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Cationic biocides (CBs), such as quaternary ammonium compounds and

biguanides, are critical for controlling the spread of bacterial pathogens like

Enterococcus spp., a leading cause of multidrug-resistant healthcare-associated

infections. The widespread use of CBs in recent decades has prompted concerns

about the potential emergence of Enterococcus spp. populations exhibiting

resistance to both biocides and antibiotics. Such concerns arise from their

frequent exposure to subinhibitory concentrations of CBs in clinical, food chain

and diverse environmental settings. This comprehensive narrative review aimed

to explore the complexity of the Enterococcus’ response to CBs and of their

possible evolution toward resistance. To that end, CBs’ activity against diverse

Enterococcus spp. collections, the prevalence and roles of genes associated

with decreased susceptibility to CBs, and the potential for co- and cross-

resistance between CBs and antibiotics are reviewed. Significant methodological

and knowledge gaps are identified, highlighting areas that future studies should

address to enhance our comprehension of the impact of exposure to CBs on

Enterococcus spp. populations’ epidemiology. This knowledge is essential for

developing effective One Health strategies that ensure the continued efficacy of

these critical agents in safeguarding Public Health.

KEYWORDS

Enterococcus, biocides, quaternary ammonium compounds, biguanides, susceptibility,
One Health

1 Introduction

The use of cationic biocides (CBs) is critical to control and prevent the dissemination
of bacterial pathogens in the most diverse environments (Wales and Davies, 2015; Fox
et al., 2022). They have been a cornerstone in the improvement of hygienic practices,
preventing infections and, consequently, reducing the need for antibiotic use (Wales and
Davies, 2015; Fox et al., 2022). The global antiseptics and disinfectants market, including
CBs, has been continuously growing and is expected to reach $13.3 billion by 2028, which
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is almost double the market size of $7.5 billion in 2020 (Zion
Market Research, 2021). Thus, over the last decades, the extensive
use of CBs and consequent high exposure of bacteria to these
compounds has been raising concerns about the possibility of
selection of strains resistant either to these or other antimicrobials,
as antibiotics (Moore et al., 2008). The assessment of the impact of
biocides in the evolution of Enterococcus populations is of current
concern, as this is one of the leading multidrug-resistant (MDR)
healthcare-associated pathogens worldwide (Guzman Prieto et al.,
2016; Garcia-Solache and Rice, 2019). Among the more than
60 validated Enterococcus species,1 Enterococcus faecalis and
Enterococcus faecium are the two predominantly implicated in
human opportunistic infections and are among the most prevalent
in the human gut microbiota (Guzman Prieto et al., 2016; Garcia-
Solache and Rice, 2019; Zaheer et al., 2020). They are intrinsically
resistant to a broad spectrum of antibiotics and have rapidly
acquired resistance to other critical ones, particularly to ampicillin
or vancomycin among E. faecium (Guzman Prieto et al., 2016;
Garcia-Solache and Rice, 2019; Freitas et al., 2021). Indeed,
vancomycin-resistant E. faecium are categorized as high priority on
the World Health Organization priority pathogens list for research
and development of new antibiotics, causing infections with limited
treatment options and associated with high mortality and health
care costs (Guzman Prieto et al., 2016; Garcia-Solache and Rice,
2019; Freitas et al., 2021; World Health Organization [WHO],
2024). They are easily spread between patients and across their
surrounding hospital environment through fecal contamination
of the hands of patients, the healthcare staff and visitors, and
of the medical equipment or other inanimate surfaces (Arias
and Murray, 2012; Correa-Martinez et al., 2020). Furthermore,
due to their remarkable ability to survive harsh conditions,
such as nutrient scarcity or desiccation, Enterococcus spp. might
remain on these contaminated surfaces for extended periods,
even years (Arias and Murray, 2012; Dancer, 2014; Suleyman
et al., 2018; Gaca and Lemos, 2019; Correa-Martinez et al., 2020).
Effective antisepsis and disinfection practices are, therefore, crucial
to break the chain of transmission, prevent spread of these
microorganisms in the hospital environment and potential life-
threatening MDR infections. Enterococcus spp. exposure to CBs,
including at subinhibitory concentrations, extends beyond human
clinical settings, as they are part of the natural microbiota of
plants, soil, and the human and animals’ gastrointestinal tract,
and cause animal infections (Gnanadhas et al., 2013; Guzman
Prieto et al., 2016; Maillard, 2018; Garcia-Solache and Rice, 2019;
McCarlie et al., 2020; Zaheer et al., 2020; Fox et al., 2022). Therefore,
CBs also play a key role in the control of their transmission
in the veterinary, food chain (e.g., food industry, farms), or
human domestic contexts (Gnanadhas et al., 2013; Guzman
Prieto et al., 2016; Maillard, 2018; Garcia-Solache and Rice, 2019;
McCarlie et al., 2020; Zaheer et al., 2020; Fox et al., 2022). In
addition, Enterococcus spp. are exposed to CBs in sewage, aquatic
systems, and soil/sediments, resulting from domestic, hospital, and
industrial discharges (Matsushima and Sakurai, 1984; European
Medicines Evaluation Agency [EMEA], 1996a; Lucas, 2012; Cowley
et al., 2015; Tezel and Pavlostathis, 2015; Ostman et al., 2017;

1 http://www.bacterio.net/enterococcus.html#r

Environment and Climate Change Canada [ECCC], 2019; Pereira
and Tagkopoulos, 2019; Pati and Arnold, 2020).

Among CBs, the most common and to which the susceptibility
of Enterococcus spp. has been increasingly studied in the last
years, are the quaternary ammonium compounds (QACs) and
the biguanides (Moore et al., 2008; Fox et al., 2022; Maillard
and Pascoe, 2024). However, the dispersed and sometimes
contradictory information, coupled with limitations in study
designs impacting their general conclusions, underscores the need
for a comprehensive literature review to establish a standpoint on
current data and address existing research gaps.

Here, we reflected on CBs’ activity against Enterococcus spp.
from different sources, geographical regions and years, while taking
into consideration the current challenges associated with the study
of biocide susceptibility. Moreover, we explore the evolution of
decreased susceptibility to CBs reported for particular enterococcal
populations of diverse epidemiological backgrounds as well as
discuss the outcomes of in vitro exposure of Enterococcus spp. to
subinhibitory concentrations of CBs. The prevalence of genes with
a known or predicted role on CBs susceptibility in Enterococcus
spp. and their confirmed or possible link to decreased susceptibility
phenotypes are also reviewed, as well as the potential risk of co- and
cross-resistance between CBs and antibiotics. Finally, this review
highlights the methodological and knowledge gaps that need to be
addressed in future research to better understand the implications
of CBs use on Enterococcus spp. evolution and ultimately contribute
to the development of appropriate interventions in diverse sectors
highly exposed to CBs.

2 Cationic biocides

Cationic biocides (CBs) are broad-spectrum antimicrobial
compounds widely employed in disinfectants, antiseptics, and
preservatives (Fox et al., 2022). These agents have been used
in clinical and domestic settings, the food industry, agriculture,
and other sectors since the 1930s (Gilbert and Moore, 2005;
Moore et al., 2008). CBs antibacterial mechanism of action
primarily targets the negatively charged cytoplasmic membrane
(Salton, 1951; Hugo and Longworth, 1964, 1966; Denton, 1991;
Gilbert and Moore, 2005; Maillard and Pascoe, 2024). However,
the specific interaction of each CB with the membrane and
subsequent concentration-dependent bacteriostatic or bactericidal
mechanisms differ between the chemically diverse compounds
(Figure 1) (Salton, 1951; Hugo and Longworth, 1964, 1966;
Denton, 1991; Gilbert and Moore, 2005; Maillard and Pascoe,
2024). Indeed, these membrane-active agents fall into different
classes with various chemical structures (Figure 1), whose intrinsic
properties influence the CB’s activity (Salton, 1951; Hugo and
Longworth, 1964, 1966; Denton, 1991; Gilbert and Moore, 2005;
Maillard and Pascoe, 2024).

2.1 Quaternary ammonium compounds

Over the past decades, and particularly in recent years, the
use of QACs has been increasing in diverse fields of application
(Gerba, 2015; Buffet-Bataillon et al., 2016; Hora et al., 2020).
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FIGURE 1

Chemical structures and mechanisms of action of Quaternary Ammonium Compounds (QACs) and Biguanides. The chemical structures of the most
common QACs (1) and biguanides (6), whose activity against Enterococcus spp. has been studied, are presented along with their respective
mechanisms of action for bacteriostatic (2: QACs; 4: biguanides) and bactericidal (3: QACs; 5: biguanides) concentrations. Molecules were drawn
using ChemDraw v16.0 (https://revvitysignals.com/products/research/chemdraw). The figure was partly generated using Servier Medical Art,
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

Their general chemical structure is N+R1R2R3R4 X−, where
R represents hydrogen atoms, alkyl or aryl groups, and X
represents an anion, commonly Cl− or Br− (Figure 1-1; Buffet-
Bataillon et al., 2012; Gnanadhas et al., 2013). The antimicrobial
activity of QACs correlates with the n-alkyl chain length, which,
against Gram-positive Staphylococcus aureus, is optimal at n = 14

(Daoud et al., 1983; Gilbert and Al-Taae, 1985). This is because
QACs’ hydrophobic tail(s) directly interact with the cytoplasmagic
membrane (Figure 1-2,3; Salton, 1951; Ioannou et al., 2007).
The mechanism of action of QACs has been also studied against
other Gram-positive bacteria, namely Enterococcus spp. (Salton,
1951; Ioannou et al., 2007). After the adsorption of the positively
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charged quaternary nitrogen to the acidic phospholipid heads in
the membrane, the hydrophobic chain(s) interdigitates into the
hydrophobic bilayer, creating hydrophilic voids in the membrane’s
core (Figure 1-2; Salton, 1951; Gilbert and Moore, 2005; Ioannou
et al., 2007). This results in a loss of the membrane’s physical and
ionic integrity, with leakage of cytoplasmic components, osmotic
dysregulation, inhibition of respiratory enzymes and transport, and
oxidative stress (Figure 1-2; Salton, 1951; Gilbert and Moore, 2005;
Ioannou et al., 2007). With increasing concentrations, QACs have
a bactericidal action by solubilizing the hydrophobic membrane
components, with the formation of mixed QAC-phospholipids
micelles, lysing the cell and consequently releasing all cytoplasmatic
contents (Figure 1-3; Salton, 1951; Gilbert and Moore, 2005;
Ioannou et al., 2007).

