglou et al., 2023), it will be
possible to create predictivemodels capable of accurately classifying
the geographical origin of each sample based on microbiota
information. This approach will provide a trustworthy assessment
of the mozzarella’s origins, thereby contributing to food quality
and safety.

Frontiers inMicrobiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1393243
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Magarelli et al. 10.3389/fmicb.2024.1393243

2 Materials

The data utilized in this study, decripted in Table 1 stems
from the microbiological analysis of the microbiome of 65 samples
of Mozzarella di Bufala PDO originating from 30 dairies in the
province of Salerno and 35 dairies in the province of Caserta. These
samples underwent thorough examination in the laboratories of
the Microbiology Division within the Department of Agricultural
Sciences at the University of Naples Federico II. All dairies were
located within the PDO area produced traditional Mozzarella di
Bufala according to the PDO regulation. Total DNA was extracted
using the Qiagen Power Soil Pro kit. Metagenomic libraries were
prepared using the Nextera XT Index Kit (Illumina, San Diego,
California, United States), then whole metagenome sequencing was
performed on an IlluminaNovaSeq platform, leading to 2× 150 bp,
paired-end reads. Reads were quality-checked and filtered through
Prinseq-lite v. 0.20.4, using parameters “-trim_qual_right 5" and “-
min_len 60.” An average of 25M of paired-end reads were obtained
(2 × 150 bp) for each sample. Raw reads were pre-processed
and filtered as previously described (De Filippis et al., 2021).
Briefly, contamination from host reads was removed using the
Human Sequence Removal pipeline developed within the Human
Microbiome Project by using the Best Match Tagger (BMtagger)
mapping reads against the Bubalus bubalis (Mediterranean breed)
genome (accession number: GCA003121395.1). Then, non-host
reads were quality-filtered using PRINSEQ v. 0.20.4 (Schmieder
and Edwards, 2011). Bases having a Phred score <15 were
trimmed and those<75 bpwere discarded. High-quality reads were
further processed to obtain microbiome taxonomic profiles using
MetaPhlAn v. 4.0 (Blanco-Míguez et al., 2023).

Our analysis encompasses a diverse set of samples, reflecting
the regional diversity of Mozzarella di Bufala PDO production
across different dairies in the provinces of Salerno and Caserta.
The 65 samples provide a robust dataset for investigating variations
in microbial composition, offering valuable insights into the
distinctive qualities of Mozzarella di Bufala PDO from different
geographic origins. The species abundance data unveils the relative
prevalence of microbial species, offering insights into the intricate
microbiome of Mozzarella di Bufala PDO. This information is
organized in a tabular format, where each row corresponds to a
specific sample, and each column represents a distinct microbial
species. To enhance our understanding of the origin of each
Mozzarella di Bufala PDO sample, we include details about the
respective cheese dairy, specifying both the dairy name and its
geographic origin. Each sample presents 139 output variables,
each representing the abundance of a specific bacterium. In the
context of your analysis on the microbiome of Mozzarella di
Bufala PDO, these output variables likely reflect the proportions
or relative quantities of different types of bacteria present in
each sample. The type of bacteria and their relative abundance
in each sample could have significant implications for the quality
and sensory characteristics of the product. Since many samples
have abundance values equal to zero, indicating the absence of
the bacteria, a preprocessing step was performed. In this pre-
processing step, columns with more than 70% zero values were
removed, reducing the total number of columns to 23. In order to
conduct a robust analysis, the initial dataset has been strategically

TABLE 1 Description of samples and input variables.

Type of samples Diary from Campania
region

n samples from Salerno 30

n samples from Caserta 35

Type of input variables Microbiome relative abundance

n input variables for each sample 139

partitioned into a validation dataset and a test dataset to. This
partitioning is designed to ensure a representative and unbiased
evaluation of the models developed during the study (Ibrahimi
et al., 2023). The validation dataset consists of 22 samples from the
province of Salerno and 33 samples from the province of Caserta.
This division allows for the exploration of regional variations
within the microbiome of Mozzarella di Bufala PDO, considering
the distinctive characteristics of these geographical locations. The
validation set was then used to assess three different classifiers
through a five-fold cross-validation repeated 20 times (Schaffer,
1993), and the performance of the best classifier (Random Forest,
RF) was analyzed. Following that, the trained model was tested on
the test dataset, and its performance was evaluated on this separate
set of samples.

