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Phytophthora sojae is a devastating plant pathogen that causes soybean 
Phytophthora root rot worldwide. Early on-site and accurate detection of the 
causal pathogen is critical for successful management. In this study, we have 
developed a novel and specific one-pot RPA/PCR-CRISPR/Cas12 assay for on-
site detection (Cas-OPRAD) of Phytophthora root rot (P. sojae). Compared to the 
traditional RPA/PCR detection methods, the Cas-OPRAD assay has significant 
detection performance. The Cas-OPRAD platform has excellent specificity to 
distinguish 33 P. sojae from closely related oomycetes or fungal species. The 
PCR-Cas12a assay had a consistent detection limit of 100  pg.  μL−1, while the 
RPA-Cas12a assay achieved a detection limit of 10  pg. μL−1. Furthermore, the 
Cas-OPRAD assay was equipped with a lateral flow assay for on-site diagnosis 
and enabled the visual detection of P. sojae on the infected field soybean 
samples. This assay provides a simple, efficient, rapid (<1  h), and visual detection 
platform for diagnosing Phytophthora root rot based on the one-pot CRISPR/
Cas12a assay. Our work provides important methods for early and accurate on-
site detection of Phytophthora root rot in the field or customs fields.
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1 Introduction

Phytophthora sojae is a major oomycete pathogen that causes damping-off of seedlings, 
and root and stem rot of soybean plants in soybean-producing regions worldwide (Erwin and 
Ribeiro, 1996; Tyler, 2007). Phytophthora sojae can infect soybean at all growth stages and yield 
losses can reach 100% in soybean fields when susceptible varieties are planted (Wang et al., 
2006; Dorrance, 2018). Phytophthora sojae is listed as a plant quarantine pathogen in China 
due to its high risk to agricultural and economic security (Wang et al., 2006; Dai Y. et al., 2019). 
With the increasing global transport of soybeans, P. sojae presents a serious threat to soybean 
production worldwide. Phytophthora root rot is difficult to diagnose due to the symptoms 
resembling those caused by other pathogens such as Fusarium, Pythium, or Rhizoctonia 
species. Therefore, the development of a new technique for the detection of the pathogen will 
be essential to prevent transmission of P. sojae into disease-free soybean growing regions.
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Various methods are available for detecting P. sojae infection, 
isolation and cultivation, leaf disc baiting, and molecular detection. 
Isolation-based methods offer incontrovertible evidence of P. sojae 
infection (Su and Shen, 1993; Chen et al., 2004), while the leaf-disc 
baiting assay is less complicated and more effective than isolating the 
pathogen from plant tissues (Jinhuo and Anderson, 1998; Dai T. et al., 
2019; Matthiesen et  al., 2021). Molecular approaches, such as 
conventional polymerase chain reaction (PCR) and real-time PCR 
(qPCR), are well-established and considered powerful diagnosis tools 
(Bienapfl et al., 2011; Haudenshield et al., 2017; Xiong et al., 2019). 
However, culturing and baiting detection methods are time-
consuming and relatively insensitive. Furthermore, conventional PCR 
or real-time PCR require well-equipped laboratories and well-trained 
personnel, hindering their application in resource-limited 
environments or on-site detection. In contrast, various isothermal 
nucleic acid amplification techniques, such as loop-mediated 
isothermal amplification (LAMP) and recombinase polymerase 
amplification (RPA), allow nucleic acid amplification at a single 
temperature, making them suitable for field and on-site diagnosis in 
low-resource areas (Dai et al., 2012; Rojas et al., 2017). However, their 
practical application remains challenging due to the issues of false 
positives caused by non-specific amplification.

The clustered regularly interspaced short palindromic repeat 
(CRISPR) and CRISPR-associated (Cas) system has recently been 
applied for molecular detection (Gootenberg et al., 2017; Chen et al., 
2018; Li et  al., 2018; Wheatley and Yang, 2021; Eisenstein, 2022). 
Several CRISPR/Cas-based detection platforms, such as DETECTR 
(Chen et  al., 2018), HOLMES (Li et  al., 2018), and SHERLOCK 
(Gootenberg et al., 2017; Kellner et al., 2019), have been developed as 
point-of-care diagnostic tools for highly specific and sensitive 
detection of the pathogen. CRISPR-based molecular detection offers 
several advantages, including rapid detection times, high specificity, 
and sensitivity comparable to or exceeding traditional methods like 
PCR (Islam and Kasfy, 2023; Kasfy et al., 2024). Additionally, these 
methods are relatively simple and can be adapted for use in various 
settings, including point-of-care diagnostics and field surveillance (Li 
et  al., 2019; Islam and Kasfy, 2023). Most recently, Cas12a-based 
detection methods have been used to diagnose plant pathogenic fungi 
(Magnaporthe oryzae), bacterial pathogens (Candidatus Liberibacter 
asiaticus), and viruses (PVX, PVY, TMV, ASPV, RSV) (Aman et al., 
2020; Jiao et al., 2021; Kang et al., 2021; Wheatley and Yang, 2021; 
Sánchez et  al., 2022; Zhu et  al., 2022). However, these platforms 
currently employ step-by-step nucleic acid preamplification and 
Cas12a cleavage steps, which could potentially increase the risk of 
carryover contamination between processes. This is particularly 
concerning for specific detection, as the extra processes of tube 
opening during preamplification can introduce non-specific 
amplification and cross-contamination (Wang SY et al., 2021; Guo 
et al., 2023). To address these challenges, there is a need to develop 
one-pot CRISPR/Cas-based assays for plant pathogen detection. Such 
assays would integrate the preamplification and cleavage steps into a 
single reaction, reducing the risk of contamination and 
improving specificity.