A wide variety of QACs has been formulated over the years with
increasing antimicrobial efficacy and improved activity in adverse
conditions (e.g., anionic residues, hard water) (Gerba, 2015; Rutala
et al., 2019; Belter et al., 2022). Among the most broadly used
QACs, to which susceptibility of Enterococcus spp. has been studied,
are benzalkonium chloride (BC), cetylpyridinium chloride (CPC),
cetrimide (CE), and didecyldimethylammonium chloride (DDAC)
(Figure 1-1 and Supplementary Table 1; Buffet-Bataillon et al.,
2012).

Benzalkonium chloride (BC) is a widely used mixture
of n-alkyl-dimethyl-benzyl-ammonium chlorides, with variable
n-alkyl chain lengths, typically ranging from 8 to 18 carbons
(Figure 1-1; Gilbert and Moore, 2005; Buffet-Bataillon et al., 2012;
Belter et al., 2022). It has been used since the 1930s and its extensive
applications span from personal care products (e.g., mouthwashes,
shampoos and body lotions), to disinfectants and antiseptics in
household, industrial, agricultural, and clinical environments, or
as mitigators of microbial metal corrosion within oil pipelines
and cooling water systems, with concentrations ranging from
20 mg/L, in ophthalmologic formulations, to 20,000 mg/L, in wood
preservation products (Liu et al., 2017; Kampf, 2018a; Pereira and
Tagkopoulos, 2019; Short et al., 2021; Kheljan et al., 2022; Wang
et al., 2023). BC’s concentrations of 100–3,000 mg/L are used
for healthcare and household antisepsis and surface disinfection
(Kampf, 2018a; Fox et al., 2022).

Other QACs include cetylpyridinium chloride (CPC), also
known as 1-hexadecylpyridinium chloride, corresponding to
the chlorine salt of a positively charged pyridine bonded to
a hexadecane lipophilic chain, and cetrimide (CE), which
consists in a mixture of tetradecyltrimethylammonium,
dodecyltrimethylammonium, and hexadecyltrimethylammonium
bromides (Figure 1-1; Council of Europe, 2019; Mao et al., 2020;
Lv et al., 2023; Okeke et al., 2023). CPC, whose antimicrobial
activity was first described in 1939, has been used for decades
in dentistry, being predominantly found in over-the-counter
oral hygiene products, such as mouthwashes, toothpastes, and
sprays, at 30–3000 mg/L, for the prevention and control of oral
infections (Mao et al., 2020; Komine et al., 2021; Takeda et al.,
2022; Lv et al., 2023; Setiawatie et al., 2023). In addition, it is
approved by regulatory agencies of several countries including
the USA, but not the European Union, for the sanitization of
poultry carcasses in poultry processing plants, at concentrations
of ≤1% (Beers et al., 2006; Waldroup et al., 2010; Safe Foods
Corporation, 2019; FSIS - U.S. Food Safety and Inspection Service
- Department of Agriculture, 2023). CE, in use since 1942, serves

as a topical antiseptic for cleaning the skin, wounds and minor
burns, in dentistry, and for the treatment of nappy rash, acne and
seborrheicitis, in concentrations between 1,000 and 30,000 mg/L
(European Medicines Evaluation Agency [EMEA], 1996b).

Didecyldimethylammonium chloride (DDAC), a twin QAC
developed in the 1960s, features two long-chain alkyl groups and
two methyl substituents bonded to the positively charged nitrogen,
along with the negatively charged chloride anion (Figure 1-1;
Kampf, 2018b; Belter et al., 2022). DDAC finds applications in
antiseptics and disinfectants used in clinical, food chain, and
domestic environments, in laundry, agricultural tools and vehicles,
in swimming pools and water displays, and various indoor and
outdoor hard surfaces (e.g., walls, floors), with concentrations
ranging from 200 to 12,000 mg/L (Schwaiger et al., 2014; Kampf,
2018b; Fox et al., 2022).

QACs may leave residues on treated surfaces and in the
environment as they are photolytically stable and have long half-
lives (e.g., >150 days in pH ≥ 5) (Dizman et al., 2004; Mousavi
et al., 2013; Kampf, 2018a,b). They have been found in some types
of food including fruits and nuts, vegetables or dairy products (up
to 14.4 mg/kg), possibly through contact with disinfected surfaces
(European Food Safety Authority [EFSA], 2013; Díez et al., 2016;
EURL-SRM - EU Reference Laboratory for Pesticides Requiring
Single Residue Methods, 2016). Also, like most trace contaminants,
QACs are not completely removed through wastewater treatment,
being released into the environment and found in sewage and
surface waters in different concentrations (0.0078 µg/L to 6 mg/L)
(Tezel and Pavlostathis, 2015; Zhang et al., 2015; Ostman et al.,
2017; Pereira and Tagkopoulos, 2019; DeLeo et al., 2020; Kim
et al., 2020; Pati and Arnold, 2020). QACs are considered “very
toxic to aquatic life with long-lasting effects” by the European
Chemicals Agency (ECHA) (European Chemicals Agency [ECHA],
2023a,b). Moreover, QACs are highly biodegradable under aerobic
conditions and known to adsorb strongly to the negatively
charged surfaces of sludge, soil and sediments, because of their
positive charge, interfering with their bioavailability and enabling
the fluctuation of QACs’ concentrations that can impact local
microbiota (Tezel and Pavlostathis, 2015; Zhang et al., 2015;
Kampf, 2018a; DeLeo et al., 2020). Further investigation is
needed to determine the influence of other factors promoting
the environmental persistence of QACs, such as the emergent
micropollutants like microplastics, to which QACs may potentially
bind (Kim et al., 2022). While QAC disinfectants have historically
been viewed as having low toxicity to humans, recent studies on
human and mouse cell lines have shown that chronic exposure can
cause inflammation, disrupt mitochondrial function, alter estrogen
signaling, and inhibit cholesterol synthesis. Human exposure to
QACs likely occurs via dermal contact, inhalation of aerosolized
droplets, and ingestion in water and food, highlighting the need for
further research, especially in light of the increased use during the
COVID-19 pandemic (Hrubec et al., 2021; Frantz, 2023).

2.2 Biguanides

Biguanides correspond to a class of compounds that carry
the functional moiety HN(C(NH)NH2)2 (Figure 1-6), comprising
antidiabetic (e.g., metformin), antimalarial (e.g., proguanil) and
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other antimicrobial compounds, some of which are included in the
WHO List of Essential Medicines (Gilbert and Moore, 2005; Grytsai
et al., 2021; Kathuria et al., 2021; World Health Organization
[WHO], 2023). The activity of the two most common biguanide
biocides, chlorhexidine digluconate (CHX) and polyhexamethylene
biguanides (PHMB), the latter also known as polihexanide (Jones
and Joshi, 2021; Kathuria et al., 2021), against Enterococcus spp. has
been evaluated over the years, particularly for CHX (Figure 1-6 and
Supplementary Table 1).

CHX is a bisbiguanide with extensive applications in the human
and veterinary healthcare contexts as a hand, surgical site or wound
antiseptic, and as a surface and instrument disinfectant, due to
its broad-spectrum activity and long-lasting residual activity when
comparing to other biocides (Williamson et al., 2017; Kampf,
2018c; Sommer et al., 2019; Fox et al., 2022). Moreover, CHX
daily bathing of intensive care unit patients has been increasingly
adopted in order to reduce colonization and infection by MDR
bacteria, such as vancomycin-resistant Enterococcus (Climo et al.,
2009; Popovich et al., 2012; Mendes et al., 2016; Lowe et al., 2017;
Williamson et al., 2017; Tien et al., 2020). Similarly, CHX is broadly
used in household antiseptics, especially in oral, pharmaceutical
and handwashing products, disinfectants, and preservatives (e.g.,
cosmetics and personal care products), as well as in diverse
industries (e.g., antiseptic for food handlers and in paper products
such as tissues or wall paper) (Kampf, 2018c). In-use concentrations
range from 25 to 100 mg/L for preservation to 500–40,000 mg/L
for antisepsis and disinfection purposes (Maillard, 2005; Kampf,
2018c; Fox et al., 2022). CHX’s chemical structure consists
in a symmetric bisbiguanide with two chloroguanide groups
connected by a hydrophobic hexamethylene chain (Figure 1-
6; Cieplik et al., 2019; Kathuria et al., 2021). Its antibacterial
mechanism of action has been studied among Gram-positive and
Gram-negative bacteria, namely S. aureus and Escherichia coli,
respectively (Hugo and Longworth, 1964, 1966; Denton, 1991).
A key distinction between bisbiguanides and QACs’ mechanisms
of action lies in the solubilization of the hydrophobic regions
(Figure 1). Whilst the hydrophobic chain of QACs integrates into
the hydrophobic core of the cytoplasmatic membrane, CHX’s, being
only 6 carbons long, is not able to do so (Gilbert and Moore,
2005). Instead, as a bacteriostatic, the two positively charged
biguanide groups of CHX displace the cell wall and cytoplasmatic
membrane associated divalent cations (e.g., Mg2+ and Ca2+)
and associate to the then exposed anionic sites, forming bridges
between pairs of adjacent phospholipids (Figure 1-4; Hugo and
Longworth, 1964, 1966; Denton, 1991; Gilbert and Moore, 2005).
This interaction disturbs the membrane’s fluidity, osmoregulation
and metabolism, with increased permeability and leakage of low
molecular weight cytosolic components (e.g., potassium ions),
and inhibition of transport and cellular respiration (Figure 1-
4; Hugo and Longworth, 1964, 1966; Denton, 1991; Gilbert and
Moore, 2005). At higher concentrations, CHX has a bactericidal
mechanism of action through the complete loss of cytoplasmatic
membrane integrity and, ultimately, the precipitation of proteins
and nucleic acids and general cytoplasmic coagulation (Figure 1-
5; Hugo and Longworth, 1966; Denton, 1991; Gilbert and Moore,
2005). Additionally, an apparent ability to inhibit membrane-
bound and soluble ATPase was detected in E. faecalis (Figure 1-5;
Harold et al., 1969).

