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Microbial communities have been demonstrated to be  essential for healthy 
and productive soil ecosystems. However, an understanding of the relationship 
between soil microbial community and soil productivity levels is remarkably 
limited. In this study, bulk soil (BS), rhizosphere soil (RS), and root (R) samples 
from the historical high-productive (H) and low-productive (L) soil types of wheat 
in Hebei province of China were collected and analyzed by high-throughput 
sequencing. The study highlighted the richness, diversity, and structure of 
bacterial communities, along with the correlation networks among different 
bacterial genera. Significant differences in the bacterial community structure 
between samples of different soil types were observed. Compared with the 
low-productive soil type, the bacterial communities of samples from the high-
productive soil type possessed high species richness, low species diversity, 
complex and stable networks, and a higher relative abundance of beneficial 
microbes, such as Pseudoxanthomonas, unclassified Vicinamibacteraceae, 
Lysobacter, Massilia, Pseudomonas, and Bacillus. Further analysis indicated 
that the differences were mainly driven by soil organic matter (SOM), available 
nitrogen (AN), and electrical conductivity (EC). Overall, the soil bacterial 
community is an important factor affecting soil health and crop production, 
which provides a theoretical basis for the targeted regulation of microbes in 
low-productivity soil types.
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1 Introduction

Wheat is the second most widely grown crop across the world, with 200 million hectares 
under cultivation, and is a staple food for approximately 35 to 40% of the population globally, 
providing 20% of calories and protein in the human diet. Wheat plays an important role in the 
food supply of many countries across the world (Husenov et al., 2021). In China, wheat, as the 
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main food crop, is planted in an area of 23.57 million hectares, 
accounting for approximately 25% of the country’s total grain 
production. Increasing wheat yield is of great significance in stabilizing 
food security for China and even for the world (Li et al., 2023). Despite 
the widespread cultivation of wheat in China, its production is 
hindered mostly by soil fertility exhaustion, agricultural deterioration, 
and unfavorable cropping circumstances. Low soil fertility is 
considered to be the main constraint to wheat production and yield 
in China (Liu C. L. et al., 2015; Duan et al., 2016; Li J. et al., 2019).

Hebei Province is one of the largest agricultural production 
regions in China, accounting for 9.48% of China’s winter wheat 
planting area and 10.72% of China’s total grain production (Ren 
D. et al., 2018; Zhang et al., 2023). However, 60% of the grain fields in 
Hebei province are low-productive soil types, which seriously restricts 
the increase in the total wheat yield (Yan et al., 2016). The fertility of 
the soil has a direct impact on plant growth, either by physically 
influencing root growth and exposure to the soil solution or indirectly 
by regulating mineralization, nutrient retention in the soil, and the 
association between soil and plant water (Li et al., 2016; Chi et al., 
2021). Additionally, fertile and productive soil sustains a diverse and 
dynamic community of biota, which contributes to nutrient cycling 
and retention and the preservation of soil structure (Pellegrino 
et al., 2020).

The fertility of soil can be  compromised by the interplay of 
physical, chemical, and biological factors, ultimately leading to a 
detrimental effect on the development of crops (Xiao et al., 2022). 
While physical and chemical indicators of soil are commonly used to 
assess soil quality by farmers and researchers, biological indicators are 
often considered underrepresented (Buckland et al., 2018). However, 
the soil bacteria, as a biological indicator, play a crucial role in the 
creation and reinforcement of soil aggregates, leading to improved 
water infiltration, root penetration, and nutrient mobility, thus 
enhancing the soil structure (Guo et al., 2018; Belimov et al., 2022; 
Rabbi et al., 2022; Lu et al., 2023). An appropriately structured soil 
accelerates root growth and absorption of nutrients in plants, hence 
enhancing soil fertility. On the other hand, several studies have 
demonstrated that there is a mutual influence between soil chemical 
properties, microbial activity, and community structure (Rousk et al., 
2010; Fanin and Bertrand, 2016; Veldkamp et al., 2020). Fan et al. 
found that the relative abundances of Actinobacteria, Chloroflexi, and 
Rokubacteria significantly decreased with increasing levels of 
desertification, whereas the opposite trend was detected for 
Proteobacteria (especially Alphaproteobacteria and 
Gammaproteobacteria) and Bateroidetes (Fan et  al., 2020). As 
described previously, soil microbiota plays a crucial role in sustainable 
agriculture and crop production; combining chemical and 
microbiological indicators may be a good approach to characterize soil 
fertility gradients (Philippot et al., 2023).

Bacterial communities in soil, rhizosphere, and root are essential 
for the health of the soil and plant growth. However, the bacterial 
communities in different soil zones may be different in response to 
the same environmental factors. The abundance and diversity of 
bacteria were significantly developed by chemical fertilizer inputs in 
the rhizosphere compared with those in the bulk soil (Xiao et al., 
2024). The addition of nitrogen significantly reduced bacterial 
diversity in the phyllosphere, rhizosphere soil, and bulk soil samples 
but not in the root endophytes and altered the community 
composition of bacteria and fungi in all four compartments. 

Cultivars could affect the community composition of root-associated 
bacteria and fungi. Soil saline also had an effect on the microbial 
community of bulk and rhizosphere soils than root endophytes (Sun 
et  al., 2021). Although many studies showed that environmental 
factors, such as fertilizer input, saline, drought, and plant cultivars, 
have different effects on the microbial communities of different soil 
types, there are few reports on the specific relationship between soil 
fertility levels and the microbial community from the bulk soil, 
rhizosphere soil, and root samples. Identifying the reduced beneficial 
microflora and the enriched harmful microflora in the low-productive 
soil type can serve as a focal point for altering soil microflora and 
establishing a scientific basis for fostering healthy soil conditions, 
thereby enhancing wheat production. To clarify the relationship 
between soil fertility types and soil microbial characteristics, based 
on the crop yield statistics for 10 consecutive years, we collected 
samples from the historical high- and low-productive soil types of 
wheat in Hebei Province, performed bacterial 16S rRNA amplicon 
sequencing, and analyzed the bacterial communities in the 
current study.

2 Materials and methods

2.1 Description of the experimental area

The study area is located within Hebei province in China 
(36°05′N–42°40′N, 113°27′E–119°50′E). The average annual 
temperature in the province is 10–20°C, and the average annual 
precipitation is 484.5 mm. The planting area of wheat in Hebei 
province is 2.23 million hectares, with the proportion of high-
productive fields being 27.6% and low-productive fields being 35.8%. 
The high- and low-productive fields were determined by the crop yield 
statistics for 10 consecutive years.

2.2 Sample collection

In May 2022, we randomly selected 17 wheat farmlands from 6 
counties in Hebei province, which is located in the northeast of 
China. Eight farmlands with high productivity and nine farmlands 
with low productivity were selected in this study. High-productive 
fields were located in Zhao county, Luancheng county, and Xinjin 
county, respectively. Low-yield fields were located in Guangzong 
county, Wei county, and Nangong county, respectively (Hebei 
Provincial Bureau of Quality and Technical Supervision, 2021). The 
average annual yield of wheat in high- and low-productive fields in 
this study is 9,000–10,500 and 6,750–8,250 kg·ha−1, respectively. 
Randomly selected 2–3 wheat farmlands with a straight-line 
distance of more than 10 km are considered as sample points in 
each county and designated them as biological replicates. In each 
sampling plot, five wheat plants were collected using an “S” pattern 
and combined into one sample (Figure 1). The whole wheat root 
was completely uprooted with a shovel, which was re-sterilized 
between sample plots and transported to the laboratory in a sterile 
sealing bag on ice. The bulk soil samples (BS) were collected using 
a shaking method. The rhizosphere soil samples(RS)were collected 
using a sterilized brush to accumulate the soil adhered to the 
surface of fine roots, which had a thickness of approximately 
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1–2 mm. For root samples (R), the roots were washed three times 
using sterile water and then sonicated in a sterilized tube for 3 min 
at 60 Hz (sonication for 60 s, break for 30 s), to remove the microbes 
from the rhizoplane. After removing litter, stones, and soil 
earthworms, all bulk soil samples were sieved through a 2-mm 
mesh and divided into two parts: one part was stored at −80°C for 
microorganism analysis and the other part was air-dried for the 
determination of soil chemical properties. The rhizosphere soil 
samples and root samples were stored at −80°C for 
microorganism analysis.