In this study, we  present a novel one-pot RPA/PCR CRISPR/
Cas12a assay for the simple, rapid, specific, and on-site visual 
detection of P. sojae, combining either PCR or RPA with CRISPR/
Cas12a. Following amplification, an optimized Cas12a solution was 
added to the reaction mixture to initiate cleavage. The results were 

visualized by naked-eye observation under blue or UV light. To 
facilitate in-field detection in resource-limited settings, we further 
combined the CRISPR/Cas12a assay with lateral flow strips. Except 
for the analytical sensitivity and specificity, the feasibility of this 
CRISPR/Cas12a assay was evaluated using inoculated soybeans 
samples and field samples. The Cas-OPRAD assay is a simple, specific, 
sensitive, and visual method for P. sojae detection, which has the 
potential to be widely applied in the management of plant pathogens.

2 Materials and methods

2.1 Isolates and DNA extraction

A total of 33 P. sojae isolates from different geographic areas were 
tested in this study, as well as 37 isolates from 17 different oomycetes 
(including 34 isolates of 14 species representing 10 clades of 
Phytophthora), and 16 other fungi and bacteria isolated from soybean 
and other hosts. The origin, host affiliation, and number of tested 
isolates are listed in Table 1. All isolates were routinely maintained in 
liquid nitrogen at the School of Breeding and Multiplication, Hainan 
University, China.

Genomic DNA was extracted from mycelial cultures using a 
DNAsecure Plant kit (Tiangen, Beijing, China) as described previously 
(Wu et al., 2017). The purified genomic DNA was quantified using a 
NanoDrop 2000 spectrophotometer (Thermo Scientific), and stored 
as aliquots at a concentration of 100 ng μL−1 in sterile distilled water 
at −20°C.

2.2 Materials and reagents

All the primers, DNA fragments (including CRISPR RNA 
[crRNA], and ssDNA probe) were synthesized by Sangon Biotech Co., 
Ltd. (Shanghai, China). REnGen® Lba Cas12a and NEBufferTM were 
purchased from New England BioLabs Ltd. (Beijing, China). High-
Affinity HotStart Taq (ET108-1) and 2 × PCR SuperMix were 
purchased from Tiangen Biotech (Beijing, China), while RPA Kits 
were obtained from AMP-Future Biothech Co., Ltd. (Changzhou, 
China). The lateral flow strips were purchased from Tiosbio Biotech 
Co. Ltd. (Beijing China). Nuclease-free H2O was obtained from 
Sangon Biotech (Shanghai, China). Genomic DNA Kits were 
purchased from Tiangen Biotech (Beijing, China).

2.3 Comparative genomic analysis and 
detection target

To identify the conserved, single-copy, candidate detection targets 
for P. sojae specific PCR or RPA assays, we retrieved the annotated 
genomic sequence of P. sojae.1 All the gene sequences of P. sojae were 
used to perform BLAST searches against the publicly available 
genomic sequences of Phytophthora and related taxa (e.g., Pythium, 
and Phytopythium species) in the National Center for Biotechnology 

1 https://genome.jgi.doe.gov/Physo3/Physo3.home.html
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Information (NCBI) database. A total of 1,187 P. sojae genes did not 
share any sequence similarity with genomic sequences of any other 
species. Three loci (PHYSODRAFT_299276, PHYSODRAFT_255386, 
and PHYSODRAFT_531894) were randomly selected as detection 

targets to test the specificity using a collection of Phytophthora species 
(Table  1) in conventional PCR. Ultimately, a single-copy gene 
(PHYSODRAFT_299276) was selected as the specific target for 
P. sojae detection.

TABLE 1 Isolates pathogens used in this study.