Similarly to QACs, CHX is not completely removed through
wastewater treatment, with low concentrations detected in the
treated effluent (Matsushima and Sakurai, 1984; Ostman et al.,
2017; Environment and Climate Change Canada [ECCC], 2019).
Residues of CHX have also been described in the skin of patients
(<4.69–600 mg/L) after CHX bathing, as well as in milk from
cows treated with CHX teat dips and sprays (European Medicines
Evaluation Agency [EMEA], 1996a; Popovich et al., 2012). CHX
undergoes photodegradation but limited biodegradation and has a
long half-life (e.g., 180–365 days in water, soil or sediment) (Kampf,
2018c; Environment and Climate Change Canada [ECCC], 2019).
It tends to persist in water, suggesting potential for prolonged
exposure far from the sources of discharge to the environment, and
is “very toxic to aquatic life with long-lasting effects” according to
ECHA (Kampf, 2018c; Environment and Climate Change Canada
[ECCC], 2019; European Chemicals Agency [ECHA], 2023c).
However, its bioavailability reduces over time by the adsorption
of CHX to sediments and soil (Kampf, 2018c; Environment
and Climate Change Canada [ECCC], 2019), potentially with a
decreased impact over local microbiota.

PHMB is a polymeric biguanide, composed by 2 to 30 repeats of
hexamethylene biguanide units, and possesses a bacteriostatic and
bactericidal mechanism of action similar to the one described for
CHX (Figure 1-6), although with a distinct initial interaction with
the cytoplasmatic membrane (Davies et al., 1968; Ikeda et al., 1984;
McDonnell and Russell, 1999; Gilbert and Moore, 2005; Kathuria
et al., 2021). Given the polycationic nature of PHMB, the bridging
occurs not only between pairs of adjacent phospholipids but rather
there is the formation of a mosaic of single phospholipid type
domains, each with different phase transition properties (Davies
et al., 1968; Ikeda et al., 1984; McDonnell and Russell, 1999; Gilbert
and Moore, 2005; Kathuria et al., 2021). An increased PHMB
activity has been linked to higher levels of oligomerization in the
Gram-negative E. coli (Broxton et al., 1983). PHMB has been used
predominantly in concentrations between 30 and 32,000 mg/L
in recreational water (e.g., swimming pools, artificial fountains)
treatment, as well as in wound and burn antisepsis, surfaces
and instrument disinfection in hospitals, dentists, farms and food
handling settings, and in contact lens solutions, personal care
products and fabric softeners preservation (Hübner and Kramer,
2010; Kampf, 2018d; Kathuria et al., 2021; Fox et al., 2022).
PHMB shows very low human toxicity or risk of adverse effects
(Gilbert and Moore, 2005; Grytsai et al., 2021; Fox et al., 2022;
Rippon et al., 2023).

PHMB is very persistent in water, also showing a long half-
life in this context, which may constitute an issue in aquatic
environments as it is classified by ECHA, like CHX and QACs,
as “very toxic to aquatic life with long lasting effects” (European
Chemicals Agency [ECHA], 2017, 2023d; Kampf, 2018d). Also,
it is considered to be hydrolytically and photolytically stable
(European Chemicals Agency [ECHA], 2017). On the other hand,
PHMB binds immediately to soils, except for sandy soil, and it
is likely susceptible to some extent of biodegradation, although
it is regarded as “non readily biodegradable” (O’Malley et al.,
2006; Lucas, 2012; European Chemicals Agency [ECHA], 2017;
Kampf, 2018d).
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3 In Vitro testing of Enterococcus
spp. susceptibility to cationic
biocides

The in vitro assessment of Enterococcus spp. susceptibility
to CBs has been performed using diverse methodologies, each
selected to provide specific data relevant to the purpose of
the test. The bactericidal efficacy claim of disinfectant or
antiseptic products in Europe and the USA is supported by
quantitative or qualitative tests simulating practical conditions
specified in different standards according to their intended use
(EPA - United States Environmental Protection Agency, 2012,
2018; Official Methods of Analysis of the AOAC International,
2013; CEN-CENELEC - European Committee for Standardization
- European Committee for Electrotechnical Standardization,
2018). These may include different Enterococcus spp. reference
strains as test organisms (EPA - United States Environmental
Protection Agency, 2012; CEN-CENELEC - European Committee
for Standardization - European Committee for Electrotechnical
Standardization, 2018). However, such standardized tests required
for assessing biocidal product efficacy may not be ideal for
examining the susceptibility of Enterococcus spp. strains from
diverse genomic and epidemiological backgrounds. They may
also lack insights into long-term adaptation to biocide exposure
within subinhibitory ranges, potentially not detecting evolving
populations that remain susceptible to biocidal products. Thus,
research studies assessing the susceptibility to CBs of Enterococcus
spp. from diverse epidemiological and genomic backgrounds over
the years have primarily relied on the in vitro determination of
minimum inhibitory concentrations (MICs), mainly due to the
methodology’s ease of use (Gnanadhas et al., 2013; Fox et al., 2022).

MIC is defined as the lowest antimicrobial concentration
that inhibits the growth of the microorganisms, and it is
usually measured in doubling dilutions (Clinical and Laboratory
Standards Institute [CLSI], 1999, 2018; Gnanadhas et al., 2013;
Fox et al., 2022). Additionally, some studies also include the
determination of the minimal bactericidal concentrations (MBCs),
corresponding to the minimum concentration that kills >99.9%
of cells, which constitute a more suitable measure of susceptibility
for most biocidal applications where the desired effect is to
kill the microorganisms (Clinical and Laboratory Standards
Institute [CLSI], 1999; Gnanadhas et al., 2013; Fox et al., 2022;
Maillard and Pascoe, 2024).

Supplementary Table 1 shows several published MICs and
MBCs of QACs (BC, DDAC, CE, CPC) and biguanides (CHX
and PHMB), pointing to a good antimicrobial activity of these
CBs against Enterococcus spp. isolates, when MICs or MBCs
are compared to typical in-use concentrations. However, despite
offering information on epidemiological variability and the
monitoring of susceptibility trends within this genus, MICs or
MBCs may not directly correlate with the bactericidal efficacy
evaluated by the standards for disinfectant or antiseptic products
approval (Kampf, 2022). This may occur even if the concentrations
used correspond to those in the biocidal products because, in
most susceptibility studies, MICs and MBCs are determined
for unformulated CBs in simple aqueous solutions and biocidal
products generally include other compounds that enhance CBs’
activity or stability (Cowley et al., 2015; Fox et al., 2022; Maillard

and Pascoe, 2024). Some studies with biocidal formulations against
Enterococcus spp. are available, showing MIC and MBC values
higher or within the ranges of those in Supplementary Table 1
for unformulated CBs (McBain Andrew et al., 2004; Moore et al.,
2008; Cowley et al., 2015; Günther et al., 2015; Bhardwaj et al.,
2016; Ulusoy et al., 2016; López-Rojas et al., 2017; Piątkowska
et al., 2021). However, these were evaluated at the endpoint of the
MIC determination protocols used, corresponding typically to 24h
or sometimes longer (48h), instead of the usually recommended
disinfectant contact times in different contexts of 3 to 10 min
(Maillard, 2005; Hong et al., 2017; Rutala et al., 2019). Additionally,
the use of MIC and MBC may fail to detect tolerant persister
subpopulations that are able to survive transient exposures to lethal
biocide concentrations, potentially facilitating the evolution toward
resistance, as observed for E. coli exposed to BC (Nordholt et al.,
2021). Hence, tests to assess the efficacy of high concentrations
of CBs, included or not in biocidal products, considering real
exposure times are still lacking against Enterococcus spp. from
diverse epidemiological and genomic backgrounds.

Most studies use the microdilution broth protocol described
by the CLSI guidelines for antibiotic susceptibility testing (Clinical
and Laboratory Standards Institute [CLSI], 1999, 2018) which
has the advantage of allowing the comparison of data between
different studies. However, it was designed primarily to assess
the therapeutical success of antibiotics for infections’ treatment,
which is reflected in the bacterial growth conditions specified
(37◦C; pH = 7.3) (Wales and Davies, 2015; Clinical and Laboratory
Standards Institute [CLSI], 2018; Maillard and Pascoe, 2024). Thus,
several other factors (e.g., variable temperature or pH, oxygen
limitation, starvation, lower or higher bacterial density, bacterial
growth phase) that can affect the efficiency of biocides in real
application contexts, namely by altering the cytoplasmic membrane
or reducing the cell’s metabolic activity, are not pondered (Zhang
and Rock, 2008; Saito et al., 2014; Ran et al., 2015; Wiegand et al.,
2015; Yoon et al., 2015; Gaca and Lemos, 2019; Fox et al., 2022;
Maillard and Pascoe, 2024). Recently, we learned that E. faecium
and E. faecalis isolates from different epidemiological and clonal
backgrounds exhibited decreased susceptibility (MIC and MBC
increases of two to eightfold) to BC at 22◦C and/or pH = 5,
compared to standard conditions (37◦C; pH = 7.3) (Pereira et al.,
2023), confirming the influence of external growth conditions on
CBs susceptibility.

Furthermore, Enterococcus are also regularly found within
multicellular communities such as biofilms, both on wet
environments and dry surfaces, in various settings (Ch’ng
et al., 2019). Biofilms are usually associated with a decreased
susceptibility to biocides via several mechanisms such as persister
cells and surrounding extracellular polymeric matrix that forms
a barrier to the diffusion of biocides through the biofilm (Ch’ng
et al., 2019; Wicaksono et al., 2021; Maillard and Pascoe, 2024).
Although a good biocidal activity remains generally described
against Enterococcus spp. biofilms (Lima et al., 2001; Arias-Moliz
et al., 2010; Baca et al., 2011; Ravi Chandra et al., 2015; Komiyama
et al., 2016; Valverde et al., 2017; Machuca et al., 2019; Günther
et al., 2021), one study reported a decreased susceptibility in
enterococcal biofilms compared to planktonic cells, for BC, DDAC,
CHX and PHMB, of around twofold between minimum biofilm
eradication concentrations (MBECs) and MBCs (Cowley et al.,
2015). Also, in a recent study, a BC concentration of 80 mg/L was
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not sufficient to eradicate E. faecium and E. faecalis biofilms for
which respective planktonic cells’ MBCs varied from 10 to 40 mg/L
(Salamandane et al., 2023).