2.3 Sample analyses

2.3.1 Soil chemical analyses
The analyses of bulk soil chemical properties were conducted as 

follows: The pH was measured by a pH meter (PB-10, Beijing, China), 
and electrical conductivity was measured by a conductivity meter 
(DDS-307A, Shanghai Leici, China), with a soil to water ratio of 1: 2.5 
(w/v). Soil available phosphorus (AP), available potassium (AK), 
available nitrogen (AN), and soil organic matter (SOM) were 
determined as previously described (Yan et  al., 2021). Principal 
component analysis (PCA) of soil chemical properties was analyzed 
by R (version 4.4.2) (Qin et al., 2022).

2.3.2 DNA extraction, PCR amplification, and 
Illumina HiSeq sequencing

The total DNA of each sample was extracted using the PowerSoil 
DNA Isolation Kit. The bacterial 16S rRNA V3–V4 region of each 
sample was amplified using primers 338F (5′-ACT CCT ACG GGA 
GGC AGC A-3′) and 806R (5′-GGA CTA CHV GGG TWT CTA 
AT-3′). The PCR products were purified with a DNA gel extraction kit 
(Axygen, Shanghai, China) and verified by 1.8% agarose gel 
electrophoresis. Finally, an Illumina HiSeq 2,500 platform (Illumina, 
Inc., San Diego, CA, United  States) was used to perform high-
throughput sequencing at Biomarker Technologies Corporation 
(Beijing, China). Raw image data files obtained in the current study 
were transformed into the original sequence reads using base calling 
analysis. The sequence information and corresponding sequencing 
quality information were stored in FASTQ (fq) file format. All 
sequences were deposited in the NCBI Sequence Read Archive with 
the BioProject ID PRJNA 1081352.

2.3.3 Statistical and bioinformatics analyses
Trimmomatic (version 0.33) was used to filter the raw reads 

obtained from sequencing, with parameters of 
SLIDINGWINDOW:50:20 and MINLEN:215. Then, cutadapt (version 
1.9.1) was used to obtain clean reads by removing primer sequences. 
Then, raw FASTQ files were further processed using QIIME software 

FIGURE 1

Map of the study sites located in Hebei province, which is in the northeast of China. Eight farmlands with high productivity and nine farmlands with low 
productivity were included in the study.
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(version 1.8.0) for demultiplexing, quality filtering, and data analysis. 
The high-quality sequences were obtained by filtering the raw tags 
using FLASH (Magoc and Salzberg, 2011) and were further clustered 
using DADA2. The tags were calculated using QIIME for bacterial 
α-diversity analysis (Callahan et  al., 2016; Bolyen et  al., 2019). 
Non-metric multidimensional scaling (NMDS) of bacterial β-diversity 
was performed at the ASV level based on the Bray_Curtis algorithm 
(Looft et al., 2012). Kruskal–Wallis test in the linear discriminant 
analysis (LDA) effect size (LEfSe) method was performed to detect the 
potential indicators. The taxa with significant differences between low- 
and high-productive soil samples were determined by LDA ≥ 3.5 and 
p < 0.05 (Segata et al., 2011). SPSS 17.0 was used to test differences in 
soil chemical properties and bacterial α-diversity indices between low- 
and high-productive soil samples using the independent samples 
t-test. The co-occurrence network of bacterial communities was 
constructed according to the relative abundance files at the genus 
level. The genera were filtered based on the abundance size and the 
correlation, which was calculated using the Spearman correlation 
coefficient. In this study, the genera with abundance of >0.1%, 
correlation of >0.1, and p-value of <0.05 were selected to construct the 
network. R software was used to transform the relative abundance 
table at the genus level into a correlation coefficient matrix. Then, 
Gephi 0.10.1 software was used to visualize the network based on the 
correlation coefficient matrix. Ultimately, the role of nodes was 
determined and classified according to the connectivity among 
modules (Pi) and connectivity within modules (Zi). The nodes with 
Zi < 2.5 and Pi ≥0.62 are categorized as connectors (key taxa) (Deng 
et al., 2012). The Mantel test was used to analyze the interrelationship 
between soil chemical properties and bacterial communities.

3 Results

3.1 Soil chemical properties

Soil chemical properties usually serve as an important indicator of 
soil fertility type. In this study, the chemical properties of the high- and 
low-productive soil type samples were determined. The contents of 
SOM, AN, and AP in the low-productive soil type samples were 
significantly lower than those in the high-productive soil type samples, 
but the soil EC was higher than that in the high-productive soil type 
samples (p < 0.05). However, there were no significant differences in pH 
and AK contents among the different types of soils (Table 1). Principal 
component analysis (PCA) showed that two-dimensional PCA for soil 
chemical properties could explain 76.77% of the total variance of soil 
fertility types of all samples, and the chemical properties showed 
obvious changes along the first axis of PCA, with the high-productive 
soil type samples on the left and the low-productive soil type samples 
on the right, indicating a good differentiation between the two soil type 
samples in terms of soil chemical properties (Figure 2).

3.2 Richness and diversity of the bacterial 
community

A total of 1,547,961 effective sequences were obtained in the 
bacterial community analysis of 51 samples. The coverage value of 
each sample was higher than 99.99%, implying sufficient sequencing 
depths for assessing bacterial biodiversity in all samples. Bacterial 
communities were analyzed by comparing the ASVs (ASV 
quantities), diversity indices (Shannon and Simpson), and richness 
indices (ACE and Chao1) between low- and high-productive soil 
types within bulk soil, rhizosphere soil, and root samples, 
respectively. Although no significant differences were observed 
between low- and high-productive soil type samples, a larger 
number of ASVs were obtained in the high-productive soil type 
samples than in the low-productive soil type samples within bulk 
soil, rhizosphere soils, and root soil groups (Table 2). Meanwhile, a 
Venn diagram was used to show the differences in the bacterial 
community based on unique and shared ASVs across the two 
groups with each subgroup. The numbers of shared ASVs by the two 
different groups within BS, RS, and R subgroups were 1,223, 1,268, 
and 460, respectively. The numbers of unique ASVs of the 
low-productive soil type samples in the BS, RS, and R subgroups 
(259, 282, and 11) were lower than those of the high-productive soil 
type samples (307, 298, and 15), indicating that the species richness 
decreased in the low-productive soil type (Figure 3A).

3.3 Bacterial community β-diversity

To visualize the differences in community structure between high- 
and low-productive soil type samples, NMDS and analysis of 
similarities (ANOSIM) were conducted at the ASV level. The results 
showed that the eight repetitions from the high-productive group and 
the nine repetitions from the low-productive group were clustered 
together, respectively, indicating that the bacterial community 
structure in this study had good representativeness (Figure 3B). In the 
bulk soil and rhizosphere soil samples, a clear separation was observed 
between high- and low-productive soil type samples within each 
sample type (bulk soil: R = 0.74, p = 0.001; rhizosphere soil: R = 0.68, 
p = 0.001). However, in the root samples, the degree of separation 
between bacterial communities decreased (root: R = 0.19, p = 0.01). 
These results indicated that the soil microbial community structure of 
bacteria has a strong relation with soil fertility.

3.4 Bacterial community composition

The microbial community structure in the bulk soil, rhizosphere 
soil, and root samples was analyzed at the bacterial phylum level in 
both high- and low-productive soil type samples. In the bulk soil 

TABLE 1 Soil chemical properties of the high- and low-productive soil type samples.

Groups SOM/ (g·kg−1) AN/ (mg·kg−1) AP/ (mg·kg−1) AK/ (mg·kg−1) EC/ (μS·cm−1) pH

H 26.56 ± 1.15* 153.43 ± 5.97* 21.73 ± 1.55* 169.51 ± 13.76 267.00 ± 7.76 7.82 ± 0.11

L 16.71 ± 1.39 83.15 ± 14.24 12.63 ± 1.67 173.35 ± 14.89 553.50 ± 48.83* 7.72 ± 0.10

H, high-productive soil type samples; L, low-productive soil type samples; SOM, Soil Organic Matter; AN, Available Nitrogen; AP, Available Phosphorus; and AK, Available Potassium. The 
results were given as mean ± SD (standard deviation). Statistical significances were determined by the Independent-samples T Test (*p < 0.05).
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samples, the abundance and order of the top 10 dominant phyla 
were similar, with the highest abundance of Proteobacteria, 
Acidobacteriota, Actinobacteriota, Bacteroidota, and 
Gemmatimonadota, accounting for more than 85% of the overall 
relative abundance. Among the high abundance of phyla, 
Gemmatimonadota was significantly higher in the low-productive 
soil type samples than in the high-productive soil type samples. 
Moreover, among the low-abundance phyla, the relative abundance 
of Dadabacteria, Desulfobacterota, and Campylobacterota was 
significantly higher than that of the high-productive soil type 
samples (Supplementary Table S1). The dominant phyla in the 
rhizosphere soil samples were the same as in the bulk soil samples, 
and there was no significant difference in the abundance in the 
dominant phyla of soil bacteria between high- and low-productive 
soil type samples, but Firmicutes were highly significantly different 
(p < 0.001) with abundances of 0.75% in the high-productive soil 
type samples and 0.10% in the low-productive soil type samples 

(Supplementary Table S3). In the root samples, Proteobacteria were 
highly enriched with an abundance of 85.57 to 86.04%, followed by 
Bacteroidota, and comparative analyses of all bacterial phyla of the 
two productive soil type samples revealed that none of the bacterial 
groups showed significant differences (Supplementary Table S5; 
Figure 4A). From the above analyses, it can be observed that the 
differences between bacterial community decreased sequentially 
from bulk soil and rhizosphere soil to root samples at different 
levels of productivity.

