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A significant global health crisis is predicted to emerge due to antimicrobial 
resistance by 2050, with an estimated 10 million deaths annually. Increasing 
antibiotic resistance necessitates continuous therapeutic innovation as conventional 
antibiotic treatments become increasingly ineffective. The naturally occurring 
antibacterial, antifungal, and antiviral compounds offer a viable alternative to 
synthetic antibiotics. This review presents bacterial resistance mechanisms, 
nanocarriers for drug delivery, and plant-based compounds for nanoformulations, 
particularly nanoantibiotics (nAbts). Green synthesis of nanoparticles has emerged 
as a revolutionary approach, as it enhances the effectiveness, specificity, and 
transport of encapsulated antimicrobials. In addition to minimizing systemic side 
effects, these nanocarriers can maximize therapeutic impact by delivering the 
antimicrobials directly to the infection site. Furthermore, combining two or more 
antibiotics within these nanoparticles often exhibits synergistic effects, enhancing 
the effectiveness against drug-resistant bacteria. Antimicrobial agents are routinely 
obtained from secondary metabolites of plants, including essential oils, phenols, 
polyphenols, alkaloids, and others. Integrating plant-based antibacterial agents 
and conventional antibiotics, assisted by suitable nanocarriers for codelivery, is 
a potential solution for addressing bacterial resistance. In addition to increasing 
their effectiveness and boosting the immune system, this synergistic approach 
provides a safer and more effective method of tackling future bacterial infections.
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1 Introduction

Antimicrobial resistance (AMR) poses a severe threat to global health. The World Health 
Organization (WHO) lists AMR as one of the top 10 global health threats (World Health 
Organization, 2022; Michael et al., 2014). A study published in 2019 revealed that nearly 
457,000 deaths were attributed to resistance caused by seven primary pathogens. These include 
Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, 
Enterococcus faecium, Streptococcus pneumoniae, and Acinetobacter baumannii, listed in order 
of decreasing mortality (Antimicrobial Resistance Collaborators, 2022). Carbapenem 
resistance in K. pneumoniae is crucial to guiding antimicrobial selection, given how serious 
the threat is to public health (Karampatakis et  al., 2023). The pathogenicity of 
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carbapenem-resistant K. pneumoniae infections is enhanced by 
adhesive fimbriae, lipopolysaccharides, capsules, and siderophores. 
The formation of biofilms in patients with chronic or recurrent 
infectious diseases reflects bacterial resistance to antimicrobial drugs. 
Treatment strategies for this disease include traditional options 
(colistin and tigecycline) as well as newer alternatives (plazomicin and 
ceftolozane-tazobactam). Another major AMR concern is with 
microbes that cause urinary tract infections (UTIs) (Algammal et al., 
2023). It is the second most prevalent infectious disease, caused by 
various gram-negative and gram-positive bacteria in all demographics. 
Notably, among the gram-negative bacteria, E. coli is a significant 
contributor to UTIs (Issakhanian and Behzadi, 2019).

With frequent infections and limited treatment options, AMR 
enforces alternate medication trials, prolonged hospital stays, and 
increased treatment costs. AMR arises from the overuse and misuse 
of antimicrobial drugs, inappropriate prescriptions, and insufficient 
knowledge of infection control. Repetitive antibiotic onslaughts apply 
genetic evolution pressure on the microbes, allowing them to acquire 
multidrug resistance (MDR) (Salam et al., 2023). The acquired genetic 
modification confers bacteria with either of the three main 
mechanisms: resistance, persistence, and antibiotic tolerance. 
Knowledge of antibiotic resistance’s exact mechanism and regulation 

strategies is vital for a suitable treatment strategy. Numerous studies 
were conducted to understand and control these mechanisms (Pang 
et al., 2018; Saha and Sarkar, 2021; Uddin et al., 2021). Traditional 
methods for diagnosing antibiotic resistance are slow, costly, 
and intricate.

Fortunately, nanotechnology emerged as a boon and a 
transformative opportunity, enhancing the speed and affordability of 
rapid point-of-care platforms. Nanoparticles (NPs) have dimensions 
typically in the 1 to 100 nm range (Boverhof et al., 2015; Teow et al., 
2018). Their high surface area-to-volume ratio makes them versatile 
drug delivery vehicles (Ingle et al., 2013; Khan et al., 2019). NPs come 
in various categories: membrane-bound, metal-based, metal oxides, 
carbon, chitosan-based, and mesoporous structures. Additionally, 
formulations incorporate nanocomposites, nanosheets, nanomesh, 
hydrocarbons, and solid lipid NPs, each playing a role in enhancing 
antibiotic effectiveness, specificity, and delivery (Gabrielyan et al., 2020; 
Mamun et al., 2021; Parra-Ortiz et al., 2022). Recent advancements in 
NP vehicles have further increased their potency against drug-resistant 
bacteria (Wang et al., 2018; Brar et al., 2022; Binnebose et al., 2023). NP 
formulations can interact with cells through various mechanisms, such 
as adsorption, penetration, generation of reactive oxygen species, and 
interference with cellular processes (Barua and Mitragotri, 2014; Kim 
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et al., 2015). The advantages include improved drug delivery, enhanced 
bioavailability, targeted therapy, prolonged drug release, improved drug 
stability, and minimized toxicity (Eleraky et al., 2020; Yeh et al., 2020). 
They have also been used as diagnostics and biosensing devices and as 
combination therapies against drugs in nanomaterials and nanoparticle 
formulations, biosensors, microfluidic devices, and so on. They have 
facilitated improved detection and treatment of antibiotic-resistant 
infections (Mubeen et al., 2021; Saxena et al., 2022). Nanoantibiotics 
(nAbts), a subfield of nanomedicine, are gaining attention due to their 
potential to revolutionize bacterial infection treatment (Edson and 
Kwon, 2016; Masri et al., 2019).

Nature has an abundance of compounds harboring antimicrobial 
properties. They are less toxic and more effective than synthetic drugs 
due to their evolution over time (Atanasov et al., 2021). The useful 
phytochemicals are sourced using ethnopharmacology and traditional 
medicine knowledge (Bonifácio et  al., 2013; Nasim et  al., 2022). 
Around one-third of popular pharmaceutical products are derived 
from natural sources, reflecting the growing demand for alternative 
healthcare solutions. Natural compounds are being studied for their 
medicinal potential in various health issues, including cancer and 
microbial diseases (Elkordy et al., 2021). Herb-based essential oils and 
secondary metabolites have antibacterial, antifungal, and antiviral 
properties, offering potential alternatives to traditional antibiotics 
(Joshi, 2016; Bhatwalkar et al., 2021; Magryś et al., 2021). Newman 
and Cragg (2016) reported that between 1981 and 2014, the FDA 
approved 1,562 pharmaceuticals, with 44% being unaltered natural 
products, 9.1% being botanical drugs, 21% being natural product 
derivatives, and 4% being synthetic drugs.

The shift from conventional to plant-based nanoformulations 
represents a noteworthy change in antimicrobial research and therapy. 
The abundant pharmacological possibilities in nature’s resources 
provide optimism for innovative therapies and improved healthcare 
outcomes. Green synthesis utilizes naturally sourced starting materials 
and low-energy processes as a sustainable alternative to conventional 
synthesis methods. This approach relies on a safer, cleaner, and more 
environmentally friendly nanomaterial manufacturing process (Huston 
et al., 2021; Chopra et al., 2022). Conjugation of these compounds with 
NPs shows more effectiveness than traditional antibiotics. They target 
multiple pathways in the body, reducing side effects such as liver or 
kidney damage, and are more biocompatible (Anand et al., 2022). This 
review aims to provide an extensive overview of innovative approaches, 
including nanocarriers and herbal compounds. It highlights the 
synergistic potential of combining multiple antibiotics within 
nanocarriers to maximize efficacy against drug-resistant pathogens. In 
addition, it emphasizes the importance of the green synthesis of NPs as 
a revolutionary method for enhancing antimicrobial effectiveness while 
minimizing the risk of systemic side effects. Unlike earlier reports, this 
review delves into the intricacies of antimicrobial resistance 
mechanisms while stressing the ethical utilization of natural resources 
and nanotechnology to address the challenge of drug resistance.

2 Antimicrobial resistance

The ability of pathogens to sustain and even counteract 
antibiotic activity poses the greatest challenge to the 
administration of drug therapy. The discovery of antibiotics and 

their extensive use have inadvertently facilitated the emergence of 
resistant pathogenic strains, which significantly challenge the 
current healthcare system and pose a serious environmental threat 
(Boucher et al., 2009; Huh and Kwon, 2011). Drug resistance is 
defined as the minimum inhibitory concentration (MIC) of 
antimicrobial agents exceeding the agent’s inhibitory effects, 
allowing the microorganism to persist and thrive (Andrews, 
2001). The antibiotic resistance mechanism is divided into 
two sorts:

 A. Natural (or intrinsic): Cell wall or outer membrane thickening 
preventing antimicrobial entry (Nikolic and Mudgil, 2023); 
efflux pump (lipophilic and hydrophilic efflux pump) activation 
on the cell membrane (Nishino et al., 2021), inactivation of the 
drug (beta-lactamases hydrolyze the beta-lactam ring in 
penicillin and cephalosporins) (Bush and Bradford, 2016).

 B. Acquired: Comprises genetic material alterations (mutations, 
transformation, transposition, and conjugation) and 
biochemical mechanisms (secretion of alternative enzymes to 
degrade the concerned antibiotics; enzymatic modification 
such as methylation, adenylation, acetylation, etc., of target 
molecules; use of alternative pathways and quorum sensing; 
antibiotic sequestration) (Walsh, 2000; Munita and Arias, 2016; 
Kapoor et al., 2017; Peterson and Kaur, 2018).

2.1 Antibiotic resistance mechanisms

Some of the most important ways (Figure 1) by which bacteria get 
a survival advantage are as follows:

2.1.1 Mutation in target genes
Mutations in the genes encoding the target proteins of antibiotics 

can confer resistance in bacteria by changing the structure or function 
of the target, rendering it less sensitive to the antibiotic’s action 
(Peterson and Kaur, 2018). The mutations in the gyrA and parC genes 
play an essential role in resistance to ciprofloxacin in clinical isolates 
of Pseudomonas aeruginosa (Arabameri et  al., 2021). Resistance 
mechanisms in Acinetobacter baumannii include plasmid-associated 
resistance genes (qnrA, qnrS, aac (6′)-Ib-cr, oqxA, and oqxB) and 
chromosomal mutations in the gyrA and parC genes (Mohammed 
et al., 2021). In a recent study, the AmpC and AmpR high expression 
was associated with resistance to tazobactam, ampicillin, gentamicin, 
nitrofurantoin, and cephalosporins, whereas AmpR deletion reduced 
β-lactam and aminoglycoside resistance in Citrobacter freundii (Tariq 
et al., 2023).