Finally, given the absence of established standardized protocols
for the study of biocide susceptibility of different bacterial strains or
collections, prudence is necessary when comparing MIC/MBC data
across different studies, making comprehensive epidemiological
analysis difficult (Buffet-Bataillon et al., 2012; Maillard and Pascoe,
2024). A clear example of such issue is the broad range of CHX
MICs available for the E. faecalis ATCC 29212, from <1 to
27 mg/L (Supplementary Table 1), determined using different
methodologies. Factors such as the incubation time, bacterial
growth phase (e.g., exponential vs stationary), growth culture
media or the type of plate plastic can influence the susceptibility
to CBs in vitro, conducting to diverse outcomes for the same
strains (Clinical and Laboratory Standards Institute [CLSI], 1999;
Bock et al., 2018).

Despite the limitations of data analysis related to the
inconsistency of the methods used and the potential implications
on the applicability and relevance of in vitro data in real
environments, the diverse susceptibility testing methodologies
(e.g., altered growth conditions, planktonic cells or biofilms,
biocidal formulations vs unformulated CBs) may be valuable in
different contexts, provided they are standardized. Meanwhile,
more studies using biocidal formulations, along with the inclusion
of biofilms or modified growth conditions simulating real
scenarios, are crucial to ascertain the activity of CBs against
Enterococcus populations and to conclude about the appropriate
course of action.

Besides susceptibility assessment methodologies, another
aspect needing standardization, also linked to susceptibility testing,
is the terminology used to define the decreased susceptibility
of bacteria to biocides (Maillard and Pascoe, 2024). When the
increased MICs or MBCs do not reach in-use concentrations of
a biocide, it has been described using the terms “tolerance” or
“decreased susceptibility” (Maillard, 2007; Rutala et al., 2019; Wand
and Sutton, 2022; Boyce, 2023). As the term “tolerance” has been
used with different meanings to characterize bacterial susceptibility
to biocides or antibiotics (Brauner et al., 2016), for the purpose
of this review we will use the term “decreased susceptibility”.
On the contrary, if the decreased susceptibility implies that the
microorganisms are not inactivated by the in-use concentrations
of a biocide, then the term “resistance” to the biocide is applied
(Maillard, 2007; Rutala et al., 2019; Wand and Sutton, 2022;
Boyce, 2023).

4 Susceptibility to cationic biocides
of Enterococcus spp. from diverse
sources and time frames

More and more the wide use of antiseptics and disinfectants
in particular environments (e.g., hospitals, the food chain) has
been a cause of concern given the possibility that repeated
exposure to subinhibitory concentrations of these agents may
progressively select for populations with decreased susceptibility
to these antimicrobials (Fraise, 2002; Meyer and Cookson, 2010;
Kampf, 2018e; Maillard and Pascoe, 2024). As a baseline to

monitor the susceptibility evolution trends to CBs over the
years or among strains from diverse sources under a gradient
of selective subinhibitory pressures, setting epidemiological cut-
off (ECOFF) values could be a useful tool (Turnidge et al.,
2006; Morrissey et al., 2014; Kahlmeter and Turnidge, 2022).
ECOFFs are established based on the MIC or MBC distributions
of an antimicrobial for each bacterial species, and correspond
to the minimum concentration above which bacterial strains
have phenotypically detectable acquired reduced susceptibility
mechanisms (Turnidge et al., 2006; Morrissey et al., 2014;
Kahlmeter and Turnidge, 2022). Although the methods used to
determine MICs or MBCs may not accurately reflect resistance
to biocides under real-world application conditions, as previously
discussed, the purpose of setting ECOFF values is not to separate
between resistant or susceptible isolates to biocide products, but
rather to distinguish non-wild-type (those with acquired reduced
susceptibility mechanisms) from wild-type strains (Turnidge et al.,
2006; Morrissey et al., 2014; Kahlmeter and Turnidge, 2022).

Few individual analyses have proposed CBs’ ECOFF
values based on their Enterococcus spp. collection’s MIC and
MBC distributions, including isolates from different sources,
geographical regions and time frames (Morrissey et al., 2014;
Duarte et al., 2019; Kheljan et al., 2022; Pereira et al., 2022).
For CHX, MIC ECOFFs of 8 mg/L and 32 mg/L and an MBC
ECOFF of 64 mg/L have been proposed for E. faecium, whereas,
for E. faecalis, MIC ECOFFs of 8 mg/L, 16 mg/L and 64 mg/L
and MBC ECOFFs of 64 mg/L or higher have been recommended
(Morrissey et al., 2014; Kheljan et al., 2022; Pereira et al., 2022).
For BC, MIC ECOFFs of 8 mg/L and 16 mg/L and an MBC
ECOFF of 16 mg/L have been estimated for both E. faecium
and E. faecalis (Morrissey et al., 2014; Kheljan et al., 2022).
However, the variation in ECOFFs proposed by different studies
underscores the need for comprehensive analyses of MIC and
MBC distributions across the various species-biocide pairs. These
must be conducted using diverse Enterococcus spp. collections and
laboratories to address potential biological, methodological, and
interlaboratory variations. Such an approach aligns with EUCAST
recommendations for antibiotics and is crucial for establishing
definitive ECOFFs for biocides (Kahlmeter and Turnidge, 2022).

In one of the studies proposing ECOFFs to CHX for E. faecalis,
even though the whole population was considered wild type by
the statistical model recommended for the ECOFF estimation,
differences in the susceptibility were detected among isolates from
diverse sources and years (Pereira et al., 2022). Similarly, other
authors have found significant differences across their Enterococcus
spp. collections (Schwaiger et al., 2014; Duarte et al., 2019;
Sobhanipoor et al., 2021; Kheljan et al., 2022; Pereira et al.,
2022, 2023). Most found a higher occurrence of strains with
decreased susceptibility to CHX, DDAC, or BC among clinical
isolates comparing to Enterococcus from other origins included
in the same study (Schwaiger et al., 2014; Guzman Prieto et al.,
2017; Duarte et al., 2019; Sobhanipoor et al., 2021; Pereira et al.,
2023), although contradictory data has also been reported for
BC (Sobhanipoor et al., 2021; Kheljan et al., 2022). Moreover, an
increase in the mean CHX MICs and MBCs of human infection
E. faecalis isolates over the years, between 2001 and 2020, has
been recently reported (Pereira et al., 2022). Beyond the clinical
environment, a significant increasing trend in the BC MICs over
time has also been detected in E. faecium isolated from the
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food chain, including food-animal production settings, meat of
animal origin, and other food products (Pereira et al., 2023).
Furthermore, within populations of E. faecalis and E. faecium from
these settings, higher average CHX MICs and MBCs have been
identified compared to other sources (Kheljan et al., 2022; Pereira
et al., 2022). Of note, most of these studies did not find any
particular genotype justifying the evolution of phenotypes between
sources or time frames (Schwaiger et al., 2014; Kheljan et al., 2022;
Pereira et al., 2022, 2023).

Available data suggest an adaptation of Enterococcus
populations in settings where they are exposed to CBs. Of note, an
increase in the CHX MIC50 (minimum concentration that inhibits
the growth of 50% of the isolates), from 2 to 8 mg/L, and MIC90

(minimum concentration that inhibits the growth of 90% of the
isolates), from 16 to 32 mg/L, was detected in vancomycin-resistant
E. faecium recovered from patients’ infections or colonization
after daily CHX bathing was instituted in the hospital ward,
compared to isolates recovered before the intervention, suggesting
that prolonged exposure to this biocide might indeed select for
decreased susceptibility (Mendes et al., 2016). Nonetheless, large
longitudinal metadata analyses of the populations’ dynamics in
such contexts are critically needed for more supported conclusions.
Currently, most available CBs susceptibility studies lack objective
data on local biocide consumption (e.g., type of compound,
amount used, compliance with effective biocide application
practices, “during use” concentrations) or on the occurrence of
subinhibitory concentrations (Maillard and Pascoe, 2024). This
hinders the establishment of a clear cause-and-effect relationship
of biocide use and Enterococcus spp. evolved phenotypes. Most
studies also use a limited number of Enterococcus strains, lack
clonal or genotypic characterization, and show a low source
diversity, making it challenging to have a global perspective on the
evolution of susceptibility to CBs in particular Enterococcus spp.
populations or environments.

5 Evolution of Enterococcus spp.
serially exposed to subinhibitory
concentrations of cationic biocides
In Vitro

Despite unclear cause-and-effect relationships in the previously
mentioned studies that detected CBs phenotypic evolutions among
field Enterococcus spp. isolates from diverse sources or dates, the
hypothesis that exposure to diverse subinhibitory concentration
gradients of CBs could lead to decreased susceptibility has been
tested in vitro (Cowley et al., 2015; Tezel and Pavlostathis,
2015). These tests, in which diverse Enterococcus spp. are exposed
to low CBs concentrations similar to those found in different
environments, such as residual concentrations in treated surfaces
(e.g., skin, food products, abiotic surfaces) or in surface or
residual waters as a result of indirect contamination, contribute to
identifying the cellular mechanisms involved in Enterococcus spp.
response or adaptation to CBs as well as to other antimicrobials,
including antibiotics (Cowley et al., 2015; Tezel and Pavlostathis,
2015).

Enterococcus spp. passages with BC, DDAC, CPC, CE, CHX,
and PHMB have resulted in MIC increases of 1.2 to more than 100-
fold, that were strain-specific within each species (Supplementary
Table 2). In most cases, MICs and MBCs of Enterococcus spp.
adapted strains remained below the in-use concentrations of CBs.
However, for one E. casseliflavus and one E. faecalis treated
with increasing CE and PHMB concentrations, respectively, MICs
and, for the E. faecalis, MBCs reached the in-use concentrations
range and were stable or only partially reversed after several
biocide-free subcultures (Supplementary Table 2) (European
Medicines Evaluation Agency [EMEA], 1996b; Cowley et al.,
2015; Gadea et al., 2017b; Fox et al., 2022). Also, for most
CHX experiments, including different species, MICs reached the
concentrations typically used for preservation (25–100 mg/L) after
exposure (Supplementary Table 2; Maillard, 2005; Kampf, 2018c;
Fox et al., 2022).