At the genus level, the dominant genera in the bulk soil samples 
were similar at both high- and low-productive soil type samples, with 
Sphingomonas, unclassified Vicinamibacteraceae, Allorhizobium, 
Massilia, Lysobacter, Pseudoxanthomonas, Pseudomonas, and 
unclassified Gemmatimonadaceae. Among them, the relative 
abundance of Sphingomonas and unclassified Gemmatimonadaceae 
in the bulk soil samples of the low-productive soil type samples was 
significantly increased, while the relative abundance of unclassified 

FIGURE 2

Principal component analysis (PCA) of soil properties.

TABLE 2 Richness and diversity of the high- and low-productive soil types samples.

Samples Sequence 
numbers

ASVs ACE Chao1 Simpson Shannon Coverage/%

BS
HBS 39,726 ± 1,284 644 ± 30 645.27 ± 30.48 646.68 ± 31.95 0.9967 8.76 ± 0.08 99.99

LBS 38,020 ± 2,786 635 ± 71 636.46 ± 71.34 637.76 ± 72.44 0.9967 8.78 ± 0.18 99.99

RS
HRS 43,182 ± 2,261 677 ± 55 678.90 ± 55.38 680.21 ± 55.93 0.9963 8.76 ± 0.19 99.99

LRS 37,721 ± 2699** 645 ± 66 646.31 ± 66.43 649.86 ± 65.66 0.9968 8.79 ± 0.18 99.99

R
HR 13,260 ± 1775 263 ± 31 263.39 ± 31.13 263.42 ± 31.07 0.9934 7.65 ± 0.20 99.99

LR 10,773 ± 1153** 239 ± 48 239.07 ± 48.51 238.98 ± 48.54 0.9923 7.48 ± 0.40 99.99

The results were presented as mean ± SD (standard deviation). Statistical significances were determined by the independent samples t-test. The differences between low- and high-productive 
soil types within bulk soil, rhizosphere soil, and root samples are indicated by * for p < 0.05 and ** for p < 0.01.
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Vicinamibacteraceae, Pseudoxanthomonas, and Lysobacter 
significantly decreased (p < 0.01) (Supplementary Table S2). Analysis 
of bacterial community composition at the genus level and abundance 
of the rhizosphere soil samples between high- and low-productive 
soil type samples revealed that the significant transformation of 
bacteria in the low-productive soil type samples compared to the 
high-productive soil type samples was the same as in the bulk soil 
samples, with unclassified Gemmatimonadaceae and Sphingomonas 
increasing by 38.86 and 27.68%, respectively. Pseudoxanthomonas, 
unclassified Vicinamibacteraceae, and Lysobacter were decreased by 
53.74, 37.83, and 12.81%, respectively (Supplementary Table S4). 
Analysis of microbial community composition within the root 
samples revealed that the abundance of bacterial community within 
the root samples varied considerably from the soil samples, with 
Lysobacter increasing and Massilia and Pseudomonas significantly 
decreasing in the root samples of the low-productive soil type 
samples (Supplementary Table S6; Figure 4B).

3.5 Indicator bacteria for two productive 
soil type samples

Indicator bacteria are usually treated as specialized communities 
that represent microbial communities with statistically significant 
differences. In the bulk soil samples, there are more potential biomarkers 
in the low-productive soil type samples than those in the high-productive 
soil type samples; the phylum Proteobacteria together with its three main 

orders (Rhizobiales, Xanthomonadaceae, and PLTA13) and the order 
Vicinamibacterales and its genus unclassified Vicinamibacterales 
(phylum Acidobacteriota) were enriched in the HBS, while the family 
Pyrinomonadaceae together with its order Pyrinomonadales, order 
Myxococcales (phylum Myxococcota), order Gemmatimonadales 
(phylum Gemmatimonadota), and order Sphingomonas (Proteobacteria) 
was dominant in the LBS (Figure 4C). In addition, in the rhizosphere soil 
samples, the relative abundance of the family Pyrinomonadaceae 
(phylum Acidobacteriota), order Gemmatimonadales (phylum 
Gemmatimonadota), and order Sphingomonadales (Proteobacteria) 
were also dominant in the LRS. However, in the HRS, the order Bacillales 
was specifically enriched together with its family Bacillaceae and the 
genus Bacillus (phylum Firmicutes) (Figure 4D).

3.6 Co-occurrence network structure of 
bacterial communities

We explored the bacterial co-occurrence patterns using network 
analysis. Six networks were comprised of bulk soil, rhizosphere soil, 
and root samples of the high- and low-productive soil type samples, 
respectively (Figure 5). The quantities of total nodes and total links 
in the low-productive soil type samples were higher than those in the 
high-productive soil type samples, except for the HR at total links. 
Additionally, the bacterial networks of the low-productive soil type 
samples had a lower average clustering coefficient than those of the 
high-productive soil type samples, indicating that the bacterial 

FIGURE 3

(A) Venn diagram of the composition of bacterial communities in the BS, RS, and R samples. Different colors represented different treatments. The 
numbers in overlapping and non-overlapping sections referred to the quantity of common ASVs and unique ASVs of samples from different types of 
soil. (B) Non-Metric Multi-Dimensional Scaling (NMDS) analysis of the high-productive and low-productive soil type groups in the bulk soil, rhizosphere 
soil, and root samples, respectively. The scatter plot of 8 samples from the high-productive group and 9 samples from the low-productive soil type 
group represented the bacterial ASV community composition. The distance between points represented the degree of difference based on 
unweighted UniFrac similarities in each group.
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network of the low-productive soil type samples was simpler. The 
co-occurrence analyses for the bulk soil and rhizosphere soil samples 
showed an augment in graph density for the low-productive soil type 
samples, indicating that bacteria of the bulk soil and rhizosphere soil 
samples in low-productive soil type samples are closely connected. 
This may be due to lower module numbers in the low-productive soil 
type samples, resulting in lower average path lengths and greater 
susceptibility to external environmental factors. Moreover, the 
rhizosphere soil samples of the low-productive soil type samples have 
a higher number of negative links, indicating a more competitive 
correlation among bacteria in the LRS network. However, for the root 
samples of the low-productive soil type samples, the graph density 
was decreased, suggesting that the LR networks had prominent 
‘small-world’ modularity and hierarchy of their topological 
properties. As a consequence, the inter-bacterial network of the bulk 
soil and rhizosphere soil samples in the low-productive soil type 
samples is simpler and more unstable. Additionally, the LR exhibited 
small-world characteristics, rendering a more efficient whole system 
in the root samples from the low-productive soil type samples 
(Table 3).

Based on Spearman’s correlations, we further selected the genus 
with a correlation of >0.6 and a p-value of <0.05 and analyzed the 
microbial networks of bacteria in different groups. The results showed 
that a few nodes were designated as a connector in the respective 
networks, and the connectors were defined as key taxa (Zi ≤ 2.5, 
Pi > 0.62). In the bulk soil samples, the high-productive soil type samples 

had two connectors, both belonging to the Proteobacteria, while the 
low-productive soil type samples had four connectors. In addition to 
Proteobacteria, Chloroflexi (as one of the main carbon-fixing phyla) and 
Bacteroidota were determined to be connectors in the low-productive 
soil type samples. This phototrophic mode is a stress-resistant strategy 
under nutrient-deficiency conditions, indicating that the low-productive 
soil type samples need to include other phyla to enhance bacterial 
interactions. In contrast, in the rhizosphere soil samples, there were four 
connectors in both high- and low-productive soil type samples. 
Compared with the low-productive soil type samples where all 
connectors are Proteobacteria, the high-productive soil type samples 
also include Acidobacteria and Bacteroidetes in their connectors, with 
Bacteroidetes being the primary degraders of complex carbohydrate 
biomass. In the root samples, the connectors of both high- and 
low-productive soil type samples are Proteobacteria. In summary, there 
are significant differences in key species at different productivity levels, 
which are mainly manifested in the bulk soil and rhizosphere soil 
samples, and these two ecological niches have different nutritional 
availability and needs (Table 4).