Speciesa Host Number of 
isolates

Source Resultb

PCR-Cas2a RPA-Cas12a

1 Phytophthora sojae Glycine max 8 Fujian, China + +

2 Phytophthora sojae Glycine max 9 Hainan, China + +

3 Phytophthora sojae Glycine max 4 Heilongjiang, China + +

4 Phytophthora sojae Glycine max 5 Anhui, China + +

5 Phytophthora sojae Glycine max 7 Zhangzhou, China + +

6 Phytophthora infestans Solanum tuberosum 3 Fujian, China _ _

7 Phytophthora vignae Vigna unguiculata 4 Hainan, China _ _

8 Phytophthora colocasiae Colcasia esculenta 5 Hainan, China _ _

9 Phytophthora nicotianae Nicotiana tabacum 2 Fujian, China _ _

10 Phytophthora capsici Capsicum annuum 5 Hainan, China _ _

11 Phytophthora cactorum Malus pumila 2 Jiangsu, China _ _

12 Phytophthora parasitica Ananas comosus 3 Hainan, China _ _

13 Phytophthora drechsleri Beta vulgaris 1 Fujian, China _ _

14 Phytophthora boehmeriae Gossypium 1 Jiangsu, China _ _

15 Phytophthora citrophthora Citrus reticulata 1 Fujian, China _ _

16 Phytophthora melonis Cucumis meloa 2 Fujian, China _ _

17 Phytophthora palmivora Dracaena sanderiana 3 Hainan, China _ _

18 Phytophthora cinnamomi Persea americana 1 Hainan, China _ _

19 Phytophthora cryptogea Gerbera jamesonii 1 Fujian, China _ _

20 Peronophthora litchi Litchi chinensis 1 Fujian, China _ _

21 Pythium aphanidermatum Cucumis sativus 1 Fujian, China _ _

22 Phytopythium spp. Citrus reticulata 1 Jiangsu, China _ _

23 Fusarium solani Glycine max 1 Hainan, China _ _

24 Sclerotinia sclerotiorum Glycine max 1 Hainan, China _ _

25 Colletotrichum gloeosporioides Glycine max 1 Hainan, China _ _

26 Alternaria alternata Glycine max 1 Fujian, China _ _

27 Rizoctonia solani Glycine max 1 Fujian, China _ _

28 Phomopsis longicolla Glycine max 1 Jiangsu, China _ _

29 Verticillium dahliae Solanum melongena 1 Fujian, China _ _

30 Fusarium oxysporum Gossypium hirsutum 1 Fujian, China _ _

31 Fusarium moniliforme Gossypium hirsutum 1 Fujian, China _ _

32 Fusarium graminearum Triticum aestivum 1 Fujian, China _ _

33 Botryosphaeria rhodina Psidium guajava 1 Fujian, China _ _

34 Helminthosprium turcicum Zea mays 1 Fujian, China _ _

35 Magnaporche oryzae Oryza sative 1 Fujian, China _ _

36 Colletotrichum siamense Hevea brasiliensis 1 Hainan, China _ _

37 Erwinioca rotovora Solanum tuberosum 1 Fujian, China _ _

38 Ralstonia solanacearum Solanum tuberosum 1 Fujian, China _ _

aAll isolates were maintained in the collection of Hainan University. bPositive (+) or Negative (−) are based on the presence of a PCR-Cas12a or RPA-Cas12a result of amplification.
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2.4 Primers and CRISPR RNA design

The target sequence of P. sojae (PHYSODRAFT_299276) was 
used to design the crRNAs and primers for the CRISPR/Cas assay. 
RPA primers were designed and analyzed using Primer 5 and 
Primer-Explore V5 software.2 The crRNA with 20–24 bp target-
dependent sequence following PAM (5’-TTTN-3′) sit was designed 
using EuPaGDT3 and an RNA scaffold to assist in protein binding. 
RPA primers and crRNA were synthesized by Sangon Biotech 
(Shanghai, China). The sequences of all primers are listed in 
Supplementary Table S1.

2.5 Conventional PCR assay

Conventional PCR assays were performed in 10 μL reactions. 
Each reaction included 5 μL of 2 × Taq PCR Master Mix (Tiangen 
Biotech Co., Ltd., Beijing, China), 0.5 μL of each forward and reverse 
primer (10 μM), 1 μL of template DNA (100 ng μL−1), and 3.0 μL of 
nuclease-free H2O. Thermal cycling was carried out using PTC-200 
Thermo Cycler (MJ Research, Watertown, MA, United States) with the 
following conditions: 95°C for 5 min, followed by 30 cycles of 95°C for 
30 s, 58°C for 45 s, and 72°C for 30 s, and a final extension at 72°C for 
10 min. The PCR amplification products were separated by 
electrophoresis on 2.0% agarose gel, stained with ethidium bromide, 
and visualized under UV light. Each experiment was performed 
in triplicate.

2.6 Recombinase polymerase amplification 
assay

RPA assay was performed using the AMP-Future Biotech Co. Ltd. 
(Changzhou, China) according to the manufacturer’s instructions. 
Briefly, each 10 μL reaction contained 5.9 μL of A buffer, 0.5 μL of B 
buffer, 0.4 μL of each forward and reverse primers (10 μM), 1 μL of 
DNA (100 ng μL−1), and 0.8 μL of nuclease-free H2O. The mixture was 
incubated in a conventional water bath at 38°C for 15 min for 
RPA reaction.

2.7 Optimization of CRISPR/Cas12a 
detection

The efficiency of the CRISPR/Cas12a cleavage system is 
directly influenced by the concentration of crRNA and Cas12a 
and affects both trans-cleavage efficiency and fluorescence 
intensity. To determine the optimal CRISPR/Cas12a reaction 
conditions, a range of Cas12a and crRNA concentrations 
(50 nM ~ 300 nM), Cas12a-mediated cleavage temperature 
(37 ~ 42°C), RPA reaction time (5 min ~ 30 min), and trehalose 
concentrations (0.006 mM ~ 6 mM) were tested. Nuclease-free 
water was used as a negative control. The CRISPR/Cas12a reaction 

2 http://primerexplorer.jp/e/

3 http://grna.ctegd.uga.edu

products were analyzed by naked eye observation or by detecting 
the maximal fluorescence signal value to determine the optimal 
CRISPR/Cas reaction conditions. All experiments were repeated 
three times.

2.8 CRISPR/Cas12a-mediated cleavage 
assay

The CRISPR/Cas12a reaction was performed in a 5 μL reaction 
mixture containing 0.75 μL crRNA (4 μM), 1.5 μL Cas12a (2 μM), 
0.75 μL ssDNA FQ reporter (100 nM), and 1.5 μL of 10× NEB Buffer 
r2.1, 0.5 μL of nuclease-free H2O, along with 10 μL of RPA products 
(or 0.5 μL of 6 mM trehalose and 10 μL of PCR products). In the 
PCR-CRISPR/Cas12a assay, 6 mM trehalose was added to the reaction 
solution to protect the activity of the Cas12a protein. The reactions 
were incubated at 38°C for 10 min and then placed on an ultraviolet 
(UV) or blue light transilluminator for naked-eye detection.