The decreased bacterial susceptibility following the adaptation
protocols may be explained by several factors such as changes
in membrane fatty acid composition, differential expression or
mutations in efflux pumps, induction of stress responses, among
others (Cowley et al., 2015). Although some of the analyses
revealed stable phenotypes, suggesting genotypic adaptation
rather than noninheritable physiological or metabolic adaptation
mechanisms (Baquero and Coque, 2014), these were scarcely
investigated. Bhardwaj et al. (2017) identified significant changes
in membrane phospholipids and mutations in several genes
with previously predicted or experimentally confirmed roles in
decreased susceptibility to CHX, among CHX-adapted E. faecium
strains. In particular, all of them shared a mutation (A290V) in
the gene efrE, which encodes one subunit of the heterodimeric
ATP-binding cassette (ABC) transporter EfrEF whose deletion
resulted in increased CHX susceptibility (Bhardwaj et al., 2017).
Additionally, increased surface hydrophobicity was detected in
E. faecalis passaged in the presence of CPC as well as in those
serially exposed to CHX for which a change in the protein
profile was also found (Kitagawa et al., 2016). Findings such
as these suggest the occurrence of complex bacterial adaptation
mechanisms to CBs and underscore the importance of more
in-depth analyses employing advanced technologies, like whole-
genome sequencing (WGS) and transcriptomics, to identify
possible drivers of Enterococcus spp. decreased susceptibility.

The effects of in vitro serial exposure to subinhibitory
concentrations of CBs in Enterococcus spp. were not limited to
the decreased susceptibility to that specific biocide. Considerable
increases of several fold in the MICs of other biocides (2 to >100
fold), reaching in-use concentrations in many cases, have also been
detected (Supplementary Table 2; Bhardwaj et al., 2017; Gadea
et al., 2017a,b). On the other hand, an increase in susceptibility
to CE occurred in CPC-adapted Enterococcus spp. and BC-adapted
E. faecium, E. faecalis, and Enterococcus spp., to BC in CPC-adapted
Enterococcus spp., to didecyldimethylammonium bromide in CPC-
adapted Enterococcus spp., to CPC in BC-adapted Enterococcus
spp. and CHX-adapted Enterococcus spp., and to triclosan in
CHX-adapted E. casseliflavus and CPC-adapted Enterococcus spp.
(Gadea et al., 2017a,b).

All in all, despite the in vitro research suggesting that bacteria
can adapt to CBs exposure, evidence of such rapid adaptation
in the environment is scarce (Cowley et al., 2015; Maillard
and Pascoe, 2024). Multiple external factors specific of each

Frontiers in Microbiology 08 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1392018
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1392018 June 28, 2024 Time: 18:15 # 9

Pereira et al. 10.3389/fmicb.2024.1392018

setting (e.g., physicochemical, wide range of CBs concentrations,
presence of additional compounds with antimicrobial properties,
presence of organic matter), the different physiological state of
bacterial populations (e.g., changes in metabolic activity and gene
expression), among others, may not allow for the conditions
required for Enterococcus bacteria to adapt (Fox et al., 2022;
Maillard and Pascoe, 2024). Also, another hypothesis that might
explain the limited correlation data between biocide use and an
evolution toward decreased susceptibility in real environmental
contexts are the loss of the adaptation mechanism or the struggle
of adapted populations to compete in their microbial communities
when the CB stress is removed (Cowley et al., 2015). This once
again supports that field studies are a critical research gap, as
mentioned throughout this review, namely longitudinal analyses
with appropriate controls and with collection of data on the
biocide concentrations used, exposure times and time intervals
between exposures, simultaneous application of other compounds,
among others.

6 Genotypes of decreased
susceptibility to cationic biocides
among Enterococcus spp.

CBs’ mechanism of action is complex and comprises multiple
targets, including the cytoplasmic membrane as well as intracellular
components such as proteins and nucleic acids, in a concentration-
dependent manner, as previously discussed (Salton, 1951; Hugo
and Longworth, 1964, 1966; Harold et al., 1969; Denton, 1991;
Gilbert and Moore, 2005; Maillard and Pascoe, 2024). Decreased
susceptibility to CBs in Gram-positive bacteria has been mainly
attributed to efflux pumps (Tezel and Pavlostathis, 2015; Fox et al.,
2022), which may prevent or reduce CB’s antibacterial action by
exporting them from the cytoplasm or the cytoplasmic membrane,
up to a certain CB concentration (Putman et al., 2000; Boyce, 2023).
Enterococcus spp. have been found to harbor several acquired genes
encoding efflux pumps located on the cytoplasmic membrane,
including the well-known qac, bcrABC and oqxAB genes, all
demonstrated to be implicated in the decreased susceptibility to
QACs by functional studies in Gram-positive or Gram-negative
bacteria, and, in the case of some qac genes, also to CHX. Intrinsic
heterodimeric ABC transporters, like EfrEF in E. faecium and
E. faecalis, and mutations in regulatory genes, such as the DNA-
binding response regulator (ChtR), have also been shown to impact
CHX susceptibility.

However, as will be detailed throughout this chapter, for
most genotypes of decreased susceptibility to CBs, their role
in Enterococcus spp. antimicrobial susceptibility is hypothesized
based on functional assays in other bacterial genus and/or
epidemiological studies in Enterococcus spp. in which genotypes
and phenotypes are correlated without molecular support. Further
characterization of the functionality of such genes, through, for
example, gene deletion and complementation studies, is required to
completely elucidate their role in Enterococcus spp. susceptibility to
CBs. Nonetheless, the potential gene exchange with diverse phyla,
both of Gram-positive and Gram-negative bacteria, in contexts
where CBs are present in a wide range of concentrations, is
noteworthy and needs further exploration as the same genotypes in

diverse genetic or epidemiological backgrounds may be associated
with diverse outcomes of CBs susceptibility.

6.1 qac genes

The qac genes detected in Enterococcus spp. are often plasmid-
located and belong to two major classes of efflux pump systems:
the major facilitator superfamily (MFS; e.g., qacA/B) and the small
multidrug resistance family (SMR; e.g., qacC, qacE, qacE11, qacG,
qacJ, qacZ) (Ortega Morente et al., 2013; Rizzotti et al., 2016; Pereira
et al., 2023). They are proton motive force-dependent efflux pumps
integrated in the cytoplasmic membrane via transmembrane
segments (Bay et al., 2008; Cervinkova et al., 2013; Ortega Morente
et al., 2013; Wassenaar et al., 2015; LaBreck et al., 2020). Among
qac genes, qacZ is the only one for which its role in decreased
susceptibility to QACs has been demonstrated in Enterococcus
spp., by complementation of an E. faecalis strain with this gene
(Braga et al., 2011). For the remaining genes, such functional assays
were performed either in S. aureus, for qacA/B, qacC, qacG or
qacJ, or in E. coli, for qacE or qacE11, showing their impact
on decreased susceptibility to QACs or CHX (only for qacA)
(Littlejohn et al., 1992; Paulsen et al., 1993; Heir et al., 1999;
Bjorland et al., 2003).

QacA has been associated with decreased susceptibility to
various cationic compounds including QACs, CHX, diamides,
intercalating dyes, among others, in S. aureus (Littlejohn et al.,
1992; Cervinkova et al., 2013; Wassenaar et al., 2015; LaBreck et al.,
2020). It is encoded by the qacA gene which is closely related to
qacB, with the encoded proteins differing at amino acid position
323 (Paulsen et al., 1996; Ortega Morente et al., 2013; Wassenaar
et al., 2015). QacA features aspartic acid at this position, while
QacB has alanine, impacting substrate recognition and binding
and reducing QacB’s efflux activity of divalent cations (Littlejohn
et al., 1992; Paulsen et al., 1996; Ortega Morente et al., 2013;
Wassenaar et al., 2015). Both genes are regulated by a TetR/CamR
transcriptional regulator, QacR, that binds to the qacA/B promoter,
inhibiting its expression (Galluzzi et al., 2003; Wassenaar et al.,
2015; LaBreck et al., 2020). When substrates of QacA/B directly
bind to QacR, the regulator dissociates from the promoter and
allows for expression of the efflux pump genes (Galluzzi et al., 2003;
Wassenaar et al., 2015; LaBreck et al., 2020).

Previous studies have reported different occurrence rates of
qacA/B in collections of E. faecalis and E. faecium isolates with
diverse epidemiological backgrounds (Supplementary Table 3;
Bischoff et al., 2012; Rizzotti et al., 2016; Sommer et al., 2019;
Kheljan et al., 2022). These have shown a susceptible phenotype
to DDAC, BC and CHX at concentrations much lower than
those present in biocide-containing products. One of the qacA/B-
carrying E. faecalis, recovered from human blood, had a higher
DDAC MIC of 2.45–3.5 mg/L compared to isolates without this
gene (MIC of 1.05 mg/L), whereas the other qacA/B-carrying
E. faecalis, isolated from cattle, did not present an increased MIC
value for DDAC (Supplementary Table 1; Bischoff et al., 2012).
The authors suggested the different phenotypes could be linked
to the nucleotide polymorphisms between qacA/B sequences in
the two isolates (Bischoff et al., 2012), but additional analyses to
confirm the role of such mutations in decreased susceptibility to
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DDAC are needed. In E. faecium, a decreased susceptibility to
CHX (MIC of 14 mg/L) was detected in a swine production chain
strain (EA26; qacA/B-positive) compared to MICs of 4–10 mg/L for
qacA/B negative isolates (Supplementary Table 1; Rizzotti et al.,
2016). On the other hand, the BC MIC of E. faecium EA26 was
within the range determined for isolates without qacA/B in this
study (2–4 mg/L) (Supplementary Table 1; Rizzotti et al., 2016).
In a more recent study including 647 Enterococcus spp. isolates
from different sources in Iran, BC and CHX MIC90 of E. faecalis
and E. faecium harboring or not qacA/B were similar (Kheljan
et al., 2022). Additionally, on publicly available genomes at the
NCBI (until 28/4/2022), the gene qacA/B was also found among two
E. faecalis and one of E. faecium, all from recent human infections
in South Africa (Pereira et al., 2023).