3.7 Relationships between bacterial 
communities and soil chemical properties

The Mantel test was performed to assess the relationship 
between bacterial communities and environmental factors, 

FIGURE 4

Relative abundances on (A) phylum and (B) genus levels of bacteria of different soil and root samples. Cladogram based on LEfSe analysis (LDA  >  3.5) of 
the (C) bulk soil samples bacterial community and (D) rhizosphere soil samples, showing that bacteria that significantly differ between groups, color-
coded in red and green. The classification levels from phylum to genus are organized concentrically, with the innermost circle representing phylum 
and the outermost representing genus. The yellow circle represents ASVs with no significant difference.
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including six chemical properties: pH, EC, SOM, AN, AP, and 
AK. The changes in the bacterial community structure between 
high- and low-productive soil type samples in the bulk soil and 
rhizosphere soil samples were associated with SOM (bulk soil: 
R = 0.767, p = 0.001; rhizosphere soil: R = 0.683, p = 0.001), AN 
(bulk soil: R = 0.699, p = 0.001; rhizosphere soil: R = 0.608, 
p = 0.001), and soil EC (bulk soil: R = 0.325, p = 0.019; rhizosphere 
soil: R = 0.361, p = 0.010) (Table 5). In addition, the heatmap was 
used to further analyze the correlation between environmental 
factors and bacterial genera. In the bulk soil and rhizosphere soil 
samples, unclassified Gemmatimonadaceae and Sphingomonas 
showed significant negative correlations with AN, respectively. 
Unclassified Vicinamibacteraceae and Lysobacter exhibited a 
significant positive correlation with SOM and AN. In the root 
samples, a significant negative correlation was found between 
Massilia and EC. From the above analyses, it can be observed that 
soil fertility indices such as SOM, AN, and EC were the main 
factors affecting the soil bacterial community. The interaction 
between soil fertility index and bacteria would determine the soil 
productivity (Figure 6).

4 Discussion

4.1 Correlations between microbial 
communities and soil properties

Soil microbes are vital components of agricultural ecosystems, 
and their abundance and diversity are correlated with soil fertility. 
Increasing the application of organic fertilizers significantly enhances 
both soil organic matter content and microbial diversity (Karami et al., 
2012; Ai et al., 2015; Tkacz et al., 2015). Below-ground interactions by 
the maize–peanut intercropping increased the number of beneficial 
soil bacteria and diversity of bacterial communities (Simpson and 
Shannon indices), which were conducive to improving the supply 
capacity of soil nutrients (N and P) and the stability of the soil 
microbial ecosystems (Li et al., 2007). Continuous cropping, mono-
nutrient depletion, and declining soil fertility led to a decrease in soil 
microbial abundance (Chao1 index) and diversity (Shannon index), 
which promoted the growth of soil harmful microorganisms (Zhao 
et al., 2016). In this study, compared with the high-productive soil type 
samples, the bacterial richness indices (ACE and Chao1) in the bulk 

FIGURE 5

The networks of co-occurring bacterial in the bulk soils, rhizosphere soils, and root samples in both high- and low-productive soil type samples of six 
groups, (A) HBS, (B) HRS, (C) HR, (D) LBS, (E) LRS, and (F) HR, based on correlation analysis. The co-occurring networks are colored by module. Within 
each panel, the node size corresponds proportionally to its degree of connectivity.
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soil, rhizosphere soil, and root samples in the low-productive soil type 
samples were lower than those in the high-productive soil type 
samples, indicating that the lack of nutrients in the low-productive soil 
type samples may affect the growth and abundance of 
certain microorganisms.

However, in the current study, the bacterial diversity indices 
(Shannon and Simpson) in the low-productive soil type samples were 
higher than those in the high-productive soil type samples. Similar 
results were also obtained from previous research studies. For 
example, the diversity of bacterial communities decreased due to the 
increase in the amount of soil nitrogen; the Shannon diversity index 
of inter-root soil bacterial communities in plants was higher under 
low nitrogen conditions than that at high nitrogen levels, probably due 
to the suppression of beneficial interactions between the microbiome 
and non-leguminous plants under high fertilizer conditions 
(Kavamura et al., 2018). In addition, Sun et al. (2015) showed that soil 
nutrient content was low in the no-fertilizer treatment for 30 
consecutive years, and bacterial abundance (16S rRNA gene copy 
number) was correspondingly low but phylogenetic diversity (PD) 
was high, which was manifested by higher bacterial diversity and 
analyzed that soil pH was the strongest driver of bacterial diversity.

In summary, bacterial diversity is influenced by various factors. In 
certain situations, nutrient deficiency may lead to decreased bacterial 
richness. Conversely, under specific conditions where the proliferation 
of certain bacterial communities is suppressed, bacterial diversity 
might increase in the low-productive soil type samples.

4.2 Relation between soil chemical 
properties and microbial community 
structure

In recent years, several studies on the differences in microbial 
communities in various types of farmlands have been conducted. 
Bandara et al. compared the differences in root microbial communities 
between high-yield and low-yield sites in soybean farms in 
Pennsylvania. The high-yield sites had more root-colonizing bacteria 
that increase plant growth, and the soil conditions were not ideal for 
symbiotic nitrogen fixation in low-yield sites (Bandara et al., 2021). 
Our study further analyzed the bacterial community structures of the 

high- and low-productive soil type samples in Hebei province of 
China. The dominant bacterial phyla in different productive soil types 
were consistent, such as Proteobacteria, Acidobacteriota, 
Actinobacteria, Bacteroidota, and Gemmatimonadota. These bacterial 
phyla are common in soils of various habitats and play essential roles 
in nutrient cycling, such as carbon, nitrogen, and phosphorus cycling 
(Li Y. et al., 2019; Ibrahim et al., 2020; Xue et al., 2020; Yan et al., 2021). 
Among them, Proteobacteria exhibited the highest abundance and 
played a crucial role in nutrient cycling in environments rich in 
organic matter (Ren C. J. et al., 2018). Meanwhile, Actinobacteria and 
Bacteroidota played dominant roles in the decomposition of soil 
organic matter (Six et al., 2004). Gemmatimonadota play an important 
role in nutrient transformation. Gemmatimonadota can transform 
inorganic nutrient elements into organic forms through its 
metabolism, such as nitrate into amino acids (Ibrahim et al., 2020).

Although the dominant bacteria of the high- and low-productive 
soil type samples were similar, there were obvious differences in the 
abundance of some bacteria between the two soil fertility samples. 
Members of Acidobacteria, especially those in the family 
Pyrinomonadaceae and order Pyrinomonadales, order Myxococcales 
(phylum Myxococcota), order Gemmatimonadales (phylum 
Gemmatimonadota), and order Sphingomonadales (Proteobacteria) 
were significantly more abundant in the low-productive soil type 
samples compared to the high-productive soil type samples. 
Acidobacteria were considered oligotrophic microorganisms, which 
thrive in low-nutrient soil, leading to a high abundance in the 
low-productive soil type samples (Jackson et al., 2007). Certain groups 
within the phylum Gemmatimonadota can adapt to dry conditions. 
Given the low water retention capacity of the low-productive soil type 
samples due to the soil structure, this adaptation might explain the 
increased abundance of these groups (Yan et al., 2021). Additionally, 
there was a notable increase in the abundance of Sphingomonas (a 
class within Proteobacteria) in the low-productive soil type samples. 
This bacterium is among the top five root pathogens (Deng et al., 
2022). Conversely, there was a significant decrease in the abundance 
of certain groups in the phylum Actinobacteria, such as those in the 
order Rhizobiales, the family Xanthomonadaceae, and the genera 
Lysobacter and Pseudoxanthomonas. The genus Lysobacter exhibited 
strong antagonistic activity against various plant pathogenic fungi, 
bacteria, and nematodes and became a new type of biocontrol bacteria 

TABLE 3 Topological properties of co-occurring bacterial networks and their corresponding random networks.