2.9 One-pot CRISPR/Cas12a assay

The one-pot CRISPR/Cas12a detection combines RPA/PCR 
reaction with Cas12a cleavage in a single tube reaction. To perform 
the assay, 10 μL of the RPA/PCR assay containing targets was added to 
the bottom of the tube, and 5 μL of CRISPR/Cas12a reaction solution 
was initially added inside the inner wall of the tube lid. After 
incubating the RPA/PCR reaction for 10–60 min, the CRISPR/Cas12a 
solution was swung into the RPA reaction solution by hand on-site, 
and the mixture was incubated for an additional 15 min. The reaction 
tubes were then placed on a blue or UV light transilluminator for 
naked eye detection (Figure 1).

2.10 Lateral flow assay

The structure of the lateral flow strip (LFS) incorporated an 
absorbent pad, a conjugate pad, a nitrocellulose (NC) membrane, and 
a sample pad on a plastic adhesive backing card. The capture reagents 
streptavidin and anti-IgG antibody were dispensed onto the NC 
membrane, and each band was separated by 5 mm. When there is no 
target in the system, the conjugate was captured by the streptavidin 
through biotin, the control line became red because of the aggregation 
of the colloidal gold in this area, while the test line without the flow-
through of the conjugate had no color change. However, if there are 
targets in the system, the ssDNA reporter is cleavaged by CRISPR/
Cas12a, and FAM and biotin molecules are separated. After the 
integration of ssDNA-biotin captured by streptavidin at the C line, the 
remaining conjugate of FAM-ssDNA and anti-FAM antibody would 
flow into the test line and be captured by anti-lgG antibody. The lateral 
flow detection was performed according to the Tiosbio protocol 
(Tiosbio Biotech Co. Ltd., Beijing China). Briefly, 85 μL Tiosbio assay 
buffer was added to 15 μL of the RPA-CRISPR/Cas12a reaction and 
incubated for 5 min. The lateral flow test strip was then inserted into 
the reaction mixture for 5 ~ 10 min to allow the reaction to occur. A 
positive test result was indicated by the appearance of both the control 
and test lines, while a negative result showed only the control line. All 
lateral flow assays were performed in triplicate.

https://doi.org/10.3389/fmicb.2024.1390422
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2.11 Specificity and sensitivity of the RPA/
PCR-CRISPR/Cas12a assay

To test the specificity of the one-pot RPA/PCR CRISPR/Cas12a 
assays, a total of 33 P. sojae isolates from different geographic origins, 
37 isolates from 17 different oomycetes species, and 16 other fungi and 
bacteria were used (Table  1). To determine the sensitivity of the 
CRISPR/Cas12a assay, 10-fold serial dilutions of P. sojae purified 
gDNA ranging from 100 to 0.001 ng μL−1 were used as DNA templates. 
Nuclease-free H2O was used as the negative control. All assays were 
repeated in triplicate for each concentration of the gDNA template.

2.12 Feasibility of CRISPR/Cas12a detection 
using inoculated soybean tissues and 
collected field samples

To assess the practical application of the one-pot CRISPR/Cas12a 
detection for P. sojae, soybean seedlings were inoculated with P. sojae 
as described previously (Zhao et al., 2015). The DNA was extracted 
and evaluated using the developed RPA/PCR-CRISPR/Cas12a assays. 
Each experiment was repeated three times. In addition, a total of 20 
soybean plants collected from different fields in Fujian and Hainan 
provinces were assayed using the RPA/PCR-CRISPR/Cas12a assays. 
The DNA was extracted from infected soybeans as described 
previously (Chen et al., 2013), and the RPA/PCR-CRISPR/Cas12a 
assay was performed as described above. Purified DNA of P. sojae was 
used as the positive control and healthy soybeans were used as 
negative control. The P. sojae infection was confirmed using the 
conventional isolation culture method for the identification of the 
pathogens based on morphological characteristics. Each experiment 
was repeated three times.

3 Results

3.1 The principle of the Cas-OPRAD assay

A schematic description of the Cas-OPRAD assay and the 
approximate time of each step are shown in Figure 1. The shortest 
time of Cas-OPRAD assay can reach about 0.5–1 h, including three 
primary steps: sample preparation, Cas-OPRAD assay, and visual 
readout. In the first step, the sample was prepared by using a rapid 
nucleic acids extraction method, and then the RPA or PCR technique 
ensured the efficient production of DNA amplification from the 
sample. In the first step, the sample was prepared by using a rapid 
nucleic acids extraction kit, the RPA or PCR technique was employed 
to enrich the target DNA fragments, which ensures the efficient 
production of DNA amplification from the sample. We utilized the 
principle of liquid surface tension and spatial isolation to separate 
the RPA/PCR reaction from sgRNA-Cas12 in a one-pot reaction. 
Specifically, the sgRNA-Cas12 complex was adsorption suspended 
on the top cover of the reaction tube, while the RPA or PCR reaction 
was located at the bottom of the tube. After the nucleic amplification 
reaction was completed, a simple centrifugation or manual shaking 
was used to mix the two components for reaction, this design avoids 
cross-contamination of various components in complex systems. For 
amplification product identification, the gRNA was specially 
designed to target RPA/PCR products, and the amplification 
products were recognized and cleaved, especially by the sgRNA and 
Cas12a complex. Furthermore, the Cas12a-sgRNA-target ternary 
complex activated the trans-cleavage activity of Cas12a, resulting in 
ultrafast cleavage of the ssDNA fluorescent probe and consequent 
fluorescent signal generation. The fluorescent signal generated from 
trans-cleavage was monitored by a fluorescence detector or 
LFS device.