The independent test dataset, on the other hand, comprises
eight samples from Salerno and two samples fromCaserta. Notably,
these 10 test samples are collected on the same day from the same
dairy as the samples present in the validation set. By adopting this
partitioning strategy, we aim to develop a model that not only
captures the nuances of the training dataset but also demonstrates
robust predictive abilities when faced with previously unseen
samples.

3 Methods

The main steps of our analysis are outlined in the flowcharts
in Figure 1. It provides a comprehensive overview of the model’s
performance during both the training and validation phases, as
well as in the subsequent testing phase, allowing for an overall
evaluation of its predictive capabilities.

3.1 Machine learning based classification

To assess the classification of these samples, three distinct
supervised machine learning methods were employed: Random
Forest, XGBoost, and Multi-Layer Perceptron (MLP). The
identification of the optimal classifier was based on both accuracy
and Area Under the Curve (AUC ).

3.1.1 Random forest classifier
The Random Forest Classifier represents a sophisticated

ensemble learning algorithm within the realm of machine learning
(Chaudhary et al., 2016). Envisioned as a confluence of decision
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FIGURE 1

The flowchart outlines the steps of the conducted analysis. The validation set was used to assess three di�erent classifiers through a five-fold

repeated 20 times cross-validation, and the performance of the best classifier (Random Forest, RF) was analyzed. Following that, the trained model

was tested on the test dataset, and its performance was evaluated on this separate set of samples.

trees, it operates on the principle of aggregating predictions from
diverse models to augment stability and overall performance. The
ensemble is constituted by an assembly of decision trees, each
meticulously trained on a distinct subset of the training dataset
through the lens of bootstrap sampling a method characterized
by its sampling with replacement. The algorithm’s efficacy is
derived from the varied nature of decision trees. This diversity,
arising from the differential subsets of data upon which each
tree is trained, mitigates the risk of overfitting, fostering a robust
model. In the predictive phase, each decision tree contributes
its prediction, and the final class is determined through a
majoritarian consensus. This collective decision-making process
amplifies the model’s resilience and generalization capabilities
(Breiman, 2001).

3.1.2 EXtreme gradient boosting classifier
EXtreme Gradient Boosting (XGBoost) is a widely-used

machine learning algorithm for regression and classification
problems renowned for its prowess in diverse applications,
particularly excelling in the realm of structured or tabular data
and supervised learning scenarios (Shwartz-Ziv and Armon, 2022).
XGBoost has been extensively used in data science and machine
learning competitions due to its ability to achieve excellent
performance on a wide range of problems and datasets. It’s also
known for its flexibility and ability to handle large amounts of
data. Positioned within the domain of ensemble learning, XGBoost
elevates traditional gradient boosting algorithms to new heights.
XGBoost typically builds an ensemble of decision trees, where
each tree contributes to the final prediction. The combination
of multiple trees enhances the model’s predictive capabilities.
XGBoost supports built-in cross-validation, enabling robust model
evaluation and parameter tuning for optimal performance.
XGBoost has an high predictive accuracy. By constructing an
ensemble of models, each correcting the errors of the others, it
can provide more accurate predictions compared to many other
algorithms. It also incorporates regularization techniques that help
manage the issue of overfitting, keeping the model general and
adaptable to new data (Chen and Guestrin, 2016).