Network metrics BS RS R

HBS LBS HRS LRS HR LR

Number of nodes 137 141 157 163 81 86

Number of edges 817 912 1,037 1,282 255 224

Number of positive correlations (%) 53.00 53.07 53.52 49.06 52.94 62.50

Number of negative correlations (%) 47.00 46.93 46.48 50.94 47.06 37.50

Average path length (APL) 2.812 2.616 2.651 2.571 3.576 3.539

Graph density 0.088 0.092 0.085 0.097 0.079 0.061

Network diameter 6 5 6 6 9 8

Average clustering coefficient (avg CC) 0.451 0.419 0.422 0.417 0.47 0.478

Number of modules 10 3 5 3 10 16

Modularity (M) 6.256 6.510 6.114 −273.055 6.330 1.839
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with biocontrol potential (Hayward et al., 2010). Furthermore, in the 
rhizosphere soil samples of the low-productive soil type samples, the 
abundance of Bacillus, a genus within Firmicutes, was significantly 
lower than that in the high-productive soil type samples. Rhizobiales, 
which are capable of symbiotic nitrogen fixation in leguminous plants, 
leading to increased nitrogen absorption by plant roots, demonstrated 

higher abundance in the low-productive soil type samples (Masson-
Boivin and Sachs, 2018). Bacillus are saprotrophic microorganisms, 
have preferable biocontrol and growth-promoting potential, and are 
a potential strain to control wheat root rot caused by F. oxysporum 
(Xiong et al., 2015). The abundance of these microorganisms serves as 
an indicator of the health of soil microbial communities. Kandasamy 

TABLE 5 Mantel analysis of environmental factors and bacterial genera.

Environment BS RS R

R P R P R P

pH 0.102 0.195 0.168 0.139 0.016 0.435

EC 0.325 0.019 0.361 0.010 0.221 0.097

SOM 0.767 0.001 0.683 0.001 0.190 0.106

AN 0.699 0.001 0.608 0.001 0.129 0.167

AP −0.051 0.586 −0.032 0.457 −0.069 0.570

AK 0.091 0.184 0.006 0.366 −0.021 0.446

TABLE 4 Nodes identified as connectors of bacterial networks (HBS, LBS, HRS, LRS, HR, and LR).

Genus Role Abundance (%) Degree Phyla Zi value Pi value

HBS

Unclassified Xanthobacteraceae Connector 0.0139 9 Proteobacteria 0.4975 0.6400

Steroidobacter Connector 0.0086 19 Proteobacteria 0.4954 0.6400

LBS

Unclassified Chloroflexi Connector 0.0093 13 Chloroflexi 0.0000 0.6400

Sphingomonas Connector 0.0693 17 Proteobacteria 0.4902 0.6667

Terrimonas Connector 0.0079 17 Bacteroidota 1.1180 0.6563

Unclassified SC I 84 Connector 0.0060 16 Proteobacteria −1.1180 0.6250

HRS

Unclassified Comamonadaceae Connector 0.0076 20 Proteobacteria −0.8492 0.6250

Unclassified Vicinamibacteraceae Connector 0.0619 31 Acidobacteriota 0.8235 0.6250

Pedobacter Connector 0.0096 7 Bacteroidota −0.4611 0.6667

Unclassified Xanthobacteraceae Connector 0.0088 12 Proteobacteria −0.8018 0.7222

LRS

Cellvibrio Connector 0.0056 26 Proteobacteria −1.0394 0.6250

BIyi10 Connector 0.0062 15 Proteobacteria 0.4103 0.6667

Altererythrobacter Connector 0.0212 6 Proteobacteria 0.0000 0.6250

HR

Altererythrobacter Connector 0.0268 7 Proteobacteria 0.0000 0.6667

Bradyrhizobium Connector 0.0138 12 Proteobacteria 1.1674 0.6667

Pseudorhodoferax Connector 0.0092 11 Proteobacteria 0.3529 0.6627

Pseudomonas Connector 0.0593 7 Proteobacteria 0.0000 0.6250

LR

Cellvibrio Connector 0.0167 6 Proteobacteria −0.4590 0.6250

Altererythrobacter Connector 0.0316 5 Proteobacteria 1.2585 0.6250

Bradyrhizobium Connector 0.0130 11 Proteobacteria 1.1893 0.6400

Sphingopyxis Connector 0.0100 5 Proteobacteria 0.0000 0.6667

Acidibacter Connector 0.0164 5 Proteobacteria 0.0000 0.6667

The topological importance of each node is determined by two attributes: the within-module connectivity Zi, which gauges how strongly a node is connected to others within its module, and 
the among-module connectivity Pi, which measures the extent of a node’s connections to nodes in different modules.
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et al. (2019) found that introducing key microorganisms from high-
productive soil type samples altered the original microbial 
characteristics in the low-productive soil type samples, thereby 
enhancing soil biological health and yield. These findings lay the 
foundation for constructing healthy microbial communities in the 
low-productive soil type samples and targeted the regulation of 
soil microbes.

4.3 Shifts of structure in co-occurrence 
network for different productive soil types

In ecological environments, microorganisms cannot survive in 
an isolated environment, and they form complex network systems 
through interactions (Liu J. J. et al., 2015; Liu et al., 2016). In these 
intricate ecosystems, microbial interactions are more crucial for 
ecological functionality than microbial abundance and diversity 
(Zhao et  al., 2022a). In recent years, researchers predominantly 
focused on microbial diversity and community structure in 
ecosystems, neglecting interactions between microbial communities. 
However, the functionality of microbial communities in complex 
ecosystems was not analyzed comprehensively in these studies. Based 
on the differences between bacterial communities in wheat-planting 
soil and root samples from different soil types in Hebei province, the 
inter-species interactions were further analyzed in this study. 
Co-occurrence network analysis was used to explore the interactions 
within bacterial communities in the high- and low-productive soil 
type samples. The results indicated that compared with the high-
productive soil type samples, the low-productive soil type samples 
exhibited lower average clustering coefficients, fewer modules, and 
longer average path lengths, indicating decreased complexity in 
bacterial coexistence networks. The complexity of the microbial 
symbiotic network in the ecosystem is influenced by many factors. 
Zheng et  al. (2021) showed that the occurrence of Ralstonia 
solanacearum has reduced the complexity of its microbial network 
compared with that in healthy tobacco plants. Although this study 
did not statistically analyze the occurrence of wheat root rot disease 
in the low-productive soil type samples, the reduced complexity of 
the bacterial network to some extent may reflect the unhealthy 
condition of soil microbial communities in the low-productive soil 
type samples.

However, the reduced complexity of the microbial network does 
not necessarily imply weakened interactions among microbial 
communities. Zhao et  al. (2022b) observed enhanced microbial 
interactions during the composting process despite the decreased 
complexity and diversity of microbial networks during high-
temperature fermentation. Similarly, Yuan et  al. (2021) found 
increased microbial interactions despite decreased microbial diversity 
with increasing temperatures. The current study also revealed higher 
average degrees in the co-occurrence networks of the bulk soil and 
rhizosphere soil samples in the low-productive soil type samples, 
indicating tighter connections among soil microbes. In addition, the 
LR exhibited small-world characteristics, which could allow the 
effects of a perturbation to distribute rapidly through the entire 
network, rendering a more efficient system, consistent with the 
findings by Yuan et al.

Key taxa within soil microbial network modules play a crucial role 
in maintaining the stability of functional microbial communities (Zhou 
et al., 2010). Due to their specific roles in different substance cycles in 
soil, these key taxa are vulnerable to disruption caused by changes in 
soil environments (Steele et al., 2011). Changing the hub species (that 
is, species that are associated with many other species) would impact 
the community structure, such as rebuilding microbial co-occurrence 
networks (Faust and Raes, 2012). Therefore, analyzing key taxa in 
different habitats is essential. Fan et al. (2019) found that long-term 
fertilization suppressed the growth of nitrogen-fixing microbial clusters 
(modules), leading to reduced soil nitrogen-fixing functionality and 
indicating that fertilizer regulation of soil ecological functions might 
occur through the growth of specific microbial modules. Similar 
conclusions were drawn in the research by Wagg et al. These studies 
indicate that higher microbial community diversity and more complex 
microbial network significantly increased soil ecosystem function 
related to carbon and nutrient cycling (Wagg et al., 2019). In this study, 
significant differences in key bacterial species were found between 
samples from the high- and low-productive soil types, especially in the 
bulk soil and rhizosphere soil samples, where the differences were more 
pronounced. Except for the Proteobacteria phylum (a key phylum in 
the high-productive soil type samples), other phyla microorganisms 
such as Chloroflexi and Bacteroidota were also served as connectors to 
increase the microbial interactions in the bulk soil samples from 
low-productive soil types. In contrast, in the rhizosphere soil and root 
samples, key species in the low-productive soil type samples belonged 

FIGURE 6

Correlation-based heatmap method reveals the relation between environmental factors and bacterial genera in the (A) BS, (B) RS, and (C) R. The 
different colors and intensities were adjusted based on associations among traits.
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to Proteobacteria. The results indicated low capacities for specific 
enrichment of dominant keystone strains, and other genera 
microorganisms may be used to establish network interactions in the 
low-productive soil type samples due to a lack of key genera.