2.1.2 Efflux pump mutations
The mutation in efflux pumps enables the active elimination of 

antibiotics from their cellular environment, which can impede the 
intracellular accumulation of antibiotics in bacterial cells (Whittle 
et  al., 2021). Recent studies have demonstrated that mutations 
occurring in the mepA gene can lead to the development of tigecycline 
resistance in Staphylococcus aureus (Huang et al., 2023). However, 
mutations and genomic amplifications in the efflux pump gene, SdrM, 
contribute to delafloxacin resistance in methicillin-resistant S. aureus 
(MRSA) (Silva et al., 2023).

https://doi.org/10.3389/fmicb.2024.1391345
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Sharma et al. 10.3389/fmicb.2024.1391345

Frontiers in Microbiology 04 frontiersin.org

2.1.3 Enzyme production
Enzymatic drug resistance manifests by two processes: (a) 

enzymatic modification of antibiotics and (b) modification of drug 
targets. The chemical modification of antibiotics by bacterial enzymes 
renders them ineffective. Aminoglycoside antibiotic resistance is 
caused by aminoglycoside-modifying enzymes (AME), which alter 
hydroxyl or amino groups in aminoglycosides, causing them to lose 
their ability to bind 16S rRNA of the 30S ribosomal subunit (Zárate 
et al., 2018). In mycobacterial infection, enzymatic inactivation of 
rifamycin is facilitated by many enzymatic modifications, including 
ADP ribosyltransferases, glycosyltransferases, phosphotransferases, 
and monooxygenases (Surette et al., 2021). New Delhi metallo-β-
lactamase (NDM-1) is a carbapenemase-producing bacterium having 
a mutated gene, blaNDM-1, which confers resistance to carbapenems 
in Enterobacteriaceae and various other bacteria (Khan et al., 2017). 
Antibiotic resistance, primarily caused by β-lactamase, is prevalent 
within ESKAPE pathogens (Enterococcus faecium, Staphylococcus 
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas 
aeruginosa, and Enterobacter species), causing significant economic 
burden and fatality risks (Mancuso et al., 2021). Given their significant 
implications for global health care, Behzadi et al. (2020) reviewed the 
distinctive characteristics of metallo-β-lactamases found in microbial 
pathogens, particularly within the Enterobacteriaceae family. Bacteria 

can evolve and adapt to antibiotics through modifications to the 
molecules or structures that are normally targeted. The Erm 
methyltransferase family alters a nucleotide in the 23S rRNA of the 
bacterial 50S ribosomal subunit, causing resistance to the prototypic 
macrolide erythromycin (Weisblum, 1995). The other drug linezolid 
target, the 23S rRNA region in the 50S ribosomal subunit, was altered 
by the inactivation of a methyltransferase (Long and Vester, 2011); 
likewise, the 16S rRNA methylase (ArmA) in A. baumannii, 
methylates adenine residues in the bacterial ribosome, reducing the 
binding affinity of aminoglycosides such as gentamicin and kanamycin 
(Jouybari et al., 2021).

2.1.4 Altered antibiotic entry
Mutations in bacterial outer membrane proteins can reduce the 

permeability of the cell membrane, limiting the entry of antibiotics 
into the bacterial cell. Increased resistance to penicillin and 
tetracycline in Neisseria gonorrhoeae is due to mutations in the outer 
membrane protein porin IB at positions G120D and A121D (Olesky 
et al., 2002). Physical modification in the membrane creates a physical 
obstruction that hinders the absorption of drugs into the cellular 
compartment. The modification in the core oligosaccharide of 
lipopolysaccharide in the outer membrane of E. coli inhibits 
vancomycin action (Stokes et al., 2016).

FIGURE 1

Mechanisms of antibiotic resistance developed by bacteria.
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2.1.5 Horizontal gene transfer
Horizontal gene transfer (HGT) involves organisms transferring 

genes between themselves, different species or genera, or even across 
different domains of life in a manner other than traditional 
reproduction. Many organisms can acquire new genes that can confer 
advantageous traits in bacteria, such as antibiotic resistance, 
adaptability, and metabolic versatility, and this mechanism plays a 
crucial role in their evolution (von Wintersdorff et al., 2016). Bacteria 
can acquire resistance genes through HGT mechanisms such as 
conjugation, transformation, or transduction. These resistance genes 
may be on mobile genetic elements such as plasmids or integrons 
(Bello-López et al., 2019). HGT occurs more frequently in biofilms 
than in planktonic cultures, promoting the rapid dissemination of 
antibiotic-resistance genes (Michaelis and Grohmann, 2023). Outer 
membrane vesicles can mediate the horizontal transfer of virulence 
and resistance plasmid phvK2115 between Klebsiella pneumoniae 
strains and between K. pneumoniae and Escherichia coli strains (Wang 
et al., 2022). The vancomycin resistance gene, vanP, was presumed to 
be acquired by HGT from Clostridium scidens and Roseburia sp. Four 
hundred and ninety-nine in the Enterococcus faecium isolate (Xavier 
et al., 2021). A. baumannii employs HGT to efficiently acquire and 
exchange mobile genetic elements, contributing to its adaptability. It 
utilized outer membrane vesicles and phages as transfer mechanisms, 
thus aiding in the spread of antibiotic resistance genes. Its diverse 
virulence factors and flexible genome present a significant challenge 
to global public health systems (Karampatakis et al., 2024).

2.1.6 Antibiotic sequestration
Bacteria can resist antibiotics by sequestering them, a process 

where drug-binding proteins prevent the antibiotic from reaching its 
target. These proteins deactivate antibiotics through hydrolysis or 
chemical modification (Blair et al., 2014). The drug-binding protein 
AlbA binds to albicidin and confers resistance to Klebsiella oxytoca 
(Rostock et al., 2018). The bleomycin family of antibiotics exhibits 
resistance in Streptomyces verticillus and Streptoalloteichus hindustanus 
strains that produce N-acetyltransferase and a binding protein. The 
N-acetyltransferase disrupts the antibiotic’s metal-binding domain, 
while the binding protein sequesters the metal-bound antibiotic and 
inhibits drug activation (Rudolf et al., 2015).

2.1.7 Biofilm-associated resistance
Biofilms are structured communities of bacteria showing 

resilience against antibiotics and diverse environmental pressures 
enclosed within a self-generated matrix composed of polysaccharides, 
proteins, and DNA (Shree et al., 2023). Biofilms resist antibiotics by 
utilizing extracellular components such as DNA, enzymes, and 
regulated genes. This resistance varies depending on the specific 
antibiotic, making biofilms a major contributor to chronic infections 
(Bano et al., 2023). Bacteria possess a strong quorum-sensing network 
system that can respond easily to environmental stress factors (Zhao 
et al., 2020). The presence of high-density colony populations has been 
seen to give rise to the production of small molecule signals called 
autoinducers (Waters and Bassler, 2005; Melke et  al., 2010). This 
network system exhibits successful microbial interaction and 
physiological processing, constituting one of the best examples of 
antimicrobial resistance (Prestinaci et al., 2015). The significance of 
quorum-sensing systems in governing microbial resistance 
mechanisms, including drug efflux pump regulation and microbial 

biofilm formation (Zhao et al., 2020). According to statistical data 
from the National Institute of Health (NIH), biofilm development is 
observed in roughly 65% of bacterial infections and around 80% of 
chronic illnesses (Preda and Săndulescu, 2019).

Intraspecies communication regulates cellular functions such as 
pathogenesis, genetic material transfer, nutrition uptake, and 
secondary metabolite formation (Kamaruzzaman et al., 2018). This 
communication is pivotal for the simultaneous development of 
biofilms in gram-positive bacteria (e.g., S. aureus, S. epidermidis, and 
L. monocytogenes), which use oligopeptides as signaling molecules 
(Chen et al., 2016; Zhou et al., 2020). However, gram-negative bacteria 
(e.g., P. aeruginosa, V. fischeri, S. marcescens, K. pneumoniae) utilize 
N-acyl homoserine lactones (AHLs) as the signaling molecules in this 
particular system (Steindler and Venturi, 2007; Galloway et al., 2010).

In a cohort study involving S. aureus, the samples displayed 
penicillin resistance, with the majority exhibiting MDR. In vitro 
assessments revealed substantial biofilm production, with 
approximately one-fourth of the isolates demonstrating these 
capabilities (Dash et al., 2023). A study revealed that the overexpression 
of the TaPLA2 constructs in T. asahii resulted in increased resistance 
to azoles, achieved through drug efflux augmentation and biofilm 
formation (Ma et al., 2023). PatA facilitates mycolic acid production 
via an unidentified mechanism in M. tuberculosis, mitigating the 
inhibitory effects of isoniazid. Furthermore, PatA was shown to 
influence biofilm formation and the ability of organisms to withstand 
environmental stress by modulating lipid production (Wang et al., 
2023). Naziri and Majlesi (2022) examined the incidence, patterns of 
antimicrobial resistance, and biofilm development of methicillin-
resistant S. pseudintermedius (MRSP) on pets’ skin, exploring the 
potential for zoonotic transmission. Treating infections caused by 
these resilient microorganisms can be prolonged and challenging to 
eradicate. Their presence complicates treatment and management 
strategies, leading to prolonged illness, increased healthcare costs, and 
increased patient risk. Additionally, biofilms pose a significant global 
concern in relation to chronic diseases and medical devices.