3.1.3 Multi-layer perceptron classifier
The Multi-Layer Perceptron (MLP) stands as a sophisticated

architecture within the domain of artificial neural networks,
prominently featured in the landscape of machine learning. It
is distinguished by its layered composition, comprising an input
layer, one or more hidden layers, and an output layer. Each layer
encompasses interconnected nodes, or artificial neurons, where
the transmission of information follows a feedforward trajectory,
progressing from the input layer through the hidden layers and
culminating in the output layer. In a Multi-Layer Perceptron
(MLP), input nodes constitute the initial layer of the neural
network and serve as the units through which data is introduced
into the system. Each input node represents a specific feature
or variable from the dataset intended for model training. The
hidden layers are intermediary layers between the input and
output layers, responsible for capturing and learning complex
patterns and representations within the input data. These layers
contribute to the model’s ability to discern intricate relationships
that may not be immediately apparent in the raw features.
Output nodes constitute the final layer of the neural network
and are responsible for producing the model’s predictions or
outcomes. The configuration and characteristics of the output
layer depend on the nature of the task, whether it involves
classification, regression, or other specific objectives (Ruck et al.,
1990).

3.2 Evaluation metrics

Evaluation metrics are crucial tools for assessing the
performance and effectiveness of machine learning models
(Ferrer, 2022). These metrics provide quantitative measures
that help quantify how well a model is performing on a
given task. The choice of evaluation metrics depends on the
nature of the problem (classification, regression, etc.) and the
specific goals of the analysis. Here are some commonly used
evaluation metrics:

• Accuracy:
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The proportion of correctly classified instances among the
total instances

ACC =
TP + TN

TP + FP + TN + FN
(1)

• Sensitivity:
The fraction of true positive predictions out of all actual

positive instances

SENS =
TP

TP + FN
(2)

• Specificity:
Specificity is the proportion of actual negatives correctly

identified by the model out of the total number of actual
negatives.

SPEC =
TN

FP + TN
(3)

• Precision:
The fraction of true positive predictions out of all positive

predictions

PREC =
TP

TP + FP
(4)

• Area Under the ROC Curve (AUC-ROC):
The Receiver Operating Characteristic (ROC) curve and

Area Under the Curve (AUC) are assessment tools employed
to gauge the effectiveness of a binary classification model.
The ROC curve presents a graphical depiction of how
sensitivity (true positives) and specificity (true negatives)
change across various classification thresholds. Essentially, it
illustrates the balance between accurately identifying positive
and negative instances by the model. The AUC quantifies
the overall performance of the model by measuring the area
under the ROC curve: a value closer to 1 signifies superior
model performance, while a value around 0.5 suggests
random classification. In summary, these metrics are vital for
evaluating and contrasting the classification ability of binary
models (Ozenne et al., 2015).

3.3 Explainable artificial intelligence
methods

Explainable Artificial Intelligence (XAI) is a crucial aspect
in the development of AI systems, focused on making artificial
intelligence (AI) models understandable and interpretable to
humans. A specific method employed for XAI is the SHapley
Additive exPlanations (SHAP) (Arrieta et al., 2020). SHAP values
are used to evaluate the impact of individual features on the model’s
performance, particularly on a validation set. Mathematically, the
SHAP value for a specific feature (j) is calculated based on the
inclusion or exclusion of that feature from the model as:

8j(x) =
∑

F⊆S−{j}

|F|!(|S| − |F| − 1)!

|S|!
[fx(F ∪ j)− fx(F)] (5)

where 8j(x) represents the SHAP value of feature j for the
prediction of themodel f given the input x, S is the set of all features,
F ⊆ S − {j} represents all possible subsets of features excluding
feature j, |F|!(|S|−|F|−1)!

|S|! is a weight parameter that multiplies all
of the permutations of S! by the potential permutations of the
remaining class that doesn’t belong to S, while fx(F ∪ j) and fx(F)
denote respectively the model’s prediction when feature j is added
to the subset F and when it is absent (Lundberg and Lee, 2017). We
also averaged the ten realizations of SHAP values in order to obtain
a single representative SHAP vector.

The SHAP value measures how much including feature
j changes the model’s prediction compared to the prediction
without feature j, averaged over all possible combinations of
features. Positive SHAP values indicate that the feature contributes
positively to the prediction, while negative values indicate a
negative contribution. The SHAP values provide a quantitative
measure of the contribution of each feature to the model’s output,
enabling a more interpretable understanding of how individual
features influence the algorithm’s decision-making process. This
transparency is crucial for building trust in AI systems and
facilitating their use in various real-world applications where
interpretability is essential (Janzing et al., 2020). This approach
contributes to the trustworthiness and applicability of our findings,
enhancing the overall validity of the study’s outcomes in the context
of Mozzarella di Bufala PDO from Salerno and Caserta.