FIGURE 1

Schematic of Cas-OPRAD workflow for rapid sensitivity, and visual detection of P. sojae. Step 1: sample preparation. Step 2: Cas-OPRAD assay. Step 3: 
visual readout.
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3.2 Identification of specific sequence and 
specificity assay of Cas-OPRAD

The specificity of Cas OPRAD was carried out in three steps. 
Firstly, we  determine sequence specificity through comparative 
genomic analysis, 1,187 candidate genes were identified from P. sojae. 
Pair-wise gene sequence alignments were then performed, and three 
P. sojaespecific genes were selected as the detection target 
candidates: PHYSODRAFT_299276, PHYSODRAFT_255386, and 
PHYSODRAFT_531894. Then, the primers were designed for 
these genes, and a conventional PCR assay was used to evaluate 
the specificity of the primer pairs. Primers So-F/So-R 
(Supplementary Table S1), designed from PHYSODRAFT_299276, 
successfully distinguished P. sojae from other plant pathogens by 
amplifying a 1,310 bp target band. In contrast, PHYSODRAFT_255386 
and PHYSODRAFT_531894 amplified non-target bands from the 
gDNA of P. sojae (data not shown). These results suggest that the 
primers designed from PHYSODRAFT_299276 had good specificity 
for P. sojae detection. Therefore, a probe for PHYSODRAFT_299276 
was used as the detection target.

3.3 Feasibility analysis, optimization for 
one-pot, and naked-eye detection

To verify the feasibility of our scheme, we first optimized the 
concentration of crRNA and the ratio of Cas12a to crRNA in the 
CRISPR/Cas12a assay, as the crRNA concentration plays a crucial role 
in CRISPR/Cas12a reaction. The optimal concentration of crRNA and 
the optimal ratio of Cas12a to crRNAs were determined to be 200 nM 
and 1:1, respectively (Supplementary Figure S1A). Under the 
optimized conditions of crRNA concentration and the ratio of Cas12a 
to crRNAs, we further optimized CRISPR/Cas12a reaction time and 
temperature. The ideal conditions for the cleavage were determined to 
be 38°C for 10 min (Supplementary Figures S1B,C).

To maintain the activity of Cas12a in one pot, according previous 
report by Saisawang et al. (2023), we adjusted the temperature of the 
heat cap in the PCR-CRISPR/Cas12a reaction to 50°C and trehalose 
was added into CRISPR/Cas reaction to help enzyme stabilization in 
target cleavage. The optimized concentration of trehalose for 
PCR-CRISPR/Cas12a was 0.6 mM (Supplementary Figure S1D). 
Therefore, subsequent PCR-CRISPR/Cas12a assays were carried out 
under these conditions. We tested eight reaction systems (reactions # 
1–8) for PCR-CRISPR/Cas12a (Supplementary Figure S2) and six 
reactions (reactions # 1–6) for RPA-CRISPR/Cas12a, respectively 
(Figure 2). The generation of fluorescence comes from Cas12 cleavage 
FQ ssDNA probe molecules, after incubation at 38°C for 15 min and 
5 ~ 10 min of CRISPR/Cas detection, only reaction #1, containing 
Cas12a, crRNAs, target DNA, ssDNA-FQ, and RPA or PCR reaction 
mixture, generated a naked-eye visual result that was visible under 
blue or UV light (Figure 2; Supplementary Figure S2). To further 
confirm the specificity and reaction time of the fluorescence signal, 
the one-pot RPA-CRISPR/Cas12a assay was analyzed on an AriaMx 
quantitative PCR instrument. These fluorescence value results 
demonstrate that the CRISPR/Cas12a assay provides a high 
fluorescence intensity value (>30,000 AU) within 15 min, which 
indicates that Cas-OPRAD can be offered a rapid, specific, and simple 
method for detecting P. sojae (Figure 2B).

3.4 Specificity and sensitivity of the 
Cas-OPRAD assay

To validate the specificity of Cas OPRAD detection, DNA 
templates were extracted from 33 P. sojae isolates and 53 isolates of 
other non-P. sojae were evaluated (Table 1). After the Cas-OPRAD 
reaction, only P. sojae showed a positive reaction, while no color 
change was observed for the other pathogens, including other 
Phytophthora spp. and other fungal and bacteria isolates from 
soybeans (Figures  3A,B; Supplementary Figures S3A,B). Notably, 
there was no cross-reaction with closely related species, such as 
P. melonis, P. cinnamomi, and P. vignae, which belong to the same clad 
7b as P. sojae. These results demonstrate that the Cas-OPRAD assay 
developed in this study is highly specific for P. sojae.

To further evaluate the sensitivity of the CRISPR/Cas12a assay, 
10-fold serially diluted DNA templates of P. sojae were used. As shown 
in Supplementary Figures S4A,B the detection limit for the PCR-CRISPR/
Cas12a was 100 pg.  μL−1, while the sensitivity of the RPA-CRISPR/
Cas12a assay reached 10 pg.  μL−1 in both fluorescence detection 
(Figures 3C,D). Notably, the sensitivity for Cas-OPRAD was found to 
be at least 10 times higher than that of the PCR-CRISPR/Cas12a method. 
These results suggest that the RPA-CRISPR/Cas12a-based assay is more 
sensitive for early detection of the soybean pathogen P. sojae.