2.1.7.1 Association of biofilm with chronic diseases
Chronic diseases are associated with the development of biofilms, 

which are crucial survival strategies for bacteria. There are a variety of 
chronic illnesses in which bacteria can form complex biofilms, 
including chronic wounds, cystic fibrosis, otitis, urinary tract 
infections (UTIs), and others (Mirzaei et al., 2020). Biofilm formation 
by gram-negative bacteria worsens chronic and nosocomial infections, 
particularly chronic respiratory infections. Alternative therapies, such 
as antimicrobial peptides and liposomal formulations, are becoming 
increasingly important due to antibiotic resistance (Karmakar et al., 
2023). According to experimental research, biofilms are present in 
chronic wounds at rates ranging from 20 to 100%, indicating their 
importance in healing (Goswami et al., 2023). Using a dynamic system 
and a chronic wound-like medium, Pouget et al. (2022) examined the 
formation and evolution of biofilms formed by S. aureus and 
P. aeruginosa in chronic wounds. These bacteria can form robust 
biofilms, perpetuate chronic infection, impair wound healing, and 
increase antibiotic resistance (Roy et al., 2020; Qin et al., 2022). The 
Lubbock chronic wound biofilm model resembling a chronic wound 
was developed as an in vitro study tool to investigate wound healing 
processes, biofilm inhibition, and the antibacterial efficacy of novel 
compounds (Diban et al., 2023). Meanwhile, El Masry et al. (2023) 
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also established the swine model, enabling the study of wound biofilm 
infections by involving the host immune system and monitoring 
iterative changes during biofilm formation. Antiseptic therapy, with a 
specific focus on povidone-iodine (Alves et al., 2020) and synthetic 
antimicrobial peptides, noted for their increased efficacy and reduced 
toxicity (Pfalzgraff et al., 2018), is employed in the management of 
chronic wounds and biofilms.

Cystic fibrosis (CF) lung disease is predominantly an infectious 
condition where robust inflammation prevents the effective 
elimination of pathogens, hampers the lungs’ function, and results in 
respiratory failure and death (Cantin et al., 2015). CF patients with 
chronic P. aeruginosa infections produce mucoid alginate and form 
biofilms, conferring antibiotic resistance and immune responses 
(Høiby, 2002). Individuals with CF are primarily affected by 
P. aeruginosa and B. cenocepacia, where low iron concentrations 
induce free-living forms and motility. In contrast, high iron 
concentrations promote aggregation and biofilm formation (Berlutti 
et  al., 2005). As an adjunctive therapy, cephalosporin effectively 
disperses biofilms formed by P. aeruginosa and may benefit patients 
with CF (Soren et al., 2020).

Urinary tract infections (UTIs) are among humans’ most 
prevalent bacterial infections, accounting for approximately 40% of all 
hospital-acquired infections (Haque et al., 2018). Approximately 75% 
of urinary tract infections acquired in hospital settings are associated 
with urinary catheters (Al-Qahtani et  al., 2019). The pathogenic 
strains of E. coli cause UTIs and can form biofilms that facilitate the 
bacteria’s survival and persistence. Moreover, these E. coli strains 
possess strong biofilm-forming abilities and are resistant to many 
antimicrobial agents, including ampicillin, cefazolin, cefepime, 
ampicillin-sulbactam, and ceftazidime (Karigoudar et  al., 2019; 
Katongole et  al., 2020; Ramírez Castillo et  al., 2023). A study in 
western Saudi  Arabia involved testing urine samples for E. coli 
prevalence associated with UTIs, with a higher occurrence among 
females. Among these samples, numerous isolates showed resistance 
to norfloxacin and ampicillin, with no evidence of biofilm formation 
detected (Arafa et al., 2022). Another investigation in Ahvaz, Iran, 
focused on biofilm formation, structural characteristics, and antibiotic 
resistance of S. saprophyticus strains that cause female UTIs. Most 
S. saprophyticus isolates were resistant to erythromycin, with 58% 
exhibiting MDR. Additionally, 65% of these isolates demonstrated 
biofilm formation, primarily characterized by a polysaccharide matrix 
(Hashemzadeh et al., 2020).

Otitis media with effusion (OME), a childhood condition 
attributed to bacterial infection associated with biofilms, has been 
found to contain coagulase-negative staphylococci in samples (Daniel 
et  al., 2012). Furthermore, other pathogenic bacteria, such as 
H. influenzae, S. pneumoniae, and M. catarrhalis, have been reported 
in infections (Van Hoecke et al., 2016; Korona-Glowniak et al., 2020).

2.1.7.2 Formation of biofilm on medical devices
Utilizing biomaterials such as prosthetic heart valves, intravenous 

central line prosthetics, contact lenses, urinary tract catheters, and 
prosthetic joints has been associated with the formation of biofilms, 
leading to potential infections (Zhao et al., 2013; Li P. et al., 2023). 
Both gram-positive (S. aureus, E. faecalis, S. viridans, and 
S. epidermidis) and gram-negative bacteria (P. aeruginosa, E. coli, 
P. mirabilis, and K. pneumoniae) can form biofilms on medical devices 
(Donlan, 2001). Biofilm-associated infections are primarily caused by 

S. aureus and S. epidermidis, which are frequently found on 
cardiovascular devices. Their versatility allows them to transition from 
single free-floating cells to multicellular biofilms (Schilcher and 
Horswill, 2020). It is noted that S. aureus and S. epidermidis are 
responsible for approximately 40–50% of infections associated with 
prosthetic heart valves and 50–70% with catheter biofilms (Chen 
et al., 2013).

Microbial colonization of central venous catheters (CVC) can 
lead to biofilm formation, aiding bacterial survival against 
antimicrobial agents and the host immune system, potentially 
causing severe infections, and spreading to other body sites 
(Gominet et al., 2017). High-dose antibiotics inside the catheter 
can significantly reduce bloodstream infection (Wolcott, 2021). A 
systematic review conducted by Cangui-Panchi et  al. (2022) 
reported that biofilm formation was observed in 59 to 100% of 
clinical isolates, with prevalence rates varying notably among 
regions. Various microorganisms were identified among the 
clinical isolates, including gram-positive and gram-negative strains 
and C. albicans. The findings highlight the association between the 
high prevalence of biofilm-forming microorganisms and the 
increased incidence of nosocomial infections among 
catheterized patients.

The development of mature biofilms on the contact lens surface is 
associated with severe eye infections such as keratitis. Among different 
pathogens, S. aureus (including MRSA) and P. aeruginosa are the most 
commonly encountered in contact lens-related eye infections (Dosler 
et al., 2020). Additional fungal pathogens such as Candida, Fusarium, 
and Aspergillus contribute to the development of keratitis in 
individuals wearing soft contact lenses, playing a role in contact lens-
associated fungal keratitis (Yi et  al., 2023). Raksha et  al. (2020) 
collected 265 gram-positive and gram-negative isolates from contact 
lens wearers and confirmed the presence of biofilm by tube and Congo 
red agar method.

A catheter-associated urinary tract infection poses significant 
risks to patients and the healthcare system. In a study, biofilms formed 
by E. coli, P. aeruginosa, and P. mirabilis were detected on three distinct 
types of commercially available catheters: hydrogel latex, silicone, and 
silver alloy-coated hydrogel latex (Wilks et  al., 2021). As urease-
producing species such as P. mirabilis colonize catheter surfaces, they 
form crystalline biofilms that encrust and block catheter surfaces, 
resulting in severe clinical complications and necessitating emergency 
hospital referrals (Pelling et  al., 2019). In vitro tests showed that 
urinary catheters containing a blend of rifampicin, sparfloxacin, and 
triclosan were effective in preventing colonization by common 
uropathogens, including S. aureus, P. mirabilis, and E. coli (Fisher 
et  al., 2015). Almalki and Varghese (2020) conducted antibiotic 
sensitivity tests on clinical samples from catheter-associated urinary 
tract infections (UTIs). E. coli was identified as MDR to pan-drug 
resistant (PDR), while Klebsiella and Pseudomonas were categorized 
as extensively drug-resistant (XDR) organisms. However, other 
isolates such as E. fecalis, S. aureus, P. mirabilis, and Citrobacter 
exhibited resistance to a limited range of antibiotics. Using urine 
samples and urinary catheter segments, Ramadan et  al. (2021) 
assessed biofilm development using the tube method (TM) and 
scanning electron microscope (SEM). Their findings revealed an 
82.85% prevalence of biofilm-dependent catheter-associated urinary 
tract infections, with K. pneumoniae displaying the highest biofilm-
forming capacity.
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A significant challenge remains in treating prosthetic joint 
infections (PJIs), mainly due to the formation of biofilms by infectious 
bacteria (Gbejuade et al., 2014). During the implantation of a device, 
an immunologically vulnerable area is created around the device. In 
this region, the host may be unable to effectively eliminate bacteria, 
leading to the formation of biofilms on the surface of the biomaterial 
(Rochford et al., 2012). Sadovskaya et al. (2006) found that biofilm-
producing staphylococci isolated from infected orthopedic implants 
contain two carbohydrate molecules (N-acetyl-D-glucosamine and 
teichoic acid). Svensson Malchau et  al. (2021) characterized the 
biofilm capabilities and antimicrobial susceptibilities of staphylococci 
responsible for causing PJIs. They revealed a noteworthy correlation 
between biofilm formation, increased antimicrobial resistance, and 
the recurrence of PJIs. Macias-Valcayo et al. (2022) investigated the 
antimicrobial susceptibility of clinical isolates of gram-negative bacilli 
from PJIs. Additionally, they examined the possible correlation 
between antimicrobial resistance and the formation of biofilms.

3 Nanoantibiotics

nAbts utilize nanoscale vehicles called nanoparticles (NPs) to 
encapsulate naturally produced and artificially derived compounds. 
These cutting-edge technologies are at the forefront of medical 
advancements (Soares et al., 2018). These structured nanomaterials 
exhibit enhanced antimicrobial activity and play a crucial role in 

effectively boosting the efficacy of administered antibiotics in 
combating infectious diseases (Beyth et al., 2015). As compared to 
traditional antibiotics, nAbts have many advantages. Firstly, 
encapsulating drugs in NPs improves their solubility and stability, thus 
increasing their bioavailability and half-life (Yeh et  al., 2020). 
Furthermore, it prevents rapid renal clearance and enzymatic 
hydrolysis, facilitating a long-term therapeutic effect (Huo et  al., 
2022). Secondly, nAbts are capable of circumventing bacterial biofilms, 
thus bypassing the protective barrier that inhibits conventional 
antibiotic treatment. This results in the effective delivery of drugs to 
infected tissues (Karnwal et  al., 2023). Additionally, they increase 
membrane permeability, enhancing encapsulated drugs’ therapeutic 
efficiency (Liu et  al., 2022). The targeted delivery reduces the 
likelihood of side effects, as well as MDR, by minimizing systemic 
exposure (Wang et al., 2018). The strategies for managing microbial 
infections are outlined in Figure 2.