The qacC gene, also known as ebr, smr (for staphylococcal
multidrug resistance) or qacD, confers decreased susceptibility
to QACs and β-lactam antibiotics in Gram-positive and Gram-
negative bacteria, and is usually located on conjugative or small
rolling-circle replicating (nonconjugative) plasmids (Lyon and
Skurray, 1987; Littlejohn et al., 1990, 1992; Fuentes et al., 2005;
Ortega Morente et al., 2013; Wassenaar et al., 2015; LaBreck et al.,
2020). Its expression does not require a transcriptional regulator
and the corresponding QacC protein is 107 amino acids long
(Littlejohn et al., 1990; Wassenaar et al., 2015; LaBreck et al., 2020).
QacC has been found in six E. faecalis isolated from pediatric
bloodstream infections, human stool and cheese (Supplementary
Table 3), as well as in 29 E. faecalis and seven E. faecium genomes
available on NCBI (until 28/4/2022) (Bischoff et al., 2012; Sommer
et al., 2019; Pereira et al., 2023). The susceptibility to DDAC
was tested for the two non-clinical isolates and showed that both
had an MIC of 1.05 mg/L similar to the qacC negative isolates
(Supplementary Table 1; Bischoff et al., 2012).

The genes qacE and the partially deleted derivative known
as qacE11, resulting from the insertion of a DNA segment
containing a sulfonamide resistance gene near the 3’ end of
the qacE gene, are commonly found in integrons of a broad
range of Gram-negative bacteria (Paulsen et al., 1993; Kazama
et al., 1998a,b). They were associated with decreased susceptibility
to QACs, with qacE associated with lower susceptibility levels
than qacE11 (Paulsen et al., 1993). In Enterococcus, qacE was
found among three vancomycin-resistant E. faecium from patients’
infections or colonization (Brazil, 2005–2009) (Supplementary
Table 3) but an association with CHX MICs was not established
(Mendes et al., 2016). Similarly, qacE11 has been detected in
nine clinical E. faecalis isolates (Japan, 1996) and in 44 E. faecalis
and 73 E. faecium from diverse sources in Iran (2018–2020)
(Supplementary Tables 1, 3), that did not show increased BC and
CHX MIC90 compared to qacE11 negative isolates (Kazama et al.,
1998a; Kheljan et al., 2022).

The gene qacG has been detected in E. faecium 8D1-48
(NCBI; until 28/4/2022), a soil isolate, and qacJ in two E. faecalis
strains from human infections (NCBI; until 28/4/2022) and cattle
processed meat (Supplementary Table 3; Matle et al., 2023; Pereira
et al., 2023). QacG and QacJ have a high protein sequence identity
between them (82.6%) and with QacC (>69%), belonging to the
SMR family (Heir et al., 1999; Bjorland et al., 2003; Wassenaar et al.,
2015). No phenotypic assays are available to infer about their role
in Enterococcus spp. decreased susceptibility to QACs.

The qacZ and qacH, identified in Enterococcus spp. and
Staphylococcus spp., respectively, share a high sequence similarity
(98% nucleotide identity) but different substrates (Braga et al.,
2011; Silveira et al., 2015). The role of gene qacZ in Enterococcus
spp. decreased susceptibility to QACs has been shown, but not
to ethidium bromide or proflavine, which are also substrates
of the efflux pump coded by qacH (Braga et al., 2011; Silveira
et al., 2015). Braga et al. (2011) found a high occurrence of
qacZ among different Enterococcus spp. isolated from Portuguese
clinical settings (63%) and dairy products (70%), although a
correlation between the prevalence of the gene and BC or CHX
MICs was not detected (Supplementary Tables 1, 3). In a
different collection, only one ST17 E. faecium (E241), recovered
from hospital sewage in 2002, also in Portugal, carried qacZ
(Supplementary Table 3). Similarly, its BC and CHX MIC and
MBC remained low and within the ranges also observed for
isolates without such gene (Supplementary Tables 1, 3; Silveira
et al., 2015; Duarte et al., 2019; Pereira et al., 2023). Twenty
E. faecalis and 12 E. faecium qacZ-carrying genomes available
on NCBI (until 28/4/2022), mostly from human infections in
different countries and years (1987–2014), have also been reported
(Pereira et al., 2023).

Generally, similar phenotypes to CBs have been described
for Enterococcus with or without qac genes, suggesting that their
activity may not have an impactful outcome in the susceptibility
to CBs, that other mechanisms such as the presence or differential
regulation of other efflux pumps may also influence the resulting
phenotypes, or that the necessary conditions for the expression
of decreased susceptibility genotypes are not satisfied by the
methodologies used (Braga et al., 2011; Bischoff et al., 2012;
Duarte et al., 2019; Kheljan et al., 2022; Pereira et al., 2023). Also,
with few exceptions (Kazama et al., 1998a; Braga et al., 2011;
Sommer et al., 2019; Kheljan et al., 2022), a low occurrence of qac
genes among Enterococcus spp. isolates and genomes (available on
NCBI) has been reported (Bischoff et al., 2012; Schwaiger et al.,
2014; Silveira et al., 2015; Rizzotti et al., 2016; Ignak et al., 2017;
Duarte et al., 2019; Sobhanipoor et al., 2021; Pereira et al., 2023).
These data suggest that qac genes may not have a significant
impact on the response of Enterococcus spp. to CBs exposure,
although such conclusion may be biased by the few published
studies, by the Enterococcus collections included in such analyses
or the public genomes available. Of note is the detection of
qac genes on transferable plasmids, potentially facilitating their
transmission, via horizontal gene transfer, within the microbial
communities and settings Enterococcus spp. are part of (Silveira
et al., 2015; Wassenaar et al., 2015; LaBreck et al., 2020; Pereira
et al., 2023). Indeed, the sequences of QacA/B, QacC, QacG,
QacJ and QacZ, which were predominantly identified in human
Enterococcus, were mainly shared with Staphylococcus isolates
associated with human colonization and infection, in which they
have been primarily and mostly described (Wassenaar et al., 2015;
Pereira et al., 2023).

6.2 qrg

The qrg gene belongs to the SMR family, as most qac
genes, and has been shown to encode a fourfold decreased
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susceptibility to cetyltrimethylammonium bromide, by deletion
and complementation assays, in one Streptococcus oralis isolate
from the human oral cavity, in which the gene was first described
(Ciric et al., 2011). Among Enterococcus, qrg was harbored only by
one ST6 E. faecalis DVT_1043 (available on NCBI; until 28/4/2022),
a human infection strain isolated in the USA in 2020 (Pereira
et al., 2023). Streptococcus spp. was the predominant genus (98%,
n = 183/187) sharing an identical Qrg sequence with the DVT_1043
strain, among the five genera (14 species) in which it was found
(Pereira et al., 2023). CBs susceptibility studies on qrg-carrying
Enterococcus have not yet been published, with the impact of this
gene in Enterococcus susceptibility to QACs still to explore.

6.3 bcrABC cassette

The efflux system encoded by the bcrABC cassette is associated
with decreased susceptibility to QACs and it is predominantly
harbored by plasmids of Listeria spp., although a chromosomal
location is also possible (Elhanafi et al., 2010; Katharios-
Lanwermeyer et al., 2012; Dutta et al., 2013; Jiang et al., 2016).
It is composed by a putative transcriptional regulator of the TetR
family, bcrA, and two SMR genes, bcrB and bcrC (Elhanafi et al.,
2010; Dutta et al., 2013).

Although, in a previous study, bcrABC genes were not detected
among a collection of over 200 E. faecium and E. faecalis from
human, animal, food and aquatic sources from eight countries
and spanning 25 years (Supplementary Table 3), these were the
most prevalent genes encoding decreased susceptibility to CBs
among Enterococcus spp. genomes available at the NCBI database
(n = 22,428; until 28/04/2022), when compared to qacA/B, qacC,
qacG, qacJ, qacZ, qrg, bcrABC, and the oqxAB genes (Pereira et al.,
2023). They were more frequent in E. faecalis than in E. faecium
or E. lactis, as well as in the food chain compared to other sources,
probably as a reflection of the microbial communities and settings
in which these genes circulate (Pereira et al., 2023). Indeed, an
identical bcrABC gene cluster to that found in Enterococcus was
mostly detected in the food pathogen Listeria monocytogenes (97%
among the 10 species, corresponding to six different genera, in
which it was identified) (Pereira et al., 2023). While the decreased
susceptibility to CBs has been confirmed for Listeria monocytogenes
by transfer of the bcrABC genes to a plasmid-cured strain (Elhanafi
et al., 2010), functional studies in Enterococcus to support their role
in this different host are needed.

6.4 oqxAB genes

The multidrug efflux pump encoded by the oqxAB cassette
belongs to the resistance nodulation division family (RND) and
has been most commonly found on the chromosome and/or
conjugative plasmids of Enterobacterales (Li et al., 2019). In E. coli
harboring a plasmid with or without the oqxAB genes, their
functionality has been shown to decrease the susceptibility to
the CBs BC, CE and CHX, as well as to multiple antibiotics
(Hansen et al., 2007). However, in Enterococcus spp., only their
role in antibiotic susceptibility has been demonstrated so far
(Yuan et al., 2018).

Among the rare studies in which Enterococcus isolates were
screened for the presence of oqxAB (Supplementary Table 3),

high percentages of strains harboring these efflux pump genes
were detected in manure of food-producing animals in China
(oqxA: 79%; oqxB: 66%), which may be due to the extensive
use of quinoxalines in animal husbandry in this country as
suggested by the authors (Yuan et al., 2018). However, similarly
to qrg or bcrABC, the susceptibility to CBs of any oqxAB-
positive Enterococcus isolates has not yet been determined.
The oqxAB genes seem more prevalent in E. faecalis than
in E. faecium, and filter-mating experiments showed their
transferability between E. faecalis strains (Yuan et al., 2018).
The OqxAB variant found in Enterococcus has been identified in
E. coli and Salmonella enterica available at the NCBI database
(until 28/04/2022), recovered predominantly from the food chain
(Pereira et al., 2023).