3.5 Development of lateral flow strips 
platform for Phytophthora sojae detection

The Cas-OPRAD assay is performed at an isothermal temperature, 
making it potentially suitable for on-site detection. In addition to 
fluorescence detection, we also utilized lateral flow strips (LFS) for a 
visual CRISPR/Cas12a assay that can facilitate on-site detection of 
P. sojae. The principle of the test strip is shown in Figure 4A, the structure 
of LFS incorporated an absorbent pad, a conjugate pad, a nitrocellulose 
(NC) membrane, and a sample pad on a plastic adhesive backing card. 
The capture reagents streptavidin and anti-IgG antibody were dispensed 
onto the NC membrane, and each band was separated by 5 mm. When 
there is no target in the system, the conjugate was captured by the 
streptavidin through biotin, the control line became red because of the 
aggregation of the colloidal gold in this area, while the test line without 
the flow-through of the conjugate had no color change. However, if there 
are targets in the system, the ssDNA reporter is cleavaged by CRISPR/
Cas12a, and FAM and biotin molecules are separated. After the 
integration of ssDNA-biotin captured by streptavidin at the C line, the 
remaining conjugate of FAM-ssDNA and anti-FAM antibody would flow 
into the test line and be captured by anti-lgG antibody. As expected, 
bands appeared on both the test line and control line of the strip in a 
positive reaction, while only a band appeared on the control line in a 
negative reaction. Therefore, the lateral flow assay format provides a 
rapid, simple, instrument-free, on-site field detection method for P. sojae.

The specificity and sensitivity of the Cas-OPRAD LFS platform were 
also evaluated for the detection of P. sojae. The specificity test results 
were visualized using LFS tests (Figure 4B). In the LF-OPRAD assay, red 
bands at the T line were only observed for the Cas-OPRAD products of 
the P. sojae DNA sample, and no red band at the T line was observed for 
reactions with other pathogens. These results indicate that the developed 
Cas-OPRAD platform for the P. sojae pathogens was highly specific. In 
sensitivity tests, the results from LFS indicated are same sensitivity as for 

https://doi.org/10.3389/fmicb.2024.1390422
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2024.1390422

Frontiers in Microbiology 07 frontiersin.org

the Cas-OPRAD assays. For example, a red band at the T line was 
observed for reactions at all P. sojae DNA dilutions except for 1 pg. μL−1 
and NC (Figure 4C), indicating that the sensitivity of Cas-OPRAD was 
10 pg. μL−1, these results indicate that the on-site platform could be used 
for P. sojae pathogen detection without dedicated professional equipment.

3.6 On-site detection using inoculated 
soybeans and field soybean samples

To verify the validity and feasibility of the Cas-OPRAD for 
diagnosing soybean samples, the DNA was extracted from three regions 
(I: roots and underground stems. II: cotyledons and stem above the part 
of ground. III: epicotyl and first leaf) of inoculated soybean seedlings 
(Figure 5A). As shown in Figures 5B–D, positive reactions were observed 
in regions I  and II, but not in region III or healthy soybeans using 
Cas-OPARD or PCR-CRISPR/Cas12a, the result indicates that under 
artificial inoculation, the P. sojae infection in the roots of soybeans is 
higher than that in the leaves. Therefore, in field sample collection, it is 
necessary to prioritize collecting regions I or II for Cas-OPARD analysis.

According to the results above, a total of 20 field soybean samples 
collected from natural fields of Fujian and Haina province, China, 
were used for Cas-OPARD assay or PCR-CRISPR/Cas12a with both 
fluorescence and lateral flow readouts. Of the 20 collected samples, 16 
were positive and four were negative using both the Cas-OPARD, the 
results obtained by using the PCR-CRISPR/Cas12a method are 
consistent with those obtained by Cas-OPRAD (Figures 5E,F). The 
detection results showed 100% consistency between the visual 
detection under blue or UV light and the lateral flow strip readout 
(Figures  5F,G). These results demonstrate the high detection 
capabilities of the CRISPR/Cas12a assay for P. sojae.

4 Discussion

The identification of a specific target gene is critical for the 
development of accurate and sensitive molecular diagnosis methods. 

Although several genes, such as the internal transcribed spacer (ITS) 
region, β-tubulin (TUB) loci, elongation factor 1α, and ras-related 
protein Ypt1 (YPT), have been used to design primers for detecting 
Phytophthora (Kroon et  al., 2004; Blair et  al., 2008). However, 
molecular detection based on these target genes may pose false 
positives due to high homology (Kunadiya et al., 2017). Therefore, the 
combination of comparative genomics and bioinformatics has been 
applied to identify specific target genes for various plant pathogen 
species, including Pectobacterium carotovorum (Ahmed et al., 2018), 
P. infestans (Kong et  al., 2020), P. cinnamomi (Chen et  al., 2022), 
Magnaporthe oryzae Triticum (MoT) (Kang et al., 2021), and Fusarium 
circinatum (Xu et al., 2023). In this study, we performed a comparative 
genomic analysis based on public genomic sequence data of several 
oomycetes species to identify a candidate detection target gene that is 
specific to P. sojae. We  identified a single-copy gene 
(PHYSODRAFT_299276) and developed RPA/PCR CRISPR/Cas12 
assays to verify its specificity using 33 P. sojae isolates and 53 isolates 
of other non-P. sojae species. Moreover, this assay did not show cross-
reaction with closely related species clade 7b, P. melonis, P. cinnamomi, 
and P. vignae. RPA/PCR CRISPR/Cas12 assay that showed 100% 
inclusivity and 100% exclusivity when tested among closely related 
species. Our results suggest that this assay is highly specific for 
P. sojae detection.