Most nAbts are typically smaller than 100 nm in at least one 
dimension, reflecting their nanoscale nature. Due to their exceptional 
size and controllability, NPs are suitable for antimicrobial and 
intracellular bacterial operations (Huh and Kwon, 2011). The size and 
shape of NPs influence many factors, such as drug delivery efficiency, 
biodistribution, and interactions with biological systems (Khan et al., 
2019). These nanoscale formulations enable enhanced bioavailability 
and targeted delivery, making them promising candidates for various 
medical and therapeutic applications (Kirtane et  al., 2021). In 
general, antibiotics target pathogenic bacteria by inhibiting protein 

FIGURE 2

Methods for controlling microbial infections.
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synthesis, degrading cell wall components, interfering with energy 
production and restoration, and disrupting components across a cell 
membrane (Kohanski et al., 2010; De Maio et al., 2019). Although 
antibiotics systematically require multiple doses to be effective. In 
contrast, nAbts may be effective if only a single, target-specific dose 
is provided (Vallet-Regí et al., 2007; Li et al., 2015). The emergence 
of antibiotic-resistant pathogens poses a serious health threat, but 
NPs may provide potential solutions through their properties as 
antibacterial agents and their ability to deliver customized antibiotics 
(Ozdal and Gurkok, 2022). Combining therapy, including drug 
cocktails and drug-NP hybrids, is emerging as a powerful approach 
for combating bacterial resistance and enhancing antibiotic 
effectiveness. Through this strategy, both additive drug effects and 
improved cellular delivery are leveraged, paving the way for more 
effective and targeted chemotherapy for infection (Adeniji et  al., 
2022; Brar et al., 2022).

4 Nanoparticles

Traditional antibiotic delivery presents challenges such as low 
solubility, poor permeability, gastrointestinal instability, and limited 
antibacterial activity, particularly when given orally (Wu et al., 2020). 
Antibiotic-conjugated NPs have effectively controlled bacterial 
infections by enhancing antibiotic uptake, local concentration, and 
other shortcomings of traditional antibiotics (Jelinkova et al., 2019). 
Nanotechnology introduces two groundbreaking tools, 
nanobactericides and nanocarriers, revolutionizing antibacterial 
therapy. These nanostructures, abbreviated as NPs, represent cutting-
edge advancements in the field. Nanobactericides, tiny warriors with 
built-in antibacterial properties, attack and destroy microbes directly. 
In contrast, nanocarriers, discrete transporters, are capable of 
delivering conventional antibiotics directly to their targets, allowing 
them to unleash their potent effects within the core of the microbial 
threat (Vassallo et al., 2020). Given the potential toxicity of many 

engineered NPs, it is crucial to investigate methods for creating safe 
NPs, such as those obtained from plant sources.

NPs derived from natural sources exhibit unique properties that 
make them suitable for use in the antimicrobial field. The rapidity, 
safety, and cost-effectiveness of synthesizing NPs using plant extracts 
are characterized by minimal energy consumption and non-toxic 
derivatives (Patra et al., 2018; Nguyen et al., 2022). Drug delivery NPs 
typically range from 10 to 1,000 nm, with at least one dimension 
falling below 100 nm. The diminutive sizes of NPs and their surface 
chemistry confer pharmaceutically advantageous characteristics, 
although they may have associated toxic effects (Yusuf et al., 2023). 
Moreover, their nanometric size facilitates effective interactions with 
bacteria, another reason for their nomenclature.

In general, depending upon the biomolecular conjugation of 
antibiotics, the NPs have been categorized into different classes, viz. 
membrane-bound, metal-based, carbon-based, chitosan-based, 
mesoporous, and others (Figure 3). The membrane-bound or lipid-
based NP delivery systems encompass liposomes, self-nano 
emulsifying drug delivery systems (SNEDDS), solid lipid NPs (SLNs), 
niosomes, nanostructured lipid carriers (NLCs), and polymeric 
micelles (Gkartziou et al., 2021). Metal-and metal oxide-based NPs 
display antibacterial properties due to diverse weak, non-covalent 
interactions with the ligands and host receptors (Shaikh et al., 2019). 
NPs derived from metals incorporate heavy metals such as silver (Ag), 
gold (Au), titanium (Ti), zinc (Zn), iron (Fe), and copper (Cu). Metal 
oxide NPs, on the other hand, include copper oxide (CuO), cobalt 
oxide (CoO), titanium oxide (TiO2), cerium oxide (CeO2), bismuth 
oxide (Bi2O3), iron oxide (Fe2O3), zinc oxide (ZnO), magnesium oxide 
(MgO2), nickel oxide (NiO), etc. (Beyth et al., 2015; Motakef-Kazemi 
and Yaqoubi, 2020). However, unlike conventional therapies, including 
radiation or chemotherapy, iron oxide with a hyperthermic effect can 
be confined to the area containing the magnetic particles, minimizing 
harm to healthy tissue within the surrounding area (Durmus et al., 
2013). Nanocarriers are ubiquitous, but liposomes are the pioneering 
nanotechnology for this specific application. In addition, dendrimers, 

FIGURE 3

Various categories of nanoparticles utilized for drug delivery.
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cyclodextrins, nanoemulsions, micelles, solid lipid carriers, 
nanostructured lipid carriers, mesoporous polymeric NPs, hydrogels, 
fullerenes, and carbon nanotubes are notable nanocarriers (Din et al., 
2017; Sultana et al., 2022).

5 Structural foundations of 
nanoantibiotics

In the pharmaceutical industry, nanoformulations have been 
widely utilized to develop nAbts, leveraging advantages such as 
enhanced drug loading capacity, prolonged release durations, and 
better binding affinities (Rana et  al., 2019). These nanoscale 
functionalities have demonstrated the ability to restore drug efficacy 
in various applications. nAbts exhibit distinctive properties, which 
allow them to target multiple bacteria concurrently, providing a 
significant advantage in combating microbial infections (Mamun 
et al., 2021). A nanoscale antibiotic’s interaction with bacteria has 
profound implications for the delivery of antibiotics, as nanoscale 
antibiotics act as drug carriers, penetrate cell membranes, and 
interfere with protein synthesis in bacteria (Baptista et  al., 2018). 
However, nanomaterials’ effectiveness in targeting bacteria depends 
upon their physiological state (Gao and Zhang, 2021), including 
nutrition availability, biofilm formation, bacterial growth stages, and 
environmental conditions, including aeration, pH, and temperature 
(Chakraborty et al., 2022). Understanding these complex interactions 
is essential to designing effective antimicrobial strategies.

An integral aspect of the biology of antibiotics and their associated 
NPs is their linkage, which can display a diverse array of surface 
charges such as zwitterionic, cationic, anionic, or neutral (Miller et al., 
2015). In nets, the structural and physical characteristics of NPs can 
be controlled; it is possible to modify the structural characteristics of 
NPs, such as particle size and lattice constant, increasing charge 
densities within the NPs and, therefore, increasing the contact area 
with antibiotics (Mamun et al., 2021). Biomolecularly connected NPs, 
including metal-ion, oxidative, and non-oxidative components, can 
interact directly with bacteria (Fasting et  al., 2012). Furthermore, 
nAbts may mitigate the adverse effects of conjugated antibiotics within 
the host cell (Saha et al., 2007; Gupta et al., 2017). Combining nAbts 
with pure NP or surface functionalization with structural moieties 
such as citrate or carboxylate results in prolonged stability to novel 
antibiotics (Hemaiswarya et al., 2008; Mamun et al., 2021).

6 Mechanism of action of 
nano-bactericides

The antimicrobial activity of nanomaterials is characterized by 
physical, chemical, and photo-mediated damage mechanisms. By 
exploring the interaction between nanomaterials and bacteria, 
nanotherapeutics may serve as an alternative to traditional antibiotics 
in treating bacterial infections (Makabenta et al., 2020; Ullah and 
Khan, 2022). NPs penetrate bacterial envelopes through Van der 
Waals forces, receptor-ligand interactions, and hydrophobic 
interactions, damaging the structural integrity of the bacterial 
membrane. As a result, it interferes with the proton motive force 
across the cell membrane, limiting the bacteria’s ability to store or 
produce energy (Erdem et  al., 2015). Additionally, it inhibits the 

enzyme activity of bacteria, suppresses their efflux pumps (Baptista 
et al., 2018), and increases membrane permeability, which facilitates 
the accumulation of NPs within membranes and subsequent uptake 
by cells (Shaikh et al., 2019) (Figure 4). By entering bacterial cells, NPs 
disrupt microbial pathways, affecting enzymatic proteins, DNA, 
ribosomes, and lysosomes, resulting in catastrophic outcomes for the 
bacteria (Karnwal et  al., 2023). NPs adhere to the exterior of the 
biofilm via electrostatic interaction and diffuse throughout the matrix, 
which is influenced by a variety of factors, including the size, shape, 
and charge of NPs (Makabenta et  al., 2020), the viscosity of 
exopolysaccharide, cell density, compaction level, liquid flow, and 
physicochemical interactions with extracellular polymeric substances 
(Harper et al., 2018; Robino and Scavone, 2020).

According to Liu et al. (2016), titanium alloys infused with copper 
can effectively eliminate Streptococcus mutans and Porphyromonas 
gingivalis. In addition, these alloys prevent the formation of biofilms, 
thereby reducing bacterial infections and implant failures (Junejo 
et al., 2023). The binding of gold NP to ATP synthase inhibits ATP 
synthesis, disrupting energy production. Furthermore, its binding to 
tRNA inhibits its binding to ribosomes (Cui et al., 2011). Researchers 
examined the biocidal effects of silver (Ag)-NP by scanning and 
transmission electron microscope in E. coli and observed the pits in 
the cell wall and accumulation of Ag-NPs (Sondi and Salopek-Sondi, 
2004). The copper (Cu)-NP disrupted bacterial membrane integrity, 
releasing reducing sugars and proteins (Li et al., 2016a). In another 
study, Cu-NPs strongly inhibited norA efflux pumps by directly 
binding to the pumps, disrupting efflux kinetics and energy levels 
(Ashajyothi et al., 2016). Moreover, Au-NP diminished the expression 
of mexA and mexB genes, reducing active efflux pumps on the cell 
surface in P. aeruginosa (Dorri et al., 2022). Metal oxide NPs, such as 
titanium dioxide (TiO2) and zinc oxide (ZnO), are known to exhibit 
antimicrobial properties. Upon exposure to light or air, these NPs 
produce reactive oxygen species (ROS), detrimental to bacterial 
growth. The ROS can induce oxidative stress, damaging the bacterial 
cell membrane, DNA, and proteins. This disruption of essential 
cellular components ultimately leads to the death of the bacteria 
(Malka et al., 2013; Gold et al., 2018; Prakash et al., 2022). The use of 
antimicrobial polymers may increase the effectiveness of antimicrobial 
agents. Nanoengineered antibacterial polymers, with increased 
surface area and reactivity, have great potential for design and 
biomedical applications. By inhibiting pathogenic bacteria’s growth or 
destroying their cell membranes, they possess superior antibacterial 
activity to conventional agents (Borjihan and Dong, 2020).