4 Results

This study aims to investigate the potential use of explainable
artificial intelligence for identifying the food origin. The case of
study of Mozzarella di Bufala Campana PDO has been considered
by examining the composition of the microbiota in 65 samples.

This study involved evaluating the effectiveness of three
supervised machine learning algorithms, namely XGBoost,
Random Forest, and a complex Multi-Layer Perceptron
network. The analysis revealed that the Random Forest classifier
outperformed the others, demonstrating the highest Area Under
the Curve (AUC) value of 0.93 ± 0.10 and the top accuracy score
of 0.87 ± 0.11. Table 2 provides a comprehensive comparison of
the three models based on their AUC and accuracy scores.

4.1 Machine learning analysis

The results are illustrated in the confusion matrix in Table 3,
obtained following a five-fold repeated 20 times cross-validation
procedure on the validation set. This methodology allows us

TABLE 2 Comparison between evaluation metrics of XGBoost (XGB),

Random Forest (RF), and Multi-Layer Perceptron (MLP) classifiers.

Classifier Accuracy AUC

XGB 0.82± 0.12 0.87± 0.11

RF 0.87± 0.11 0.93± 0.10

MLP 0.68± 0.13 0.78± 0.11
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to assess the effectiveness of our algorithm in a robust and
reliable manner. In Figure 2 it is possible to observe the
boxplot displaying the trend evaluation metrics, including accuracy
(Equation 1), specificity (Equation 3), sensitivity (Equation 2) and

TABLE 3 Confusion matrix depicts predicted values against actual values.

Actual class Predicted class

Caserta Salerno

Caserta 29 4

Salerno 3 19

In this instance, 29 samples from Caserta and 19 from Salerno are correctly classified, while

four samples from Caserta and three from Salerno are misclassified.

FIGURE 2

Boxplot of the distributions of evaluation metrics (accuracy,

specificity, sensitivity and precision) following five-fold

cross-validation repeated 20 times.

precision (Equation 4), obtained through a five-fold repeated cross-
validation scheme.

The confusion matrix highlights the algorithm’s ability to
correctly classify observations based on the geographical origin
of the samples, divided between the Salerno and Caserta areas.
We observe that the algorithm achieved an accuracy of 87.87% in
correctly identifying samples from the Salerno area and 86.36%
for those from the Caserta area. These results indicate a good
capability of our machine learning model in distinguishing the
geographical origin of Mozzarella di Bufala Campana PDO based
on the microbiota structure. The accuracy in both cases is quite
high, suggesting that the model generalizes well to new data and
could be used as a supportive tool in determining the geographical
origin of unknown samples.

The Receiver Operating Characteristic curve in the Figure 3
defines AUC score, measuring the area under this curve, is 0.93 ±

0.10 and it suggests a high accuracy in classifying samples based on
their geographical origin, affirming the robustness of the model’s
performance.

After conducting cross-validation, the outcomes were then
utilized to compute feature importance employing SHapley
Additive exPlanations (SHAP), as expressed in Equation (5). The
SHAP ranking plot is a graph that displays the importance of
features in machine learning models using SHAP and features are
arranged along the y-axis based on their importance, with the most
important features at the top and the least important ones at the
bottom. Each colored point represents a single data instance, and
the horizontal position of the point indicates the value of the shap
for that specific instance. The color of the point indicates the value
of the feature: higher values are represented in warm colors (red),
while lower values are represented in cool colors (blue). Through
a SHAP analysis, the 20 most important feature were identified,
deriving from the analysis of the microbiota 65 samples. In the

FIGURE 3

ROC curve depicts the classification model’s ability to vary the trade-o� between sensitivity (True Positive Rate) and specificity (1 – False Positive

Rate).
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FIGURE 4

The SHapley Additive exPlanations (SHAP) summary plot provides an overview of the importance of features in contributing to model predictions. In

this type of plot, each point represents a data instance, and the horizontal position of the point indicates how much the e�ect of a specific feature

contributes to the change in prediction compared to the model’s average prediction. The color of the point represents the value of the feature, with

darker colors indicating higher values.