In summary, the enhanced understanding of soil bacterial 
communities will aid in regulating the balance of soil ecosystems and 
provide a theoretical reference for further targeted regulation 
mechanisms in the low-productive soil type samples. However, to 
further identify the direct impact of soil environmental variables on 
microbial communities, future research should consider trait-based 
approaches. For instance, dose–response relationships between soil 
variables and microbial growth should be quantified. Alternatively, 
modern multi-omics technology such as metagenomics, 
metatranscriptomics, and metabolomics can provide a better 
understanding of microbial communities and their functionality, 
revealing possibilities for manipulating microbial communities to 
enhance crop nutrient utilization efficiency and reduce fertilizer usage.

Data availability statement

The names of the repository/repositories and accession  
number(s) can be found below: https://www.ncbi.nlm.nih.gov/sra/
PRJNA1081352.

Author contributions

HN: Writing – original draft, Conceptualization, Investigation, 
Software. MY: Writing – review & editing, Conceptualization. XC: 
Writing – review & editing, Investigation. JZ: Methodology, Writing 
– review & editing. YC: Investigation, Writing – review & editing. YS: 
Investigation, Writing – review & editing. SZ: Investigation, Writing 

– review & editing. AS: Writing – review & editing. YH: Writing – 
review & editing, Investigation, Methodology, Software.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. The authors are 
grateful for the support of the National Key R&D Program of China 
(2021YFD1901004).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmicb.2024.1391428/
full#supplementary-material

References
Ai, C., Liang, G. Q., Sun, J. W., Wang, X., He, P., Zhou, W., et al. (2015). Reduced dependence 

of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and 
organic fertilized soils. Soil Biol. Biochem. 80, 70–78. doi: 10.1016/j.soilbio.2014.09.028

Bandara, A. Y., Weerasooriya, D. K., Trexler, R. V., Bell, T. H., and Esker, P. D. (2021). 
Soybean roots and soil from high- and low-yielding field sites have different microbiome 
composition. Front. Microbiol. 12:675352. doi: 10.3389/fmicb.2021.675352

Belimov, A. A., Shaposhnikov, A. I., Azarova, T. S., Syrova, D. S., Kitaeva, A. B., 
Ulyanich, P. S., et al. (2022). Rhizobacteria mitigate the negative effect of aluminum on 
pea growth by immobilizing the toxicant and modulating root exudation. Plants 
11:2416. doi: 10.3390/plants11182416

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., al-Ghalith, G. A., 
et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science 
using QIIME 2. Nat. Biotechnol. 37, 852–857. doi: 10.1038/s41587-019-0209-9

Buckland, K. R., Reeve, J. R., Creech, J. E., and Durham, S. L. (2018). Managing soil 
fertility and health for quinoa production and weed control in organic systems. Soil 
Tillage Res. 184, 52–61. doi: 10.1016/j.still.2018.07.001

Callahan, B., McMurdie, P., Rosen, M., Han, A. W., Johnson, A. J. A., and Holmes, S. P. 
(2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. 
Methods 13, 581–583. doi: 10.1038/nmeth.3869

Chi, Q.-D., Wang, J., Liu, Y.-Q., Zhao, J., Cheng, Y., Cai, Z.-C., et al. (2021). Varying 
interactive effects of climate, soil properties, and gross nitrogen dynamics on biomass 
production between the topsoil and the subsoil in natural grassland ecosystems. Eur. J. 
Soil Biol. 104:103299. doi: 10.1016/j.ejsobi.2021.103299

Deng, Y., Jiang, Y. H., Yang, Y., He, Z., Luo, F., and Zhou, J. (2012). Molecular 
ecological network analyses. BMC Bioinformatics. 13:113. doi: 10.1186/1471-2105-13-113

Deng, X. H., Zhang, N., Li, Y. C., Zhu, C., Qu, B., Liu, H., et al. (2022). Bio-organic 
soil amendment promotes the suppression of by inducing changes in the functionality 

and composition of rhizosphere bacterial communities. New Phytol. 235, 1558–1574. 
doi: 10.1111/nph.18221

Duan, Y., Xu, M., Gao, S., Liu, H., Huang, S., and Wang, B. (2016). Long-term 
incorporation of manure with chemical fertilizers reduced total nitrogen loss in rain-fed 
cropping systems. Sci. Rep. 6:33611. doi: 10.1038/srep33611

Fan, K., Delgado-Baquerizo, M., Guo, X., Wang, D., Wu, Y., Zhu, M., et al. (2019). 
Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 
7:143. doi: 10.1186/s40168-019-0757-8

Fan, M., Li, J., Tang, Z., and Shangguan, Z. (2020). Soil bacterial community 
succession during desertification in a desert steppe ecosystem. Land Degrad. Dev. 31, 
1662–1674. doi: 10.1002/ldr.3545

Fanin, N., and Bertrand, I. (2016). Aboveground litter quality is a better predictor than 
belowground microbial communities when estimating carbon mineralization along a 
land-use gradient. Soil Biol. Biochem. 94, 48–60. doi: 10.1016/j.soilbio.2015.11.007

Faust, K., and Raes, J. (2012). Microbial interactions: from networks to models. Nat. 
Rev. Microbiol. 10, 538–550. doi: 10.1038/nrmicro2832

Guo, Y. S., Furrer, J. M., Kadilak, A. L., Hinestroza, H. F., Gage, D. J., Cho, Y. K., et al. 
(2018). Bacterial extracellular polymeric substances amplify water content variability at 
the pore scale. Front. Environ. Sci. 6:93. doi: 10.3389/fenvs.2018.00093

Hayward, A. C., Fegan, N., Fegan, M., and Stirling, G. R. (2010). Stenotrophomonas 
and lysobacter: ubiquitous plant-associated gamma-proteobacteria of developing 
significance in applied microbiology. J. Appl. Microbiol. 108, 756–770. doi: 10.1111/j.
1365-2672.2009.04471.x

Hebei Provincial Bureau of Quality and Technical Supervision (2021). DBDB13/t 
5406–2021. Classification diagnosis of main indicators of farmland fertility.

Husenov, B., Asaad, S., Muminjanov, H., Garkava-Gustavsson, L., and Johansson, E. 
(2021). Sustainable wheat production and food security of domestic wheat in Tajikistan: 

https://doi.org/10.3389/fmicb.2024.1391428
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.ncbi.nlm.nih.gov/sra/PRJNA1081352
https://www.ncbi.nlm.nih.gov/sra/PRJNA1081352
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1391428/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1391428/full#supplementary-material
https://doi.org/10.1016/j.soilbio.2014.09.028
https://doi.org/10.3389/fmicb.2021.675352
https://doi.org/10.3390/plants11182416
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1016/j.still.2018.07.001
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1016/j.ejsobi.2021.103299
https://doi.org/10.1186/1471-2105-13-113
https://doi.org/10.1111/nph.18221
https://doi.org/10.1038/srep33611
https://doi.org/10.1186/s40168-019-0757-8
https://doi.org/10.1002/ldr.3545
https://doi.org/10.1016/j.soilbio.2015.11.007
https://doi.org/10.1038/nrmicro2832
https://doi.org/10.3389/fenvs.2018.00093
https://doi.org/10.1111/j.1365-2672.2009.04471.x
https://doi.org/10.1111/j.1365-2672.2009.04471.x


Niu et al. 10.3389/fmicb.2024.1391428

Frontiers in Microbiology 13 frontiersin.org

implications of seed health and protein quality. Int. J. Environ. Res. Public Health 
18:5751. doi: 10.3390/ijerph18115751