7 Nanotechnology and nanoparticles 
in combating drug-resistant strains

Nanotechnology offers a transformative solution to combat the 
escalating menace of MDR, XDR, and PDR, holding immense 
promise. To develop innovative strategies for targeted drug delivery, 
biofilm disruption, and overcoming bacterial resistance mechanisms, 
researchers are harnessing the unique properties of nanomaterials. 
The use of nanomaterials has the potential to provide an effective 
means of combating MDR bacteria due to their diverse antibacterial 
mechanisms and lower propensity to cause resistance (Li M. et al., 
2023). Currently, numerous NPs exhibit in vitro antimicrobial efficacy 
against MDR pathogens, encompassing the ESKAPE pathogen. 
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Moreover, researchers are dedicated to exploring NP 
pharmacokinetics, pharmacodynamics, and the mechanisms of 
bacterial resistance (Lee N.-Y. et al., 2019; Adeniji et al., 2022).

Bacterial biofilms contribute to persistent infections by exhibiting 
increased resistance to antibiotics, disinfectants, and host immune 
responses (Shree et  al., 2023). A promising application of 
nanotechnology involves the penetration of NPs into biofilms and the 
exertion of bactericidal effects on those biofilms. Their unique size and 
characteristics enable these NPs to efficiently target biofilms of drug-
resistant pathogens (Hetta et al., 2023). A variety of NPs have been 
utilized to control microbial biofilm formation. These include metal 
and metal oxide NPs, solid lipid NPs, liposomes, micro-and 
nanoemulsions, and polymeric NPs (Mohanta et al., 2023). Metallic 
NPs represent a promising approach for combating MDR P. aeruginosa 
(Liao et al., 2019; Abeer Mohammed et al., 2022). The conjugation of 
Ag-NPs with vancomycin demonstrated potent antimicrobial activity 
against the MDR pathogen (Esmaeillou et al., 2017). Additionally, 
Ag-NPs synthesized from Phyllanthus amarus extract exhibited 
effective antibacterial potential against MDR strains of P. aeruginosa 
from burn patients (Singh et al., 2014). A study by da Cunha et al. 
(2023) demonstrated the antibacterial and antibiofilm properties of 
Ag-NP against MDR Staphylococcus species. Additionally, when 
conjugated with chitosan, Ag-NP demonstrated inhibitory activity 
against MDR strains of S. aureus and A. baumannii (Mohammadinejat 

et al., 2023). The Ag-NPs possess intrinsic antimicrobial properties, 
whereas the Au-NPs require ampicillin binding to carry out their 
antimicrobial activity. However, Au-NP and Ag-NP functionalized 
with ampicillin exhibit broad-spectrum bactericidal activities, 
especially against MDR bacteria (Brown et  al., 2012). Although 
Ag-NPs have undergone extensive evaluation for their antibacterial 
properties, there is a scarcity of studies investigating their effectiveness 
against MDR pathogens, with even fewer addressing XDR or 
PDR strains.

A nanoantibiotic and a SERS-nanoTag have been created by 
complexing bi-metallic NPs (Au and Ag) with linezolid and 
4-mercaptophenyl boronic acid, respectively. These complexes 
demonstrated effective antibacterial activity against various 
microorganisms, including MRSA (Hada et al., 2022). Metal oxide 
NPs, including both ZnO-NPs and a combination of MgO-NPs and 
ZnO-NPs, exhibit enhanced bactericidal activity against MDR-TB 
(Yaghubi Kalurazi and Jafari, 2020). A drug-loaded PLGA-NP 
containing levofloxacin, linezolid, ethambutol, prothionamide, and 
pyrazinamide has demonstrated promising efficacy and triggers 
macrophage innate bactericidal events, offering a promising strategy 
for treating MDR-TB (Jiang et al., 2023). Graphene oxide (GO) serves 
as an adjuvant for developing improved anti-TB treatments by 
trapping mycobacteria in the extracellular compartment, thus 
inhibiting their entry into macrophages (Salustri et  al., 2023). 

FIGURE 4

Routes of entry of nanoparticles and their mechanisms of action against bacteria.
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Furthermore, the combination of GO with linezolid has been 
demonstrated to have a potential anti-TB property that is being 
explored to combat drug-resistant M. tuberculosis strains (De Maio 
et al., 2020). Nanoemulsions containing Curcuma longa enhanced 
ceftazidime’s antibacterial and antibiofilm activity for treating bacterial 
infections caused by MDR K. pneumoniae (Confessor et al., 2024). In 
another study, NPs loaded with farnesol (FSL NPs) successfully 
eradicated S. aureus within a few hours and achieved 100% inhibition 
of biofilm formation by drug-resistant S. aureus (Maruthapandi et al., 
2023). Figure  5 illustrates the contribution of nanotechnology in 
addressing drug-resistant bacterial infections.

Although nanotechnology has shown promise, its applications 
against XDRs and PDRs have been addressed in only a few studies where 
herbal compounds have been explored. The effectiveness of Ag-NPs 
synthesized from Helicteres isora aqueous fruit was evaluated against 
XDR strains of P. aeruginosa. The findings suggest that the disruption of 
membrane permeability induced by Ag-NPs may account for the growth 

inhibition and death of the XDR pathogen (Mapara et  al., 2015). 
According to Banihashemi et al. (2021), carbon nanotubes coated with 
an antibacterial compound have demonstrated antibacterial performance 
against MDR and XDR strains of A. baumannii. However, agar well 
diffusion and broth microdilution techniques assessed cinnamon oil’s 
antimicrobial efficacy against XDR and PDR P. aeruginosa isolates 
(Abdelatti et al., 2023). Moreover, another study showed the highest 
antimicrobial activity against MDR or PDR H. pylori strains (Ali et al., 
2022). These findings underscore the promising role of nanotechnology 
in addressing the growing challenge of antimicrobial resistance.

8 Plant-derived nanoparticles

Green NP synthesis involves natural materials and 
environmentally friendly methods, which eliminate the use of harsh 
chemicals and solvents. NPs created through this method are known 

FIGURE 5

Nanotechnology in combating drug-resistant bacterial infections.
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for their biocompatibility, sustainability, minimal environmental 
impact, and cost-effectiveness (Singh et al., 2023). In general, natural 
NPs are found to have more stability and compatibility than artificial 
ones due to the presence of capping layers (Javed et al., 2020). Fe-NPs 
derived from blueberry leaf extracts possess a natural capping of 
polyphenols that promote stability (Manquián-Cerda et al., 2017). 
Additionally, these capping layers provide surface area for biological 
interactions (Singh et al., 2018) and increase the shelf life of the NPs, 
as well as enhance their physical and biological properties, making 
them more effective in treating diseases.

Various studies have explored the synthesis of metal and metal 
oxide NPs, including silver (Ag), gold (Au), copper (Cu), zinc oxide 
(ZnO), and others, using plant extracts such as Phyllanthus emblica, 
Trachyspermum ammi, Clerodendrum inerme, Azadirachta indica, 
Emblica officinalis, and others. The synthesis of Ag-NP and Au-NP 
remains challenging due to high energy and chemical requirements, as 
well as byproduct formation. However, plant-based NPs have medical 
potential and compatibility for the treatment of drug-resistant 
microbes (Hammami et al., 2021; Wahab et al., 2021; Balaji et  al., 
2023). Specifically, Ag-NP derived from Phyllanthus emblica fruit 
extract exhibited significant antimicrobial activity against Acidovorax 
oryzae strain RS-2 (Masum et  al., 2019), Au and Ag-NPs from 
Clerodendrum inerme leaf extract (Khan et al., 2020), and Au-NPs 
synthesized from Trachyspermum ammi seed extract effectively 
targeted drug-resistant biofilms of Listeria monocytogenes and Serratia 
marcescens (Perveen et  al., 2021). Yadeta Gemachu and Lealem 
Birhanu (2024) synthesized ZnO, CuO, and NiO-NPs from Azadirachta 
indica leaf extract, with CuO-NPs displaying excellent photocatalytic 
activity. ZnO-NPs exhibit various unique mechanical attributes, 
including high catalytic and photochemical activity, a low melting 
point as biosensors, and exceptional antibacterial and antifungal 
properties (Sirelkhatim et al., 2015). ZnO-NP from Emblica officinalis 
showed antibacterial and anti-biofilm activity (Kaur et  al., 2020), 
whereas those derived from orange fruit peel extract demonstrated 
bactericidal activity (Doan Thi et al., 2020). Furthermore, ZnO-NP 
from the aqueous extract of Ocimum lamifolium (Tilahun et al., 2023) 
and Cocos nucifera leaf (Rahman et al., 2022) extract was tested for 
electrocatalytic activity and photocatalytic activity, respectively, as well 
as for antimicrobial activities. Similarly, CuO-NPs synthesized from a 
variety of plant component extracts such as Catha edulis leaves (Kelele 
et al., 2019; Andualem et al., 2020), Passiflora edulis leaves (Yasin et al., 
2022), Parthenium hysterophorus (Nzilu et  al., 2023), Phyllanthus 
amarus leaves, Hibiscus cannabinus flowers (Kalaiyan et al., 2020), 
Piper betle leaves (Ahmad et al., 2024), and Piper nigrum leaves (Naaz 
et  al., 2023). Additionally, other NPs, such as Ni and NiO from 
Phytolacca dodecandra L’Herit leaf (Firisa et al., 2022), MnO2 from 
Psidium guajava (Karthik et al., 2024), Viola betonicifolia leaf (Lu et al., 
2021), and CeO2 from Abelmoschus esculentus (Ahmed et al., 2021), 
along with titanium (Ti), palladium (Pd), and platinum (Pt) (Jadoun 
et al., 2021), have also been explored. As natural antioxidants, these 
NPs can be  used as anticancer, antibacterial, and photocatalytic 
disinfection agents.