SHAP plot in Figure 4 it is evident how certain features, such as
Lactococcus lactis and Moraxella osloensis, contribute significantly
to the model’s prediction. The feature Lactobacillus helveticus is
important for the model’s interpretability, as the colored points
are well distinguished, and red points indicate that high values of
that bacterium have influenced Salerno class, and vice versa. This
suggests that these elements play a crucial role in the geographical
discrimination of the samples.

The results of the Shap analysis highlight the fact that two
Phyla are most represented (Firmicutes and Proteobacteria). The
taxonomy of each sample of SHAP analysis is descripted in Table 4.
Lactobacillaceae is represented by five bacteria, Moraxella family
is represented by four bacteria, while Lactococcaceae family is
represented by three bacteria. Starting from the taxonomic group
of the genus, it can be seen that there is a significant diversity of

microbes, even if the Lactococcus genus and Lacotbacillus genus is
represented three times each other.

A possible application of the classification model is to execute
it on the previously selected test dataset. In testing the model, a
dataset consisting of 10 samples from the same study was utilized,
including two from Caserta and eight from Salerno. These samples
were previously excluded during the model training phase. The
confusion matrix of the test, depicted in the figure, provides a
detailed overview of the model’s performance on this specific test
dataset. It is particularly noteworthy that all samples from Caserta
were correctly classified by the model. On the other hand, only
one sample from Salerno was misclassified. This result suggests a
significant accuracy in the model’s ability to discriminate between
the two production locations, with a particularly high success rate
for samples from Caserta. The confusion matrix in Table 5 offers
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TABLE 4 Classification of the first 20 bacteria deriving from the Shap analysis.

Phylum Class Order Family Genus Species

Firmicutes Bacilli Lactobacillales Lactococcaceae Lactococcus Lactococcus lactis

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Moraxella Moraxella osloensis

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Lactobacillus helveticus

Firmicutes Bacilli Bacillales Staphylococcaceae Macrococcus Macrococcus caseolyticus

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter Acinetobacter johnsonii

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Lactobacillus delbrueckii

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus thermophilus

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Lactobacillus fermentum

Firmicutes Bacilli Lactobacillales Lactococcaceae Lactococcus Lactococcus piscium

Actinobacteria Actinobacteria Micrococcales Micrococcaceae Rothia Unclassified bacterium

Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia Escherichia coli

Firmicutes Bacilli Lactobacillales Lactococcaceae Lactococcus Lactococcus raffinolactis

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonadaceae Pseudomonadaceae fragi

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Psychrobacter Psychrobacter pasteurii

Bacteroidetes Flavobacteriia Flavobacteriales Weeksellaceae Chryseobacterium Chryseobacterium haifense

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter Acinetobacter junii

Firmicutes Bacilli Lactobacillales Lactobacillaceae Pediococcus Unclassified bacterium

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonadaceae Pseudomonadaceae

fluorescens

Firmicutes Bacilli Lactobacillales Lactobacillaceae Pediococcus Pediococcus parvulus

Firmicutes Bacilli Bacillales Bacillaceae Exiguobacterium Exiguobacterium indicum

The Phylum, Class, Order, Family, Genus and Species columns indicate the classification of each bacteria.

TABLE 5 Confusion matrix depicts predicted values against actual values.

Actual class Predicted class

Caserta Salerno

Caserta 2 0

Salerno 1 7

In this instance, seven samples from Salerno and two from Caserta are correctly classified,

while only one sample from Salerno is misclassified.

a detailed assessment of the model’s performance on the specific
test dataset.