6.5 emeA

EmeA is an enterococcal multidrug-resistant efflux pump,
homolog to S. aureus NorA (32% identity), that belongs to the
major facilitator superfamily (MFS) and has been associated with
decreased susceptibility to QACs, dyes and different antibiotics, in
E. faecalis and E. coli complemented with this gene (Jonas et al.,
2001; Lee et al., 2003a). Several studies screening the presence
of the gene emeA among Enterococcus spp. isolates have been
published (Supplementary Table 3). In E. faecalis it is considered
to contribute to intrinsic drug resistance, being identified in all
complete and annotated E. faecalis genomes from GenBank on
September 1st of 2020 (Panthee et al., 2021). However, in the
few epidemiological analysis where its impact on susceptibility to
CBs has been assessed, no decreased susceptibility was observed
for emeA positive Enterococcus spp. compared to isolates without
such gene (Rizzotti et al., 2016; Kheljan et al., 2022), except in
one case in which the presence of this gene was significantly
associated with decreased susceptibility to CHX but not to BC
(Sobhanipoor et al., 2021).

6.6 efrAB

EfrAB is an Enterococcus heterodimeric ABC multidrug
efflux pump, chromosomally encoded by the efrA and efrB
genes, that transports multiple dyes and antibiotics, including
fluoroquinolones, in E. faecalis (Davis et al., 2001; Lee et al., 2003b;
Lubelski et al., 2007; Hürlimann et al., 2016). Although a suspected
role for efrAB in Enterococcus spp. susceptibility to CBs has been
suggested (Lavilla Lerma et al., 2014; Sobhanipoor et al., 2021),
functional gene studies are still lacking to confirm it.

EfrAB has been reported in Enterococcus spp. in different
percentages (Supplementary Table 3), which may be related to
a low sensitivity of detection methods to identify potential gene
variability that remains to be assessed. On the other hand, it has
been consistently found in a high occurrence (50 – 100%) in
E. faecalis collections (Supplementary Table 3). Lavilla Lerma et al.
(2014) described that all the E. faecalis with decreased susceptibility
to CHX included in their study harbored efrAB, although, in
E. faecium strains with decreased susceptibility, only 12% carried
such genes. Recently, also Sobhanipoor et al. (2021) revealed a
significant association between the presence of these genes and
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Enterococcus decreased susceptibility to CHX, but not to BC,
similar to what was observed for emeA.

6.7 chlR-efrEF

EfrEF is another intrinsic heterodimeric multidrug ABC
transporter, encoded by the genes efrE and efrF, with a drug efflux
profile similar to that of EfrAB (Hürlimann et al., 2016; Li and
Palmer, 2018). Furthermore, EfrEF’s role in decreased susceptibility
to CHX has been shown both in E. faecium and E. faecalis, by
deletion and complementation experiments (Bhardwaj et al., 2017;
Li and Palmer, 2018). Using transcriptomic analysis to identify the
genes upregulated in E. faecalis V583 under CHX exposure, Li and
Palmer (2018) detected efrEF to be the most highly upregulated
genes. Their overexpression was mediated by ChlR, a putative
MerR family transcription regulator, encoded by chlR located
upstream of efrEF (Li and Palmer, 2018). Deletion of the chlR gene
resulted in increased susceptibility to CHX and was decreased in
the complemented strain, as for efrE or efrF (Li and Palmer, 2018).

Following the observations made in these previous studies
with a restricted set of strains, a large collection of 666 E. faecalis
genomes from diverse epidemiological and clonal backgrounds
was screened for the occurrence and variability of the chlR-efrEF
genes (Pereira et al., 2022). The efrEF operon was detected in all
but one isolate (Supplementary Table 3), with 5% carrying genes
coding for incomplete ChlR, EfrE or EfrF proteins (Pereira et al.,
2022). Most of these corresponded to EfrE-truncated E. faecalis
identified as ST40 and were predominantly recovered from humans
(Pereira et al., 2022). Isolates harboring incomplete ChlR-EfrEF
had consistently low MICs ( ≤ 1mg/L, with rare exceptions)
contrasting with those with complete operons (MIC = 2–8 mg/L,
with 2 exceptions), whereas MBCs remained similar to those of
non-truncated E. faecalis (Pereira et al., 2022). A broad range of
mutations was identified among the isolates with complete ChlR-
EfrEF proteins, but no correlation between specific mutations and
CHX susceptibility was recognized (Pereira et al., 2022).

Similarly, efrE and efrF E. faecium orthologs were also
upregulated in E. faecium 1,231,410 in response to CHX exposure
(Bhardwaj et al., 2016). Deletion of the efrEF operon rendered this
strain more susceptible to the biocide, whereas complementation
restored the CHX phenotype (Bhardwaj et al., 2017). Moreover,
in vitro serial exposure of E. faecium 1,231,410 to subinhibitory
concentrations of CHX selected for a mutation in efrE (A290V) that
was shown to confer decreased susceptibility to CHX (Bhardwaj
et al., 2017). Several ChlR-EfrEF and promoter mutations were
detected among 33 E. faecium and 4 E. lactis (former E. faecium
Clade B) isolates from various sources and years (Supplementary
Table 3), but not the A290V associated with decreased susceptibility
to CHX, which was also absent in 980 E. faecium genomes from
field isolates coding for a complete EfrE protein published in the
GenBank database in December 2018 (Duarte et al., 2019).

6.8 chtRS

The conserved DNA-binding response regulator ChtR along
with histidine kinase sensor ChtS form a putative two-component
regulatory system (2CS) that has been demonstrated to be

implicated in decreased susceptibility to CHX in E. faecium,
through deletion and complementation experiments (Guzman
Prieto et al., 2017; Duarte et al., 2019). Additionally, strains
with deleted chtR and chtS showed a compromised growth and
morphology under CHX exposure that was reverted when the
mutations were complemented in trans (Guzman Prieto et al.,
2017). Furthermore, similar assays revealed that a nonsynonymous
single nucleotide polymorphism in chtR, leading to an amino
acid substitution (P102H), predominantly found in clinical
isolates, was linked to a CHX decreased susceptibility phenotype
(Guzman Prieto et al., 2017; Duarte et al., 2019). The P102H
mutation is located in the dimerization interface of the signal
receiver domain of ChtR, which might affect the activation and
function of the response regulator (Guzman Prieto et al., 2017).
The genes chtR and chtS are predicted to be part of an operon,
named 2CS-CHXT, also composed by genes related to sugar and
amino acid transport (Duarte et al., 2019). Several other 2CS-
CHXT operon mutations have been detected among E. faecium and
E. lactis strains, but their role in CHX susceptibility has not been
investigated (Duarte et al., 2019).

The action of 2CSs is to regulate the expression of effector
genes in response to environmental cues (Guzman Prieto et al.,
2017). The regulon associated with the 2CS-CHXT operon
in E. faecium Aus0004 has been predicted to include genes
involved in peptidoglycan homeostasis, protein, glycerol, or amino
sugars metabolism, protection against cationic compounds, and
oxidative stress response, among others (Duarte et al., 2019),
although confirmatory studies are lacking. Thus, a diverse multi-
process cellular response may be prompted by CHX stress
(Duarte et al., 2019).

7 Co- and cross-resistance between
cationic biocides and other
antimicrobials

Although there are several differences between CBs and
antibiotics (e.g., spectrum and mechanism of action, ratio of
in-use concentration per microorganisms’ MICs, commercialized
formulations), both have been used for their antimicrobial activity
for decades now and CBs have been critical for limiting the
need of antibiotic use (Fox et al., 2022). However, research
has been suggesting that exposure to biocides may directly
or indirectly select for bacterial populations with particular
genotypes or phenotypes leading to co- or cross-resistance to
antibiotics (Maillard, 2018). Enterococcus’ response after exposure
to CBs has been shown not only to alter the expression of
genes involved in multidrug efflux, bacterial metabolism, and
cell wall permeability, which may affect the susceptibility of
the cells to very diverse antimicrobials, but also to upregulate
genes directly associated with resistance to antibiotics (Bhardwaj
et al., 2016; Li and Palmer, 2018). Bhardwaj et al. (2017)
found that CHX stress induced the expression of the VanA-type
vancomycin resistance genes and genes associated with decreased
susceptibility to daptomycin (liaXYZ) in E. faecium. However,
vancomycin susceptibility was actually increased for the VanA-
positive E. faecium in the presence of subinhibitory concentrations
of CHX, revealing a CHX-vancomycin synergy (Bhardwaj et al.,
2017, 2021). Excess of D-lactate contributed to this synergism,
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whereas the deletion of the gene ddcP, encoding a membrane-
bound carboxypeptidase, and a mutation (S199L) on an ATPase
of phosphate-specific transporter, encoded by gene pstB, conferred
a survival advantage in the presence of both antimicrobials
(Bhardwaj et al., 2017, 2021). Nonetheless, the occurrence of a
possible cross-resistance between vancomycin and CBs, including
CHX, is still controversial. MICs and MBCs of CHX and BC
of vancomycin-resistant Enterococcus isolates significantly higher
than those of vancomycin-susceptible Enterococcus spp. have been
described among diverse collections (Alotaibi et al., 2017; Ignak
et al., 2017; Sobhanipoor et al., 2021). On the contrary, a decreased
susceptibility in vancomycin-susceptible Enterococcus compared
to vancomycin-resistant Enterococcus as well as no significant
difference between the two groups has also been found for the
biocides BC, CHX, DDAC or CPC (Baillie et al., 1992; Barry
et al., 1999; Suller and Russell, 1999; Kõljalg et al., 2002; Braga
et al., 2013; Roedel et al., 2020; Sobhanipoor et al., 2021). Such
disparities among studies might be associated with the different
methodologies used, various levels of previous exposure to CBs by
the bacteria, or with other genetic or metabolic properties specific
to each of the local bacterial populations studied.

A possible link between antibiotic resistance and CBs
susceptibility has also been observed for other antibiotics.
A decreased susceptibility to CHX and DDAC was detected in
Enterococcus that were ampicillin resistant or with a high-level of
resistance to the aminoglycosides gentamycin and streptomycin
(Schwaiger et al., 2014; Wieland et al., 2017; Sobhanipoor et al.,
2021). Despite the suggestion of a correlation by these results,
no genetic or cellular changes supporting such co-occurring
phenotypes have been explored yet.