9 Herbal compounds as antimicrobials

Herbal compounds possess antimicrobial activity that has unique 
properties and functions. The defense mechanism of plants lies in the 

synthesis of a variety of chemical compounds called secondary 
metabolites (phenols, polyphenols, alkaloids, lectins, terpenoids, 
essential oils, and others), each of which plays a specific and distinct 
role (Othman et al., 2019; Al-Khayri et al., 2023). These compounds 
protect plants against pathogens and other invaders, and they also 
possess a variety of medicinal properties for humans. They are used to 
produce various pharmaceutical drugs for treating numerous 
ailments, such as cancer, diabetes, heart disease, and microbial 
infections (Wink, 2015; Parham et  al., 2020). In medicine, herbal 
compounds are being transformed into nanoformulations, providing 
a promising avenue for developing advanced treatments for microbial 
infections by offering therapeutic efficacy and targeted and controlled 
delivery methods (Patra et al., 2018). When encapsulated within drug 
delivery systems, these compounds target drug delivery to specific 
body regions, enhancing stability and bioavailability and preventing 
deterioration or evaporation of volatile components. Techniques such 
as emulsion phase separation, emulsification/internal gelation, and 
spray drying, among others, are utilized to encapsulate bioactive 
ingredients effectively (Ozkan et al., 2024).

Ingenious screening techniques will discover medicinal 
compounds from various herb extracts and oils (Savoia, 2012). The 
major challenges with phenolic compounds and essential oils (EOs) 
are their bioaccessibility and bioavailability, which depend on their 
structure, how they interact with other food components, the quality 
of the material used to encapsulate them, and how they are 
encapsulated (Grgić et al., 2020; Lammari et al., 2020). Polyphenolic 
compounds (flavonoids, tannins, phenols, phenolic acids, flavonoids, 
quinines, coumarins, and others) possess antioxidant and 
antimicrobial properties and are used as food additives (Singh et al., 
2022), as well as promising new element sources for pharmaceutical 
and medicinal research (Tungmunnithum et  al., 2018). Phenolic 
extracts from various herbal sources were analyzed for their 
antioxidant and antibacterial activities against bacteria and fungi 
(Abdul Qadir et al., 2017). The leaves and flowers of Ruta chalepensis 
L. contain high amounts of polyphenols, flavonoids, and tannins 
containing vanillic acid and coumarin, which were the most effective 
against Pseudomonas aeruginosa (Ouerghemmi et  al., 2016). 
Phytochemical analysis of phenols and flavonoids from three 
medicinal herbs, Achillea millefolium, Bergenia ciliata, and Aloe 
barbadensis miller, indicated that they had antibacterial activity 
against Staphylococcus aureus and Escherichia coli (Mehmood et al., 
2022). Using the quantitative structure-activity relationship (QSAR) 
model, Bouarab-Chibane et al. (2019) demonstrated the antibacterial 
activity of 35 polyphenols against gram-positive and negative bacteria.

Essential oils (EOs) are one of the most extensive classes of herb-
based specialized metabolites that play a key role in the plant’s defense 
response against microbial infections. They have antibacterial, 
antioxidant, anti-inflammatory, and anticancer properties and provide 
insight into their mechanism of action and pharmaceutical targets 
(Sharifi-Rad et al., 2017). Eos, such as tea tree oil (Johansen et al., 
2020), cardamom oil (Jamil et al., 2016), oregano essential oil (Lu 
et  al., 2018), patchouli oil (Adhavan et  al., 2017), eucalyptus oil 
(Quatrin et al., 2017), and others obtained from various herbal sources 
possess activity against pathogenic bacteria (gram-positive and 
negative), fungi, and parasites. Antibiotics combined with herb-based 
antibacterial substances have demonstrated synergistic benefits due to 
drug efflux inhibition and alternate modes of action (Seyyedi-
Mansour et al., 2022). Combining nanoencapsulated essential oils 
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with antibiotics leverages the synergies between the oils and their 
components, and the antibiotic’s resistance to multiple antimicrobial 
agents has been successfully addressed (Chouhan et al., 2017). The 
comprehensive screening of bioactive compounds originating from 
herbs as resistance-modifying agents, particularly those that function 
synergistically with antibiotics, can aid in the elimination of bacterial 
resistance. Combinatorial trials with the herb extract and the antibiotic 
are essential for developing an updated model with observable, long-
lasting effects in specific plant regions, as contrasted to their parts 
(Cheesman et al., 2017; Alam et al., 2022). Some of the most significant 
gram-negative pathogens are also relatively resistant to antibiotics due 
to the involvement of antibiotic efflux pumps in their non-specific 
resistance mechanisms. The efficacy of Thymus maroccanus and 
T. broussonetii EO in decreasing chloramphenicol resistance, 
particularly in MDR gram-negative bacteria, was investigated (Fadli 
et al., 2011). Merghni et al. (2022) examined turpentine nanoemulsion 
for antibacterial and antibiofilm capabilities against MRSA. Therefore, 
it is important to examine the potential of such EOs to combat 
antibiotic resistance (El-Tarabily et al., 2021). Grapefruit EOs, notably 
their aldehyde-enriched fraction, have anti-inflammatory 
characteristics, suggesting that they might be used to generate newer 
nutraceuticals and functional foods treating inflammatory illnesses 
(Nikolic et  al., 2023). Guava (Psidium guajava) leaves EOs have 
antibacterial and anticancer properties, suggesting they might be a 
natural treatment for mouth infections and cancer (Alam et al., 2023). 
Furthermore, a recent study explored the antifungal efficacy of five 
EOs derived from various Lavandula hybrida species against 26 fungal 
strains isolated from dust in North Africa (Donadu et al., 2024). Some 
of the herbal compounds involved in nAbts formulations are provided 
in Table 1.

10 Side effects of herbal compounds

In recent years, herbal medicines have become more prominent 
in global healthcare. However, their limited solubility, bioavailability, 
pharmacological activity, and susceptibility to physical and chemical 
instability and degradation limit their clinical utility (Başaran et al., 
2021). These products may contain substances that can either induce 
or inhibit enzymes involved in drug metabolism. Consequently, the 
use of drugs and certain medicinal plants may cause severe effects and 
may diminish therapeutic effectiveness (Singh and Zhao, 2017). 
Various factors can contribute to the toxicity of herbal medicine 
products, including plant components or metabolites with a toxic 
potential, heavy metals, adulteration, pesticides, and fungi or 
microorganism contamination (Jitareanu et al., 2022).

In contrast to conventional drugs, herbal supplements are not 
subject to premarketing purity and potency regulations by the US 
Food and Drug Administration. Herbal supplements can have adverse 
pharmacological and toxicological effects, including abnormal 
laboratory results, allergic reactions, genotoxicity, carcinogenicity, 
teratogenicity, organ damage, and even death in some cases. These 
incidents significantly strained healthcare resources, leading to 
overcrowded emergency rooms and hospital wards. Patients with 
high-risk conditions, such as children and geriatrics, breastfeeding 
mothers, pregnant women, immunocompromised patients, and those 
undergoing surgery, should be  monitored when using herbal 
supplements (Illamola et al., 2020; Hassen et al., 2022). Certain herbal 

compounds may negatively impact the digestive system due to the 
presence of irritants or toxins. Some commonly used natural drugs for 
osteoporosis treatment have been associated with mild adverse 
reactions, including skin rash, gastric issues, constipation, irritability, 
and abnormal urine. Additionally, extracts of Boswellia serrata Roxb, 
Hedera helix, and Perna canaliculus for the treatment of osteoarthritis 
have been linked to significant side effects such as upper abdominal 
pain and unstable movements (Zhou et  al., 2022). For centuries, 
Ephedra has been used as a traditional remedy for bronchoconstriction 
and contains both pseudoephedrine and ephedrine (Hou et al., 2014). 
Nonetheless, the combination of ephedrine and theophylline may 
cause insomnia, nervousness, and gastrointestinal discomfort 
(Weinberger et al., 1975). Aconitum species are commonly used for 
pain relief and contain several alkaloids (Chan et al., 2021). It has been 
documented that herbal preparations containing aconitine can result 
in severe cardiac toxicity, often manifesting as acute myocardial 
infarction accompanied by chest tightness, ultimately leading to death 
(Lin et al., 2011). A primary active component of mahuang, ephedrine 
is known to promote weight loss and modify lipid levels. Nonetheless, 
it carries the risk of cardiovascular side effects, including a potential 
rise in heart rate (Yoo et al., 2021).

Long-term use of certain herbal compounds, mainly herbal 
supplements marketed as “natural” alternatives to prescription 
medications, can lead to liver and kidney damage (Britza et al., 2022; 
Lin and Tujios, 2023). Certain significant hepatotoxic herbal 
supplements, including kava, chaparral, comfrey, coltsfoot, germander, 
and pennyroyal oil, have been linked to significant liver damage 
(Dasgupta, 2020). At the same time, several nephrotoxic components 
are found in herbs, including aristolochic acids and certain alkaloids. 
Moreover, anthraquinones, flavonoids, and glycosides derived from 
herbs are recognized as potential kidney toxins (Yang et al., 2018). 
These side effects are usually associated with excessive use, improper 
dosage, or herbal compound interactions with prescription 
medications. Many herbal compounds, especially those used in 
aromatherapy, have been found to cause dermatitis, phototoxicity, oral 
toxicity (Farrar and Farrar, 2020), and respiratory issues, including 
congestion, coughing, and wheezing. Many essential oils were 
associated with adverse effects, including lavender, tea tree, and 
peppermint oil (Posadzki et al., 2012). There is no doubt that herbal 
compounds can be beneficial when used appropriately. However, it is 
also essential to understand the potential side effects associated with 
their use.

Combining NPs with herbal medicine in herbal formulation 
research presents a promising strategy for treating diverse diseases. 
This approach provides several advantages for herbal drugs, including 
improved solubility and bioavailability, increased stability, reduced 
toxicity risks, enhanced pharmacological activity, optimized 
macrophage distribution, sustained delivery, and protection against 
physical and chemical degradation. Therefore, nano-sized drug 
delivery systems for herbal medicines possess the potential to enhance 
efficacy and address challenges associated with herbal medicines.

11 Nanoantibiotics versus microbial 
infection

The nanoengineered systematic formulations of nAbts, including 
nanoemulsions, carbon quantum nanodots, fullerene particles, and 
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TABLE 1 Nanoformulations derived from plants secondary metabolites and essential oils for antimicrobial action.