One-pot CRISPR/Cas coupled with nucleic acid amplification 
detection streamlines genetic analysis by integrating multiple steps 
into a single reaction. This synergy enhances efficiency, reduces time, 
and minimizes contamination risks, crucial for applications like 
pathogen detection, genetic screening, and diagnostics. By combining 
CRISPR’s precision gene detection with amplification’s sensitivity, it 
enables rapid and accurate identification of target sequences, 
revolutionizing research, and medical diagnostics (Wang R et  al., 
2021; Hu et al., 2022). The simplicity and versatility of this approach 
hold immense potential for advancing various fields, from healthcare 
to agriculture and beyond, promising faster, more accessible, and 
reliable genetic analysis. To reduce the risks of cross-contamination 
and improve the convenience of on-site detection of P. sojae, 
we  developed a one-pot CRISPR/Cas12a OPRAD assay. In the 

FIGURE 2

Evaluation of Cas-OPRAD reactions with various components. (A) RPA-CRISPR/Cas12a reaction. (a) Visualization under blue light; (b) visualization 
under UV light; (B) Fluorescent readout with quantitative PCR instrument. Each experiment was repeated three times with similar results.
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One-pot design, we utilized the principle of liquid surface tension and 
spatial isolation to separate the RPA/PCR reaction from the 
sgRNA-Cas12 a one-pot reaction. This integrated strategy initially 
provided a new idea for on-site diagnosis and epidemic control of 
COVID-19 (Ding et al., 2020). Additionally, to maintain the activity 
of Cas12a in one pot PCR-CRISPR/Cas12, we  adjusted the 
temperature to 50°C of the heat cap and optimized 0.6 mM trehalose 
to maintain the stability in one-pot PCR-CRISPR/Cas12a reaction. As 
a nonreducing disaccharide, trehalose can provide proteins with the 
most stability in a one-pot reaction, as they form hydrogen bonds with 
the protein to minimize damage from desorbing the hydration shell 
(Lin et al., 2022; Ghouneimy et al., 2023). CRISPR/Cas12a reagents 
were pre-loaded into the inner wall of the tube lid. Following RPA/
PCR amplification, the reagents were mixed into the reaction solution 
by centrifugation, avoiding potential aerosol contamination from 
re-opening the tube lid post-amplification. This assay minimizes 

potential cross-contamination issues by avoiding the need to reopen 
the reaction tube lid after the RPA reaction.

Isothermal amplification techniques have emerged as powerful 
alternatives to PCR (Polymerase Chain Reaction) due to their 
simplicity, rapidity, and applicability in various settings. While PCR 
relies on thermal cycling to amplify DNA, isothermal amplification 
methods operate at a constant temperature, making them more 
accessible for point-of-care diagnostics and field applications (Qi et al., 
2018). RPA employs recombinase proteins to facilitate strand exchange, 
enabling DNA amplification at a constant temperature (usually 
37–42°C). RPA reactions are highly specific and can be completed 
within 20–30 min, making them suitable for rapid diagnostics in 
resource-limited settings (Piepenburg et al., 2006; Guo et al., 2023). 
These isothermal techniques offer several advantages over PCR, 
including faster turnaround times, simplified instrumentation 
requirements, and tolerance to inhibitors present in crude samples. 

FIGURE 3

Specificity and sensitivity test of the Cas-OPRAD assay for detection of P. sojae. (A) Specificity visualization assay under blue and UV light; 
(B) Fluorescent readout detection for specificity assay of P. sojae; Lane 1: Phytophthora sojae; 2: Phytophthora vignae; 3: Phytophthora infestans; 4: 
Phytophthora meloins; 5: Phytophthora cryptogea; 6: Phytophthora parasitica; 7: Phytophthora drechsleri; 8: Phytophthora capsici; 9: Phytophthora 
cactorum; 10: Phytophthora cinnamomi; 11: Phytophthora citrophthora; 12: Phytophthora colocasiae; 13: Phytophthora cactorum; 14: Phytophthora 
nicotiana; 15: Peronophythora litchii; 16: Phytophthora palmivora; 17: Diaporthe phaseolorum var.caulivora; 18: Fusarium virguliforme; 19: Fusarium 
equiseti; 20: Fusarium solani; 21: Fusarium proliferatum; 22: Fusarium oxysporum; 23: Negative control. (C) Sensitivity visualization assay under blue 
and UV light; (D) Fluorescent readout detection of P. sojae.
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They have been extensively applied in fields such as infectious disease 
diagnosis, food safety monitoring, and environmental surveillance. As 
isothermal amplification methods continue to evolve, they hold 
immense promise for decentralized molecular testing and point-of-
care applications (Sánchez et al., 2022; Kasfy et al., 2024). Although our 
results show that both amplification methods can be combined with 
one-pot CRISPR/Cas12 detection, however, the one-pot RPA shows 
higher sensitivity (about 10 times) since RPA has a higher amplification 
efficiency in the one-pot-CRISPR/Cas12 reaction, indicating that 
Cas-OPRAD based on RPA-CRISPR/Cas is more practical for 

detection due to lower reaction temperature, shorter detection time, 
and is easier to operate in the field. Moreover, the amplification 
temperature of the RPA reaction allows it to be paired with CRISPR/
Cas12a cleavage in a one-pot reaction. This approach simplifies the 
assay by using a single temperature and a single tube for the 
amplification reaction, making it amenable to on-site detection 
without the need for highly equipped laboratories or well-
trained personnel.