5 Discussion

Mozzarella di Bufala Campana PDO is a designation that
certifies the mozzarella is produced in the Campania region,
Italy, and follows traditional production methods and established
quality standards to preserve its authenticity and excellence. The
PDO protects the product name from imitations and assures
buyers that they are purchasing a genuine product produced
according to the traditional specifications of the designated area.
Recognizing the correct origin is crucial to preserving the diversity
and excellence of local productions. Protection against imitations
and counterfeits, guaranteed by the PDO, helps maintain the

product’s reputation and preserves its cultural history. Ultimately,
correctly identifying the origin of PDO mozzarella not only
ensures product quality but also contributes to preserving the
cultural and gastronomic heritage associated with this unique
Italian specialty.

Indeed, the integration of machine learning (ML) and

explainable artificial intelligence (XAI) techniques holds significant
value in various contexts, including the analysis of biological
data such as microbiota and metabolomics. Machine learning

facilitates the creation of accurate predictive models based on
microbiological data, aiding in the authentication and protection
of PDO products like Mozzarella di Bufala Campana. XAI
techniques ensure transparency and interpretability, reinforcing
trust among consumers, regulators, and industry stakeholders. This
combination not only enhances the certification of food origin
but also strengthens the preservation of cultural and gastronomic
heritage associated with traditional foods. Overall, microbiota
analysis plays a vital role in ensuring the authenticity, quality, and
safety of food products like Mozzarella di Bufala Campana PDO.
In this study, each sample exhibits a relative abundance of various
microbial species, which are not present in all samples. The most
prevalent genera are Pseudomonas, Lactobacillus, Streptococcus, and
Acinetobacter. The cheese-making process of Mozzarella di Bufala
Campana is a combination of high-quality ingredients and specific
procedures, with particular attention to the crucial role played by
natural whey containing thermophilic lactic bacteria. The presence
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of thermophilic lactic bacteria is interesting because they survive
at high temperatures during the processing, thus contributing
to the uniqueness of Mozzarella di Bufala Campana (Levante
et al., 2023). The ecological complexity of these thermophilic
lactic bacteria is an aspect that can be studied in detail to
better understand the fermentation process and the production
of this traditional cheese. Research conducted has shown that,
despite ecological complexity, only certain thermophilic lactic acid
bacteria (LAB), namely Streptococcus thermophilus, Lactobacillus
delbrueckii, and Lactobacillus helveticus, are the main players in
the curd fermentation. This is one of the peculiarities that helps
preserve the unique characteristics of the cheese and protects local
producers from imitations and counterfeits. It also assures buyers
that they are purchasing an authentic and high-quality product,
respecting the long history and reputation of Mozzarella di Bufala
Campana as a traditional and artisanal product (Pisano et al.,
2016).

6 Conclusion

This paper is an example of how an XAI analysis can be
applied with trustworthiness in the context of discriminating the
geographical origin of PDO Mozzarella di Bufala Campana based
on microbiota bacterial abundance. This validates the approach
employed in our study and confirms that certain bacteria can
be considered reliable indicators of geographical origin. The
predictive models developed using machine learning techniques
have proven to be effective in classifying the geographical origin
of mozzarella samples. These results provides strong support
for food traceability, enabling consumers to make informed
choices and ensuring that products are authentic and safe.
The results obtained have significant implications for the food
industry as they offer an innovative and reliable method to
authenticate and protect high-quality regional products. This
can contribute to strengthening consumer confidence in food
products and supporting local economies through the promotion
of sustainable agricultural practices. Further research could delve
deeper into microbiota analysis and assess the effectiveness of other
analytical techniques in improving the accuracy of predictions
regarding the geographical origin of food products. Machine
learning facilitates the creation of robust predictive models
capable of accurately identifying the origin of food products
based on microbiological data. Furthermore, XAI techniques
provide transparency and interpretability, enabling stakeholders
to understand how these models arrive at their conclusions.
This combination not only ensures the trustworthiness of
predictions but also fosters trust among consumers, regulators,
and industry professionals. Moving forward, further research
could delve deeper into microbiota analysis and explore the
effectiveness of additional analytical techniques in enhancing
the accuracy of predictions regarding the geographical origin
of food products. Additionally, investigating the application of
these approaches in diverse contexts and food products would
expand the scope and applicability of our findings, driving
continual advancements in food traceability and quality assurance
practices.
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