Ibrahim, M. M., Tong, C. X., Hu, K., Zhou, B., Xing, S., and Mao, Y. (2020). Biochar-
fertilizer interaction modifies N-sorption, enzyme activities and microbial functional 
abundance regulating nitrogen retention in rhizosphere soil. Sci. Total Environ. 
739:140065. doi: 10.1016/j.scitotenv.2020.140065

Jackson, R. B., Fierer, N., and Schimel, J. P. (2007). New directions in microbial 
ecology. Ecology 88, 1343–1344. doi: 10.1890/06-1882

Kandasamy, S., Liu, E. Y. R., Patterson, G., Saldias, S., Ali, S., and Lazarovits, G. (2019). 
Introducing key microbes from high productive soil transforms native soil microbial 
community of low productive soil. Microbiology 8:e895. doi: 10.1002/mbo3.895

Karami, A., Homaee, M., Afzalinia, S., Ruhipour, H., and Basirat, S. (2012). Organic 
resource management: impacts on soil aggregate stability and other soil physico-
chemical properties. Agric. Ecosyst. Environ. 148, 22–28. doi: 10.1016/j.agee.2011.10.021

Kavamura, V. N., Hayat, R., Clark, I. M., Rossmann, M., Mendes, R., Hirsch, P. R., et al. 
(2018). Inorganic nitrogen application affects both taxonomical and predicted functional 
structure of wheat rhizosphere bacterial communities. Front. Microbiol. 9:1074. doi: 
10.3389/fmicb.2018.01074

Li, Y., Fang, F., Wei, J. L., Wu, X., Cui, R., Li, G., et al. (2019). Humic acid fertilizer 
improved soil properties and soil microbial diversity of continuous cropping Peanut: a 
three-year experiment. Sci. Rep. 9:12014. doi: 10.1038/s41598-019-48620-4

Li, M., Jordan, N. R., Koide, R. T., Yannarell, A. C., and Davis, A. S. (2016). Meta-analysis 
of crop and weed growth responses to arbuscular mycorrhizal fungi: implications for 
integrated weed management. Weed Sci. 64, 642–652. doi: 10.1614/WS-D-16-00050.1

Li, J., Li, Z., Li, X., Tang, X., Liu, H., Li, J., et al. (2023). Effects of spraying KH2PO4 on flag 
leaf physiological characteristics and grain yield and quality under heat stress during the filling 
period in winter wheat. Plan. Theory 12:1801. doi: 10.3390/plants12091801

Li, L., Li, S. M., Sun, J. H., Zhou, L. L., Bao, X. G., Zhang, H. G., et al. (2007). Diversity 
enhances agricultural productivity via rhizosphere phosphorus facilitation on 
phosphorus-deficient soils. Proc. Natl. Acad. Sci. USA 104, 11192–11196. doi: 10.1073/
pnas.0704591104

Li, J., Zelong, W., and Yuan, J. (2019). Impact of agro-farming activities on microbial 
diversity of acidic red soils in a camellia Oleifera Forest. Rev. Bras. Ciênc. Solo 
43:e0190044. doi: 10.1590/18069657rbcs20190044

Liu, C. C., Liu, Y. G., Guo, K., Wang, S., Liu, H., Zhao, H., et al. (2016). Aboveground 
carbon stock, allocation and sequestration potential during vegetation recovery in the 
karst region of southwestern China: a case study at a watershed scale. Agric. Ecosyst. 
Environ. 235, 91–100. doi: 10.1016/j.agee.2016.10.003

Liu, J. J., Sui, Y. Y., Yu, Z. H., Shi, Y., Chu, H., Jin, J., et al. (2015). Soil carbon content 
drives the biogeographical distribution of fungal communities in the black soil zone of 
Northeast China. Soil Biol. Biochem. 83, 29–39. doi: 10.1016/j.soilbio.2015.01.009

Liu, C. L., Wu, Y. Z., and Liu, Q. J. (2015). Effects of land use on spatial patterns of soil 
properties in a rocky mountain area of northern China. Arab. J. Geosci. 8, 1181–1194. 
doi: 10.1007/s12517-013-1233-6

Looft, T., Johnson, T. A., Allen, H. K., Bayles, D. O., Alt, D. P., Stedtfeld, R. D., et al. 
(2012). In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. 
Sci. 109, 1691–1696. doi: 10.1073/pnas.1120238109

Lu, J., Li, S., Wu, X., Liang, G., Gao, C., Li, J., et al. (2023). The dominant microorganisms 
vary with aggregates sizes in promoting soil carbon accumulation under straw application. 
Arch. Agron. Soil Sci. 69, 1–17. doi: 10.1080/03650340.2021.1955354

Magoc, T., and Salzberg, S. L. (2011). FLASH: fast length adjustment of short reads to 
improve genome assemblies. Bioinform. 27, 2957–2963. doi: 10.1093/bioinformatics/btr507

Masson-Boivin, C., and Sachs, J. L. (2018). Symbiotic nitrogen fixation by rhizobia – the 
roots of a success story. Curr. Opin. Plant Biol. 44, 7–15. doi: 10.1016/j.pbi.2017.12.001

Pellegrino, E., Gamper, H. A., Ciccolini, V., and Ercoli, L. (2020). Forage rotations 
conserve diversity of arbuscular mycorrhizal fungi and soil fertility. Front. Microbiol.  
10:2969. doi: 10.3389/fmicb.2019.02969

Philippot, L., Chenu, C., Kappler, A., Rillig, M. C., and Fierer, N. (2023). The interplay 
between microbial communities and soil properties. Nat. Rev. Microbiol. 22, 226–239. 
doi: 10.1038/s41579-023-00980-5

Qin, J., Bian, C., Duan, S., Wang, W., Li, G., and Jin, L. (2022). Effects of different 
rotation cropping systems on potato yield, rhizosphere microbial community and soil 
biochemical properties. Front. Plant Sci. 13:999730. doi: 10.3389/fpls.2022.999730

Rabbi, S. M. F., Warren, C. R., Macdonald, C., Trethowan, R. M., and Young, I. M. 
(2022). Soil-root interaction in the rhizosheath regulates the water uptake of wheat. 
Rhizosphere 21:100462. doi: 10.1016/j.rhisph.2021.100462

Ren, C. J., Wang, T., Xu, Y. D., Deng, J., Zhao, F., Yang, G., et al. (2018). Differential 
soil microbial community responses to the linkage of soil organic carbon fractions with 
respiration across land-use changes. For. Ecol. Manag. 409, 170–178. doi: 10.1016/j.
foreco.2017.11.011

Ren, D., Yang, Y., Yang, Y., Richards, K., and Zhou, X. (2018). Land-water-food nexus 
and indications of crop adjustment for water shortage solution. Sci. Total Environ. 626, 
11–21. doi: 10.1016/j.scitotenv.2018.01.071

Rousk, J., Brookes, P. C., and Bååth, E. (2010). Investigating the mechanisms for the 
opposing pH relationships of fungal and bacterial growth in soil. Soil Biol. Biochem. 42, 
926–934. doi: 10.1016/j.soilbio.2010.02.009

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., et al. 
(2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60. doi: 
10.1186/gb-2011-12-6-r60

Six, J., Bossuyt, H., Degryze, S., and Denef, K. (2004). A history of research on the link 
between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 
79, 7–31. doi: 10.1016/j.still.2004.03.008

Steele, J. A., Countway, P. D., Xia, L., Vigil, P. D., Beman, J. M., Kim, D. Y., et al. (2011). 
Marine bacterial, archaeal and protistan association networks reveal ecological linkages. 
ISME J. 5, 1414–1425. doi: 10.1038/ismej.2011.24

Sun, A., Jiao, X.-Y., Chen, Q., Wu, A. L., Zheng, Y., Lin, Y. X., et al. (2021). Microbial 
communities in crop phyllosphere and root endosphere are more resistant than soil 
microbiota to fertilization. Soil Biol. Biochem. 153:108113. doi: 10.1016/j.
soilbio.2020.108113

Sun, R. B., Zhang, X. X., Guo, X. S., Wang, D., and Chu, H. (2015). Bacterial diversity 
in soils subjected to long-term chemical fertilization can be more stably maintained with 
the addition of livestock manure than wheat straw. Soil Biol. Biochem. 88, 9–18. doi: 
10.1016/j.soilbio.2015.05.007

Tkacz, A., Cheema, J., Chandra, G., Grant, A., and Poole, P. S. (2015). Stability and 
succession of the rhizosphere microbiota depends upon plant type and soil composition. 
ISME J. 9, 2349–2359. doi: 10.1038/ismej.2015.41