S. No. Scientific name 
and common 
name

Compounds 
extracted from plant 
components

Nanoformulation Particle size 
(nm)

Encapsulation 
efficiency (%)

Pathogens Mechanism of 
action

References

 A. Secondary metabolites (phenols and polyphenols)

1. Aloe barbadensis miller 

(Aloe vera)

Anthraquinone; leaves AQ-CS-PLA anthraquinone 

(AQ)-coated polymeric NPs, 

chitosan (CS), and poly 

(lactic acid) (PLA)

34 nm N/A Gram (−): Escherichia 

coli, Pseudomonas 

aeruginosa, Klebsiella 

pneumoniae, Proteus 

vulgaris

Lipid peroxidation and 

ROS generation

Dhanapal et al. (2014)

2. Citrus fruits: Citrus limon 

(Lemon), Citrus sinensis 

(Orange), Citrus 

aurantiifolia (Lime)

D-limonenes; fruit Limonene nanoemulsion 

integrated with ε-polylysine

12.21–15.65 nm N/A Fungi: Saccharomyces 

cerevisiae

Gram (−): Escherichia 

coli

Gram (+): 

Staphylococcus aureus, 

Bacillus subtilis

Disrupts the cell 

membrane, proteins, 

DNA and RNA

Zahi et al. (2016)

3. Curcuma longa 

(Turmeric)

Curcumin; dried rhizome Nanocurcumin 2–40 nm N/A Fungi: Penicillium 

notatum, Aspergillus 

niger

Gram (−): Escherichia 

coli, Pseudomonas 

aeruginosa

Gram (+): 

Staphylococcus aureus, 

Bacillus subtilis

Invade inside the 

bacteria by damaging 

the cell wall and 

eventually killing the 

cell. Nanocurcumin was 

more effective against 

gram-positive bacteria

Singh et al. (2011)

Silane-hydrogel NPs with 

curcumin

222 ± 14 nm N/A Gram (−): 

Pseudomonas 

aeruginosa

Gram (+): methicillin-

resistant Staphylococcus 

aureus (MRSA)

Reduce bacterial 

burden and enhance 

wound healing in 

infected burn wounds

Krausz et al. (2015)

Nanocurcumin 34.0–359.4 nm N/A Gram (−): Escherichia 

coli, Pseudomonas 

aeruginosa

Gram (+): Micrococcus 

luteus, Staphylococcus 

aureus

Nanocurcumin 

inhibited bacterial 

growth at lower doses 

than curcumin

Adahoun et al. (2016)

(Continued)
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TABLE 1 (Continued)

S. No. Scientific name 
and common 
name

Compounds 
extracted from plant 
components

Nanoformulation Particle size 
(nm)

Encapsulation 
efficiency (%)

Pathogens Mechanism of 
action

References

4. Eugenia caryophyllata 

(Clove)

Eugenol; leaves Solid lipid NP/eugenol/

chitosan + ofloxacin

210 nm 33.5% ± 1.9 Gram (−): 

Pseudomonas 

aeruginosa

Gram (+): 

Staphylococcus aureus

Interact with bacterial 

cell membrane

Rodenak-Kladniew 

et al. (2019)

Chitosan nanoemulsion with 

eugenol

72.05–83.45 nm 80% Aspergillus flavus Exhibited superior 

antifungal and aflatoxin 

B1 inhibitory activity

Das et al. (2021)

5. Eugenia caryophyllata 

(Clove), Allium sativum 

(Garlic)

Eugenol, garlic oil (Allicin); 

leaves

Zein NP/eugenol/garlic oil 150 nm 90% Gram (−): Edwardsiella 

tarda, Pseudomonas 

aeruginosa

Gram (+): Streptococcus 

iniae

Inhibits gram-positive 

and gram-negative 

bacterial proliferation

Luis et al. (2020)

6. Origanum vulgare 

(Oregano), Thymus 

vulgaris (Thyme)

Carvacrol; leaves Micelle with carvacrol and 

eugenol

10 nm N/A Gram (−): Escherichia 

coli O157:H7

Gram (+): Listeria 

monocytogenes

Significant reduction in 

pathogens biofilm and 

destruction of cellular 

components

Pérez-Conesa et al. 

(2011)

Solid lipid NPs (SLNs) with 

propylene glycol 

monopalmitate (PGMP) and 

glyceryl monostearate 

(GMS)-carvacrol NPs

<200 nm >98% Gram (−): Escherichia 

coli

Gram (+): 

Staphylococcus aureus

Interacts with 

phospholipid 

membrane and affects 

the permeability

He et al. (2019)

Poly (caprolactone)-carvacrol 

NPs

198 nm 83.28% ± 3.62 Gram (−): 

Pseudomonas 

aeruginosa

Gram (+): 

Staphylococcus aureus

In an ex-vivo wound 

model, this approach 

exhibited significant 

antimicrobial activity

Mir et al. (2020)

Ovalbumin-carvacrol gel 

NPs

71.57–179.1 nm 35.05 -91.86% Gram (−): Salmonella 

sp.

Gram (+): Bacillus 

cereus

Antibacterial properties 

against food-borne 

pathogens

Rao et al. (2020)

(Continued)
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TABLE 1 (Continued)

S. No. Scientific name 
and common 
name

Compounds 
extracted from plant 
components

Nanoformulation Particle size 
(nm)

Encapsulation 
efficiency (%)

Pathogens Mechanism of 
action

References

 B. Essential oils (EOs)

1. Melaleuca alternifolia (Tea 

tree)

Tea tree EO; leaves Inhalable nanoemulsion with 

tea tree EO

12.5 nm N/A Fungi: Candida albicans

Gram (−): Escherichia 

coli, Acinetobacter 

baumannii, Klebsiella 

pneumoniae

Gram (+): 

Staphylococcus aureus

Inhalable nanoemulsion 

was promising for 

treating fungal and 

bacterial pneumonia. 

Moreover, at low 

concentrations, it was 

more effective against 

fungal pneumonia 

in vivo

Li et al. (2016b)

2. Elettaria Cardamomum 

(Cardamom)

Cardamom EO; seeds Chitosan NPs with 

cardamom EO

50–100 nm >90% Gram (−): Escherichia 

coli

Gram (+): methicillin-

resistant Staphylococcus 

aureus (MRSA)

Demonstrated strong 

antibacterial activity 

against beta-lactamase-

producing MRSA and 

MDR-E. coli

Jamil et al. (2016)

3. Thymus vulgaris (Thyme) Oregano EO (carvacrol, 

thymol, and p-cymene); leaves

Nanoemulsion of 

hydroxypropyl 

methylcellulose (HPMC) 

with oregano EO

221.3 ± 0.80 nm N/A Gram (−): Salmonella 

typhimurium

The composite films 

possess antibacterial 

activity against 

pathogens and free 

radical scavenging 

activity

Lee J. Y. et al. (2019)

Nanovesicles (nanoliposomes 

(L) and nanoarchaeosomes 

(A))

114.6 ± 6.4 and 

129.2 ± 23.0 nm

N/A Gram (+): methicillin-

resistant Staphylococcus 

aureus (MRSA)

Nanoarchaeosomes 

show better antibiofilm 

activity agent than 

nanoliposomes

Perez et al. (2019)

Nanoemulsion of thyme EO 20–55.2 nm 10% Fungi: Aspergillus 

brasiliensis, A. 

fumigatus

Gram (−): Escherichia 

coli Klebsiella oxytoca

Gram (+): Bacillus 

cereus, Staphylococcus 

aureus

Demonstrated 

antibacterial, 

antifungal, and 

anticancer properties

Doghish et al. (2023)

(Continued)
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TABLE 1 (Continued)

S. No. Scientific name 
and common 
name

Compounds 
extracted from plant 
components

Nanoformulation Particle size 
(nm)

Encapsulation 
efficiency (%)

Pathogens Mechanism of 
action

References

Nanoemulsion of thyme EO 122.2 ± 1.079 nm N/A Gram (−): Escherichia 

coli, Pseudomonas 

aeruginosa

Gram (+): 

Staphylococcus aureus, 

Bacillus subtilis

Demonstrated 

antibacterial and 

antitumorigenic 

activities

Nasra et al. (2023)

4. Pogostemon cablin, Wild 

varieties P. heyneanus and 

P. plectranthoides 

(Patchouli)

Patchouli EO; leaves Nanoemulsion with 

patchouli EO

90.1 ± 0.57 nm, 

44.9 ± 0.40 nm, 

102.3 ± 2.09 nm

N/A Fungi: Candida albicans

Gram (−): Shigella 

flexneri

Gram (+): 

Staphylococcus aureus, 

Streptococcus mutans

Wild patchouli shows 

antibacterial activity 

against gram-positive, 

gram-negative, and C. 

albicans bacteria

Adhavan et al. (2017)

5. Eucalyptus globulus (Blue 

gum)

Eucalyptus EO; leaves Nanoemulsion with 

eucalyptus EO impregnated 

into chitosan

9.4 nm N/A Gram (+): 

Staphylococcus aureus

Stronger antibacterial 

action against S. aureus 

as compared to chitosan 

film alone

Sugumar et al. (2015)

Nanoemulsion with 

eucalyptus EO

76 nm N/A Fungi: Candida albicans

Gram (−): 

Pseudomonas 

aeruginosa

Potent antimicrobial 

activity to fight against 

a wide variety of 

microbes

Quatrin et al. (2017)

Chitosan NPs with 

eucalyptus oil and cellulose 

acetate

48.26 nm N/A Gram (+): 

Staphylococcus aureus

A three-fold increase in 

antimicrobial activity 

was observed

Elbhnsawi et al. (2023)

6. Cinnamomum zeylanicum, 

Cinnamomum cassia 

(Cinnamon)

Cinnamon EO; leaves, barks, 

and root barks

Nanoemulsion with 

cinnamon EO

101–620 nm N/A Gram (−): Escherichia 

coli, Salmonella 

typhimurium, Vibrio 

parahaemolyticus

Gram (+): 

Staphylococcus aureus

Smaller cinnamon oil 

droplets can enter 

bacterial cells more 

readily and damage 

their cell membrane

Chuesiang et al. (2019)

(Continued)
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TABLE 1 (Continued)

S. No. Scientific name 
and common 
name

Compounds 
extracted from plant 
components

Nanoformulation Particle size 
(nm)

Encapsulation 
efficiency (%)

Pathogens Mechanism of 
action

References

7. Eugenia caryophyllata 

(Clove)

Clove EO; flower buds Solid lipid NPs with clove EO 397 ± 10.1 nm, 

786.9 ± 11 nm and 

506.4 ± 22 nm

70% Fungi: Candida albicans

Gram (−): 

Pseudomonas 

aeruginosa

Gram (+): 

Staphylococcus aureus, 

Salmonella typhi

The composition of 

SLN and cell wall of 

microorganisms 

perform effectively and 

show better 

antimicrobial activity

Fazly Bazzaz et al. 