On-site detection is pivotal for swift response, cost-efficiency, and 
preventive action in various fields. It enables immediate identification 

FIGURE 4

On-site Cas-OPRAD assays for detection of P. sojae. (A) Structure and design of the LFS. (B) Lateral-flow readout detection of P. sojae. Lane 1: 
Phytophthora sojae; 2: Phytophthora vignae; 3: Phytophthora infestans; 4: Phytophthora meloins; 5: Phytophthora cryptogea; 6: Phytophthora 
parasitica; 7: Phytophthora drechsleri; 8: Phytophthora capsici; 9: Phytophthora cactorum; 10: Phytophthora cinnamomi; 11: Phytophthora 
citrophthora; 12: Phytophthora colocasiae; 13: Phytophthora cactorum; 14: Phytophthora nicotiana; 15: Peronophythora litchii; 16: Phytophthora 
palmivora; 17: Diaporthe phaseolorum. (C) The sensitivity assay of lateral flow strips readout detection for P. sojae. Lane 1:100 ng μL−1; 2: 10 ng μL−1; 
3: 1 ng μL−1; 4: 100 pg μL−1; 5: 10 pg μL−1; 6: 1 pg μL−1; and 7: NC (negative control).
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of substances, pathogens, and anomalies, saving time and resources 
by eliminating the need for off-site analysis (Hu et al., 2017; Bai et al., 
2019; Zhu et al., 2022). The established Cas-OPRAD has powerful 
field sample processing capabilities, as illustrated in Scheme 1. The 
one-pot CRISPR/Cas12a-based detection platform works with four 
processes that integrate (i) Sample preparation (ii) PCR or RPA 
amplification of the target DNA, sequence-specific recognition, and 
trans-cleavage by Cas12a/crRNA (Cas-OPRAD assay), and (iii) visual 
readout of results. This streamlined approach provides a powerful tool 
for on-site detection of this destructive soybean pathogen, which can 

straightforward visual interpretation of results by the naked eye 
without requiring specialized equipment.

5 Conclusion

In this study, we developed a one-pot RPA/PCR-CRISPR/Cas12a 
detection platform for sensitive and specific detection of the soybean 
pathogenic oomycete P. sojae, named Cas-OPRAD. The advantages of 
Cas-OPRAD are shown in Table 2 compared with previously reported 

TABLE 2 Comparison of performance between recent detection techniques and Cas-OPRAD.

Platform Steps Specificity Sensitivity Test time One-pot On-site References

qPCR and RPA
(1) qPCR

(2) RPA
100%

qPCR (100 fg)

qPCR (10 pg)
>60 min Yes No Rojas et al. (2017)

RPA-LFD
(1) RPA

(2) LFS visual assay
55.4% 10 pg./50 μL >30 min No No Dai T. et al. (2019)

RPA-CRISPR/

Cas12a

(1) RPA

(2) CRISPR/Cas Fluorescence assay
100% 10 pg./μL >30 min No No Guo et al. (2023)

RPA-CRISPR/

Cas12a

(1) RPA

(2) CRISPR/Cas Fluorescence assay

(3) LFS visual assay

100% 14.5–24.6 copies/μL >60 min No Yes Sun et al. (2024)

Cas-PfLAMP

(1) LAMP or RT-LAMP

(2) CRISPR/Cas Fluorescence assay

(3) LFS visual assay

100%

Compare PCR

3–9 copies

(<10 copies)
~ 50 min No Yes Zhu et al. (2022)

Bio-SCAN

(1) RPA

(2) CRISPR/Cas Fluorescence assay

(3) LFS visual assay

100% alleles assay <60 min No Yes Sánchez et al. (2022)

NALFIA

(1) RPA

(2) CRISPR/Cas Fluorescence assay

(3) LFS visual assay

1,000%

Compare PCR
0.001 μg/μL ~25 min No Yes Kang et al. (2021)

Cas-OPRAD

(1) RPA

(2) CRISPR/Cas Fluorescence assay

(3) LFS visual assay

100% 10 pg./μL ~30 min Yes Yes This work

FIGURE 5

Application of Cas-OPRAD assays for detection of P. sojae in filed samples. (A) Artificial division of different areas of the soybean represents the varying 
stages of infection; (B) Blue and UV light visualization assay of one-pot PCR-Cas12a in inoculated soybean seedlings; (C) Blue and UV light visualization 
assay of one-pot RPA-Cas12a in inoculated soybean seedlings; (D) One-pot RPA-Cas12a LFS assay in filed soybean sample; +: Positive control; −: negative 
control; Lane1: Region I; Lane 2: Region II; Lane3: Region III. (E) one-pot PCR-Cas12a LFS assay; (F) one-pot RPA-Cas12a LFS assay; (G) RPA-Cas12a LFS 
assay in filed soybean sample. +, Positive control; −, negative control; Lane1-8: naturally infected soybean root samples; 9: healthy soybean sample.
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methods. The Cas-OPRAD assay has the advantages of sensitivity 
(<10 pg./μL), due to the RPA amplification and trans cleavage of 
activated Cas12a protein. The assay demonstrates exceptional analytical 
specificity without cross-reactivity against closely related species with 
specific RPA primers and CRISPR sgRNA design. In addition, to achieve 
on-site detection, we utilized the principle of liquid surface tension and 
spatial isolation to separate the RPA/PCR reaction from sgRNA-Cas12 in 
a one-pot reaction. We provide a straightforward visual readout for the 
soybean pathogen P. sojae via both fluorescent and lateral flow detection 
modalities, which extends the application of Cas-OPRAD to point-of-
care self-diagnoses. The whole test procedure can be performed in the 
field with simple operator training, using a smart thermos cup (Zhu 
et al., 2022), and visual inspection using a LFS device. In field sample 
tests, the time required for the whole process can be shortened to 40 min 
for all 20 field soybean samples, considerably shorter than conventional 
PCR or RPA-CRISPR/Cas assay. By coupling target amplification by 
RPA with Cas12a-mediated cleavage in a streamlined single-reaction 
format, this platform enables on-site application for early and precise 
identification of P. sojae outbreaks to empower effective disease 
management. Overall, this integrated isothermal CRISPR-based 
diagnostic tool has tremendous potential to aid in monitoring and 
control of destructive soybean diseases attributed to P. sojae infection.
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