Veldkamp, E., Schmidt, M., Powers, J. S., and Corre, M. D. (2020). Deforestation and 
reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 1, 590–605. doi: 
10.1038/s43017-020-0091-5

Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E., and van der Heijden, M. G. A. 
(2019). Fungal-bacterial diversity and microbiome complexity predict ecosystem 
functioning. Nat. Commun. 10:4841. doi: 10.1038/s41467-019-12798-y

Xiao, J., Chen, S. Y., Sun, Y., Wu, S., Liang, W., and Yang, S. (2022). Effects of 
mechanical weeding on soil fertility and microbial community structure in star 
anise (Hook.F.) plantations. PLoS One 17:e0266949. doi: 10.1371/journal.
pone.0266949

Xiao, R., Huang, D., du, L., Tang, X., Song, B., Yin, L., et al. (2024). Molecular insights 
into linkages among free-floating macrophyte-derived organic matter, the fate of 
antibiotic residues, and antibiotic resistance genes. J. Hazard. Mater. 471:134351. doi: 
10.1016/j.jhazmat.2024.134351

Xiong, W., Zhao, Q. Y., Zhao, J., Xun, W., Li, R., Zhang, R., et al. (2015). Different 
continuous cropping spans significantly affect microbial community membership and 
structure in a vanilla-grown soil as revealed by deep pyrosequencing. Microb. Ecol. 70, 
209–218. doi: 10.1007/s00248-014-0516-0

Xue, Y. F., Tian, J., Quine, T. A., Powlson, D., Xing, K., Yang, L., et al. (2020). The 
persistence of bacterial diversity and ecosystem multifunctionality along a disturbance 
intensity gradient in karst soil. Sci. Total Environ. 748:142381. doi: 10.1016/j.
scitotenv.2020.142381

Yan, H., Ji, Y., Liu, J., Liu, F., Hu, Y., and Kuang, W. (2016). Potential promoted 
productivity and spatial patterns of medium- and low-yield cropland land in China. J. 
Geogr. Sci. 26, 259–271. doi: 10.1007/s11442-016-1267-2

Yan, T. T., Xue, J. H., Zhou, Z. D., and Wu, Y. (2021). Biochar-based fertilizer 
amendments improve the soil microbial community structure in a karst 
mountainous area. Sci. Total Environ. 794:148757. doi: 10.1016/j.
scitotenv.2021.148757

Yuan, M. M., Guo, X., Wu, L., Zhang, Y., Xiao, N., Ning, D., et al. (2021). Climate 
warming enhances microbial network complexity and stability. Nat. Clim. Chang. 11, 
343–348. doi: 10.1038/s41558-021-00989-9

Zhang, X., Chen, K., and Li, K. (2023). Detection of meteorological influence on bread 
wheat quality in Hebei province, China based on the gradient boosting decision tree. 
Front. Plant Sci. 14:1083665. doi: 10.3389/fpls.2023.1083665

Zhao, Y. P., Lin, S., Chu, L. X., Gao, J., Azeem, S., and Lin, W. (2016). Insight into 
structure dynamics of soil microbiota mediated by the richness of replanted. Sci. Rep. 
6:26175. doi: 10.1038/srep26175

Zhao, Y. X., Lou, Y. C., Qin, W. Z., Cai, J., Zhang, P., and Hu, B. (2022a). Interval 
aeration improves degradation and humification by enhancing microbial interactions 
in the composting process. Bioresour. Technol. 358:127296. doi: 10.1016/j.
biortech.2022.127296

Zhao, Y. X., Zhuge, C. X., Weng, Q., and Hu, B. (2022b). Additional strains acting as 
key microbes promoted composting process. Chemosphere 287:132304. doi: 10.1016/j.
chemosphere.2021.132304

Zheng, Y. F., Han, X. B., Zhao, D. L., Wei, K., Yuan, Y., Li, Y., et al. (2021). Exploring 
biocontrol agents from microbial keystone taxa associated to suppressive soil: a new 
attempt for a biocontrol strategy. Front. Plant Sci. 12:655673. doi: 10.3389/
fpls.2021.655673

Zhou, J., Deng, Y., Luo, F., He, Z., Tu, Q., and Zhi, X. (2010). Functional molecular 
ecological networks. MBio 1:e00169–10. doi: 10.1128/mbio.00169-10

https://doi.org/10.3389/fmicb.2024.1391428
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.3390/ijerph18115751
https://doi.org/10.1016/j.scitotenv.2020.140065
https://doi.org/10.1890/06-1882
https://doi.org/10.1002/mbo3.895
https://doi.org/10.1016/j.agee.2011.10.021
https://doi.org/10.3389/fmicb.2018.01074
https://doi.org/10.1038/s41598-019-48620-4
https://doi.org/10.1614/WS-D-16-00050.1
https://doi.org/10.3390/plants12091801
https://doi.org/10.1073/pnas.0704591104
https://doi.org/10.1073/pnas.0704591104
https://doi.org/10.1590/18069657rbcs20190044
https://doi.org/10.1016/j.agee.2016.10.003
https://doi.org/10.1016/j.soilbio.2015.01.009
https://doi.org/10.1007/s12517-013-1233-6
https://doi.org/10.1073/pnas.1120238109
https://doi.org/10.1080/03650340.2021.1955354
https://doi.org/10.1093/bioinformatics/btr507
https://doi.org/10.1016/j.pbi.2017.12.001
https://doi.org/10.3389/fmicb.2019.02969
https://doi.org/10.1038/s41579-023-00980-5
https://doi.org/10.3389/fpls.2022.999730
https://doi.org/10.1016/j.rhisph.2021.100462
https://doi.org/10.1016/j.foreco.2017.11.011
https://doi.org/10.1016/j.foreco.2017.11.011
https://doi.org/10.1016/j.scitotenv.2018.01.071
https://doi.org/10.1016/j.soilbio.2010.02.009
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1016/j.still.2004.03.008
https://doi.org/10.1038/ismej.2011.24
https://doi.org/10.1016/j.soilbio.2020.108113
https://doi.org/10.1016/j.soilbio.2020.108113
https://doi.org/10.1016/j.soilbio.2015.05.007
https://doi.org/10.1038/ismej.2015.41
https://doi.org/10.1038/s43017-020-0091-5
https://doi.org/10.1038/s41467-019-12798-y
https://doi.org/10.1371/journal.pone.0266949
https://doi.org/10.1371/journal.pone.0266949
https://doi.org/10.1016/j.jhazmat.2024.134351
https://doi.org/10.1007/s00248-014-0516-0
https://doi.org/10.1016/j.scitotenv.2020.142381
https://doi.org/10.1016/j.scitotenv.2020.142381
https://doi.org/10.1007/s11442-016-1267-2
https://doi.org/10.1016/j.scitotenv.2021.148757
https://doi.org/10.1016/j.scitotenv.2021.148757
https://doi.org/10.1038/s41558-021-00989-9
https://doi.org/10.3389/fpls.2023.1083665
https://doi.org/10.1038/srep26175
https://doi.org/10.1016/j.biortech.2022.127296
https://doi.org/10.1016/j.biortech.2022.127296
https://doi.org/10.1016/j.chemosphere.2021.132304
https://doi.org/10.1016/j.chemosphere.2021.132304
https://doi.org/10.3389/fpls.2021.655673
https://doi.org/10.3389/fpls.2021.655673
https://doi.org/10.1128/mbio.00169-10

	Deciphering the differences of bacterial communities between high- and low-productive wheat fields using high-throughput sequencing
	1 Introduction
	2 Materials and methods
	2.1 Description of the experimental area
	2.2 Sample collection
	2.3 Sample analyses
	2.3.1 Soil chemical analyses
	2.3.2 DNA extraction, PCR amplification, and Illumina HiSeq sequencing
	2.3.3 Statistical and bioinformatics analyses

	3 Results
	3.1 Soil chemical properties
	3.2 Richness and diversity of the bacterial community
	3.3 Bacterial community β-diversity
	3.4 Bacterial community composition
	3.5 Indicator bacteria for two productive soil type samples
	3.6 Co-occurrence network structure of bacterial communities
	3.7 Relationships between bacterial communities and soil chemical properties

	4 Discussion
	4.1 Correlations between microbial communities and soil properties
	4.2 Relation between soil chemical properties and microbial community structure
	4.3 Shifts of structure in co-occurrence network for different productive soil types

	Data availability statement
	Author contributions

	References