(2018)

8. Cymbopogon flexuosus 

(Lemongrass)

Lemongrass EO; leaves Nanoemulsions with C. 

flexuosus EO

>200 nm N/A Fungi: Candida albicans 

Cryptococcus grubii

Gram (−): 

Pseudomonas 

aeruginosa

Gram (+): 

Staphylococcus aureus

Exhibited a stronger 

capacity to prevent the 

adherence of harmful 

microbes to surfaces, 

hence preventing the 

formation of biofilms

da Silva Gündel et al. 

(2018a)

9. Ocimum basilicum L. 

(Basil)

Basil EO; Leaves and flowers Nanoemulsion with basil EO <200 nm N/A Gram (−): Klebsiella 

pneumoniae, 

Enterococcus faecalis, 

Salmonella paratyphi

Gram (+): 

Staphylococcus aureus 

Larva: Culex 

quinquefasciatus

Antioxidant, 

antibacterial, and 

larvicidal properties of 

O. basilicum oil were 

observed, which may 

be due to secondary 

metabolites

Sundararajan et al. 

(2018)

Nanoemulsion with basil EO 119 ± 1.13 nm N/A Fungi: Candida 

albicans, Candida 

tropicalis

Gram (−): Proteus 

mirabilis, Escherichia 

coli

Gram (+): 

Staphylococcus aureus

In gram (−) bacteria, it 

works by crossing the 

hydrophilic channels, 

while in gram (+), it 

works by releasing 

nanometric droplets 

directly into the action 

site

da Silva Gündel et al. 

(2018b)

(Continued)
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TABLE 1 (Continued)

S. No. Scientific name 
and common 
name

Compounds 
extracted from plant 
components

Nanoformulation Particle size 
(nm)

Encapsulation 
efficiency (%)

Pathogens Mechanism of 
action

References

Peppermint, cinnamon and 

lemongrass EOs

Cellulose acetate (CA) with 

peppermint (PM), cinnamon 

(CN), and lemongrass (LG) 

EOs

140–180 nm N/A (the load capacity 

of EOs in CA NCs was 

decreasing as follows: 

LG > PM > CN)

Fungi: Candida albicans

Gram (−): 

Pseudomonas 

aeruginosa, Escherichia 

coli

Gram (+): 

Staphylococcus aureus

The nanomaterials 

showed a good 

antimicrobial effect 

against pathogens, 

planktonic microbial 

cultures, and biofilms

Liakos et al. (2018)

10. Satureja khuzistanica 

jamzad (SKJ)

SKJ EO; stems and leaves Chitosan (CS) with SKJ EO 

nanogel

571 nm 30.74% Gram (−): Escherichia 

coli, Salmonella 

paratyphi, S. enterica, S. 

typhi, Pseudomonas 

aeruginosa

CS-SKJ nanogel 

formulation showed 

activity against gram-

positive and the 

majority of gram-

negative bacteria. Also, 

the anti-tumor effect 

was on the KB-cell line

Rashidipour et al. 

(2021)

11. Rosmarinus officinalis 

(Rosemary)

Rosemary EO; branches and 

leaves

Multiple lipid NPs with 

rosemary EO and cefepime

112–124 nm 31–51% Gram (−): 

Pseudomonas 

aeruginosa

Encapsulated rosemary 

EO had significantly 

higher antibacterial 

activity

Ben-Khalifa et al. 

(2021)

12. Zanthoxylum Armatum 

(Timur) and Rosmarinus 

officinalis (Rosemary)

Timur EO; seeds Nanoemulgel (carbopol-940), 

nanoemulsified in Smix and 

rosemary oil (Tim-Ros-NEG)

139 ± 6.11 nm N/A Candida albicans Nanoemulgels 

containing timur and 

rosemary oil revealed 

effective activity against 

fungus

Noor et al. (2023)

13. Pine oleoresin Turpentine EO; wood Nanoemulsion with 

turpentine EO

22.52 nm–26.54 nm N/A Gram (+): methicillin-

resistant Staphylococcus 

aureus (MRSA)

Significant antibiofilm 

action against MRSA 

strains, disrupting 

around 70.83% of 

biofilm

Merghni et al. (2022)
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multi-walled carbon nanotubes, are being studied thoroughly for their 
target-specific drug delivery patterns, antimicrobial potency, and 
minimal toxicity values (Debnath and Srivastava, 2021). These nAbts 
are found to have higher efficacy in terms of drug activation, 
biocompatibility, the synergistic interaction of NPs for efficient drug 
delivery, easier drug release strategy at the target site, and structured 
pathogen killing (Seyyedi-Mansour et  al., 2022). The zwitterionic 
nAbts based on carbon quantum dots facilitate the pathogen removal 
from the host cells by initiating programmed cell death within the 
infected bacterial cells (Bing et al., 2016). Similarly, the hydrophobic 
surfaces of multi-walled carbon nanotube-based nAbts entrap 
pathogenic phospholipid bilayers, compromising their integrity and 
promoting cell death (Azizi-Lalabadi et al., 2020).

The use of these nAbts in clinical aspects is categorized into two 
sections: the associated NPs enhance the functionality of the 
conjugated antibiotics and, secondly, enable novel bactericidal 
activities (Chidre et al., 2023). The mechanism for each type of nAbts 
varies depending upon the conjugated molecule structure, physio-
chemical attributes, and their mode of action within targeted 
pathogenic bacteria cells (Yeh et al., 2020). For instance, vancomycin, 
one of the glycopeptide antibiotics, has been studied in  vivo and 
in vitro for antibacterial functions within bacterial cells alongside the 
synergic formulation of nanostructured systems (Pichavant et  al., 
2016). As in its non-conjugated form, it was inactive against 
Staphylococcus aureus (Berini et  al., 2021). In tackling ongoing 
infections and chronic wounds, nanocomposites offer a potential 
alternative to antibiotics, effectively breaking down bacterial biofilms 
(Varma et al., 2023). Additionally, the combined use of rifampin-
infused mussel-inspired silver NPs significantly improves antibacterial 
performance against MDR strains of Mycobacterium (Yu et al., 2021). 
In vivo studies revealed that the nAbts, formulated with rifampicin 
and SNEDDS, targeted Mycobacterium bovis BCG through 
internalization and intracellular trafficking, along with regulated drug 
release (Hussain et al., 2019).

In combination with antibiotics, nanomaterials hold immense 
promise for combating MRD pathogens. They can significantly 
enhance the effectiveness of traditional antimicrobial agents by 
overcoming resistance mechanisms. However, several limitations 
impede the widespread adoption of nanomaterials across various 
applications. The biggest concern is their potential toxicity, attributed 
to their diminutive size and unique properties that can result in 
unpredictable interactions with biological systems. Furthermore, 
complex and expensive synthesis processes hinder scalability and wide 
application, while stability issues, including degradation over time, 
pose challenges for therapeutic applications such as drug delivery 
(Tang et al., 2022). However, inorganic NPs have some significant 
limitations, including high dosages, significant toxicity, and limited 
efficacy, in addition to uncertainty in their long-term safety and 
biological metabolism (Tsikourkitoudi et al., 2022; Wang et al., 2022). 
Carbon-based nanomaterials are also toxic and can cause oxidative 
stress and inflammation (Manke et  al., 2013; Wang et  al., 2022). 
Furthermore, the stability of carbon-based organic nanostructures 
and nanocomposites under various conditions poses a potential 
concern, particularly for the use of antibiotics (Modi et al., 2022). NP 
interactions with the immune system have raised concerns, with 
reports suggesting potential negative outcomes, such as immune 
stimulation leading to immunosuppression and inflammation, thereby 
increasing the risk of infection (Yuan et al., 2019). The interaction of 
nanomaterials with their environment highlights the necessity of 

thorough evaluation and management of these materials prior to 
widespread adoption.

12 Conclusion and future perspectives

The scientific community has shifted its focus to alternative 
solutions in response to the increasing number of antibiotic-resistant 
bacterial strains. Nanoformulations, utilizing the Trojan Horse effect, 
have emerged as promising candidates. Additionally, nanotechnology 
is paving the way for the development of effective treatments to 
combat antimicrobial resistance. Developing nAbts requires extensive 
interdisciplinary collaboration, combining microbiology with 
nanomaterial science to achieve specificity, elucidate antibacterial 
mechanisms, and ensure biosafety. For seamless integration of nAbts 
into clinical settings, continued refinement of their composition, 
structure, and pharmacokinetic attributes is essential. Using herbal 
compounds in combination with traditional antibiotics and 
nanomaterials or transforming them into nanostructures presents a 
promising approach to overcoming resistance to bacteria. The 
inherent antimicrobial properties of essential oils and natural products 
provide a basis for creating nanoformulations that can be used to 
combat infections, reduce toxicity, and improve biocompatibility. In 
addition, nanomaterials disrupt bacterial membranes, inhibit biofilm 
formation, and enhance the uptake of antibiotics by the cell, ultimately 
enhancing the effectiveness of antibiotics against resistant bacteria. 
This synergistic approach harnessing the powers of nanomaterials and 
antibiotics holds promise for combating MDR and addressing the 
urgent global health challenge of antibiotic-resistant infections.

The government, healthcare organizations, researchers, and the 
public must act together to counter alarming projections concerning 
the impact of AMR in the future. The pursuit of sustainable healthcare 
solutions requires balancing scientific progress with responsible 
implementation. The balanced approach, combining innovation with 
ethical practices, has the potential to effectively address the issue of 
drug resistance as well as save the lives of many people. A conscientious 
approach to global health issues is embodied through the synthesis of 
nature’s bounty and cutting-edge technology and promising improved 
healthcare outcomes. In summary, nanotechnology is a multifaceted 
field that offers boundless opportunities for exploration and discovery 
in the world of antimicrobial resistance. The future of combating 
antimicrobial resistance lies in the convergence of nature and 
nanotechnology. In this transformative journey, relentless innovation 
and collaborative efforts will pave the way for a healthier, more 
resilient global community.
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