The selection of antibiotic resistant subpopulations after
serial exposure to subinhibitory concentrations of several CBs
has been identified (Supplementary Table 2; Bhardwaj et al.,
2017; Gadea et al., 2017a,b). Adaptation to CHX, CPC, BC
or CE of E. casseliflavus, E. durans, E. faecalis, E. faecium, E.
saccharolyticus or other Enterococcus spp. led to cross-resistance
to the clinically-relevant ampicillin, ciprofloxacin, daptomycin,
imipenem and tetracycline (Supplementary Table 2; Bhardwaj
et al., 2017; Gadea et al., 2017a,b). On the other hand, there was
also evidence of loss of resistance to ampicillin in CHX-adapted
E. faecalis, to ciprofloxacin in CE-adapted E. faecium, and to
ceftazidime and/or cefotaxime in BC-adapted E. faecium, CPC-
adapted Enterococcus spp., CE-adapted E. casseliflavus, E. faecium
and Enterococcus spp., and CHX-adapted E. faecium (Gadea et al.,
2017a,b). The genetic mechanisms or phenotypic expression events
behind the increase or loss of antibiotic resistance detailed in
these studies are mostly unknown, but they were mainly transient
and may be associated with non-specific membrane permeability
increase, metabolic changes (e.g., decreased growth rate), or others
(Gadea et al., 2017a,b). For E. faecium 1,231,410, in which decreased
susceptibility to daptomycin arose with passages in increasing
CHX concentrations, Bhardwaj et al. (2017) detected physiological
and genetic alterations in the adapted strains compared to the
parental strain. These included significantly lower growth rates,
changes in cellular membrane phospholipid and glycolipid content,
overexpression of the three-component regulatory system encoded
liaXYZ involved in cell envelope homeostasis, and mutations in
genes associated with global nutritional stress response (relA),
nucleotide metabolism (cmk), multidrug efflux (efrE), phosphate
acquisition (phoU), and glycolipid biosynthesis (bgsB) (Bhardwaj

et al., 2017). Daptomycin is a lipopeptide antibiotic often used
to treat vancomycin-resistant Enterococcus spp. infections, that
interacts primarily with the bacterial cell membrane, as part of
a daptomycin-calcium complex, ultimately leading to cell death
(Mishra et al., 2012; Bhardwaj et al., 2017). Thus, the selection
of potential structural changes in the biophysical properties of
the cell wall or membrane and in the cellular stress responses by
the biocide are strongly associated with decreased susceptibility to
daptomycin in Enterococcus (Mishra et al., 2012; Bhardwaj et al.,
2017). Since this antibiotic is used for the treatment of serious
Enterococcus infections that lack other therapeutic alternatives,
and CBs are extensively used in hospitals, these results may
have serious clinical implications and deserve further studies
(Bhardwaj et al., 2017). However, as previously discussed, it must
be taken into consideration that in vitro adaptation experiments
may not accurately mimic real environments’ conditions in the
different contexts.

Of note, CBs, antibiotics, and other antimicrobials such as
metals may co-exist as selective agents in many ecosystems,
not only in human or animal clinical contexts, the community
or food production, but also in wastewater and others (Pal
et al., 2015; Wales and Davies, 2015; Singer et al., 2016).
In a report produced by SCENIHR (Scientific Committee on
Emerging and Newly Identified Health Risks), in 2009, it was
stated that ‘biocides are likely to contribute to maintaining
selective pressure allowing the presence of mobile genetic elements
harboring specific genes involved in the resistance to biocides and
antibiotics’, and recommended the surveillance of levels of biocide
resistance (Scientific Committee on Emerging and Newly Identified
Health Risks [SCENIHR], 2009). Indeed, co-location of genetic
determinants conferring decreased susceptibility to CBs and metals
and resistance to antibiotics on the same plasmid or other mobile
genetic element has been observed among diverse Enterococcus
spp. strains (Pal et al., 2015; Silveira et al., 2015; Yuan et al.,
2018; Pereira et al., 2023). In previous studies, the analyzed genetic
contexts of several genes encoding decreased susceptibility to CBs
(qacA/B, qacC, qacZ, oqxAB) in Enterococcus spp., from different
sources, geographical regions, or dates of isolation, harbored genes
conferring resistance to aminoglycosides, beta-lactams, macrolides,
lincosamides, streptogramin of group B, or trimethoprim (Silveira
et al., 2015; Yuan et al., 2018; Pereira et al., 2023). Genes coding for
decreased susceptibility to metals, namely to copper and cadmium,
were also detected within the vicinity of qacA/B genes in two
clinical E. faecalis (Pereira et al., 2023). The genetic contexts
of qacA/B, qacC, qacJ, qacZ, qrg, bcrABC and oqxAB detected
in Enterococcus were compared with those from other taxa and
found to be generally very diverse, probably resulting from a high
number of recombination events, as suggested by the abundance
of insertion sequences and recombinases detected (Pereira et al.,
2023). Also, the co-location of these genes on mobile genetic
elements such as plasmids, often carrying toxin-antitoxin systems
that contribute to their maintenance in the bacterial populations,
may facilitate their spread and, thus, mechanisms of co-selection
(Pal et al., 2015; Silveira et al., 2015; Yuan et al., 2018; Fox et al.,
2022; Pereira et al., 2023; Maillard and Pascoe, 2024).

Besides co-location of diverse antimicrobial resistance genes on
the same genetic contexts, the occurrence of cross-resistance, where
a single resistance mechanism to a certain antimicrobial also affects
additional compounds, has also been hypothesized in Enterococcus
spp. (Pal et al., 2015). Genes encoding decreased susceptibility
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to CBs, such as emeA, efrEF, oqxAB and chtR, are known to be
involved in antibiotic resistance, as previously mentioned (Jonas
et al., 2001; Lee et al., 2003b; Lubelski et al., 2007; Hürlimann
et al., 2016; Yuan et al., 2018). For instance, the chtR and chtS
E. faecium deletion mutants showed an increased susceptibility
to both CHX and the antibiotic bacitracin (Guzman Prieto et al.,
2017). Additionally, Yuan et al. (2018) proposed that the extensive
use of quinoxalines in animal husbandry in China could be
selecting for a local high prevalence of the oqxAB genes, known to
confer decreased susceptibility to such antibiotics and CBs, among
Enterococcus spp.

Recently, a few studies have proposed another process in
which CBs exposure could contribute to antibiotic resistance spread
(Zhang et al., 2017; Jutkina et al., 2018; Han et al., 2019; Schmidt
et al., 2022; Liu et al., 2023). In these, subinhibitory concentrations
of different CBs, including QACs and CHX, have been shown
to increase horizontal gene transfer via conjugation, through
multiple cellular processes such as increased reactive oxygen species
(ROS) production, upregulated stress and SOS response, enhanced
cell membrane permeability, and changes in the expression of
conjugative transfer genes, among others (Zhang et al., 2017;
Jutkina et al., 2018; Han et al., 2019; Schmidt et al., 2022; Liu et al.,
2023). However, this has not yet been studied for Enterococcus spp.

All these examples identify possible overlaps between responses
to different biocides and antibiotics and the potential for the
development of co- and cross-resistance among antimicrobials
in various environments, with impact in diverse Public Health
contexts. However, it is crucial to recognize the large limitations
of the research on this topic. Although some studies support the
associations detected between decreased susceptibility to CBs and
resistance to specific antibiotics through robust methodological
approaches, for most, caution is required in interpreting the
correlations made as they may be linked to independent, co-
occurring events of cellular response to diverse antimicrobials.
Thus, the underlying processes by which exposure to one substance
may lead to decreased susceptibility to another remain unclear.

8 Future perspectives

Currently, the available literature offers valuable insights
concerning the state of the genotypic and phenotypic Enterococcus
spp. susceptibility to CBs, pointing to an effective biocidal activity
with still no descriptions of resistance to CB’s typical in-use
concentrations. However, it also reveals several key research gaps
that need to be tackled in future investigations in Enterococcus spp.,
that could extend to other bacterial species.

Urgent priorities include standardizing biocide susceptibility
methodologies that are of relevance to real-world scenarios,
facilitating direct study comparisons and the establishment of
surveillance protocols applicable across diverse environments.
Designing evidence-supported methodologies for this purpose is
currently difficult, as the influence of several factors mentioned
throughout this review on the activity of biocides against
Enterococcus spp. or other bacterial species is scarcely studied.
Thus, future studies should primarily elucidate the impact of
such factors, including different environmental parameters (e.g.,
temperature, pH, oxygen or nutrient availability), times of biocide
exposure, presence of other compounds usually included in

biocidal formulations or in the environment, phase of bacterial
growth, planktonic cells or biofilms, among others. Furthermore,
the integration of cutting-edge technologies into future studies
or surveillance programs could facilitate the monitoring of CBs
efficacy and susceptibility trends, enabling timely interventions
if needed, particularly in settings where CBs are heavily used.
Specifically, large longitudinal metadata analyses incorporating
WGS and transcriptomic approaches will be critical for clarifying
the dynamics of Enterococcus spp. populations exposed to
CBs, representative of multiple clones and epidemiological
backgrounds, and the long-term consequences for biocidal or
antibiotic resistance.

Another priority concerns the characterization of the
mechanisms involved in Enterococcus adaptation to CBs
or in the co-selection or cross-resistance with antibiotics.
Conducting functional genetic assays, such as the deletion and
complementation of genes accompanied by the observation of
phenotype changes, as well as the use of high-throughput screening
platforms or advanced bioinformatic tools, will be crucial for
elucidating the role of genes with a predicted effect on decreased
susceptibility to CBs in Enterococcus spp. or to better identify still
undetected molecular processes. These data will determine the
need for strategies aimed at identifying and controlling bacteria
harboring particular genotypes in critical contexts.

Fulfilling these methodological and knowledge gaps while
taking into account interdisciplinary data from fields such
as environmental (e.g., ecotoxicology) and social (e.g., health
economics) sciences will provide holistic insights into the intricate
dynamics of CBs use and Enterococcus’ antimicrobial resistance
development. Collaborative efforts among diverse stakeholders at
local and global levels across sectors can enable the development of
effective One Health strategies that ensure the continued efficacy of
these critical agents in safeguarding Public Health.
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