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Marburg virus disease (MVD) presents a significant global health threat, lacking 
effective antivirals and with current supportive care offering limited therapeutic 
options. This mini review explores the emerging landscape of novel antiviral 
strategies against MVD, focusing on promising therapeutics currently in the 
development pipeline. We delve into direct-acting antiviral approaches, including 
small molecule inhibitors targeting viral entry, replication, and assembly, alongside 
nucleic acid antisense and RNA interference strategies. Host-targeting antivirals 
are also considered, encompassing immune modulators like interferons and 
cytokine/chemokine modulators, broad-spectrum antivirals, and convalescent 
plasma and antibody-based therapies. The paper then examines preclinical 
and clinical development for the novel therapeutics, highlighting in vitro and 
in vivo models for antiviral evaluation, safety and efficacy assessments, and the 
critical stages of clinical trials. Recognizing the challenges of drug resistance 
and viral escape, the mini review underscores the potential of combination 
therapy strategies and emphasizes the need for rapid diagnostic tools to 
optimize treatment initiation. Finally, we discuss the importance of public health 
preparedness and equitable access to these promising therapeutics in achieving 
effective MVD control and global health security. This mini review presents a 
comprehensive overview of the burgeoning field of MVD antivirals, highlighting 
the potential of these novel approaches to reshape the future of MVD treatment 
and prevention.
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1 Introduction

Marburg virus disease, a highly virulent illness causing hemorrhagic fever, has a fatality 
ratio of up to 88%. It belongs to the same family as Ebola virus disease (WHO, 2024). The 
disease is rare but severe, affecting both humans and non-human primates, and spreads 
through contact with bodily fluids. Symptoms include fever, headache, malaise, muscle aches, 
diarrhea, abdominal pain, vomiting, and neurological involvement (WHO, 2024). Treatment 
primarily involves supportive hospital therapy as there is no specific treatment available (CDC, 
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2021), while prevention measures focus on avoiding contact with 
infected bodily fluids (CDC, 2023). The treatment landscape for 
Marburg disease faces limitations due to limited understanding of its 
pathogenesis and lack of medical equipment in affected areas (Rivera 
and Messaoudi, 2015; Sword et al., 2023). The high lethality and low 
number of cases further impede treatment development (Sword et al., 
2023). Currently, there are no approved specific antiviral treatments 
for Marburg virus, but promising research suggests potential with 
drugs like T-705 (Favipiravir) and monoclonal antibody regimens 
(Zhu et al., 2018; Bradfute, 2022). Development of effective treatments 
and vaccines is crucial to combat this deadly virus (Bradfute, 2022).

2 Emerging therapeutic approaches 
for Marburg virus infection

Various ongoing studies have identified promising antiviral 
strategies for Marburg virus, including the development of vaccines, 
investigation of antiviral drugs, antibodies, and identification of 
potential compounds targeting specific viral proteins. In its first-in-
human clinical trial, researchers at the National Institute of Allergy 
and Infectious Diseases (NIAID) developed an experimental Marburg 
virus vaccine called cAd3-Marburg, which has shown promising 
results. Using a modified chimpanzee adenovirus, the vaccine 
successfully induced immune responses against the Marburg virus. It 
was determined to be  safe and effectively triggered an immune 
response in participants, with 95% exhibiting a robust antibody 
response post-vaccination, and 70% maintaining this response for 
over 48 weeks. Further trials of the cAd3-Marburg vaccine are planned 
in multiple countries, including Ghana, Kenya, Uganda, and the 
United States (Health NTDI, 2023). Estradiol benzoate and INVEGA 
(paliperidone) demonstrate potential as inhibitors of the VP35 protein 
of the Marburg virus, identified through a cheminformatics approach. 
The VP35 protein plays a crucial role in the virus’s replication and 
immune evasion. These compounds exhibit favorable binding free 
energies, indicating their potential to disrupt VP35 function, thereby 
hindering viral replication and immune evasion. However, 
experimental validation is necessary to confirm their efficacy as 
therapeutic options against Marburg virus infection (Alsaady et al., 
2023). Galidesivir and Favipiravir are antiviral drugs demonstrating 
potential in treating Marburg virus infection through distinct 
mechanisms. Galidesivir binds to the viral RNA polymerase, crucial 
for RNA replication, disrupting its activity and halting virus 
replication. Favipiravir, or T-705, acts as a nucleoside analog, 
selectively inhibiting viral RNA-dependent RNA polymerase or 
inducing fatal mutagenesis upon incorporation into viral RNA. This 
inhibits viral replication and has shown efficacy in oral administration 
in a mouse model (Albakri et al., 2023). Combination therapies, which 
include remdesivir and monoclonal antibodies, hold promise in 
treating advanced Marburg virus disease. Remdesivir inhibits viral 
replication by interfering with viral RNA synthesis through the 
inhibition of viral RNA-dependent RNA polymerase, causing delayed 
chain termination and template-mediated inhibition mechanisms 
(Cross et al., 2021). Meanwhile, monoclonal antibodies bind to the 
virus, preventing further infection and neutralizing it. When used 
together, these therapies synergize, enhancing overall antiviral activity. 
This combination treatment has been demonstrated to extend the 
therapeutic window and provide significant protection in a 

non-human primate model of Marburg virus disease, particularly 
when initiated at a critical point in disease progression (UTMB 
Health, 2021). However, these treatments are still under research and 
not established for Marburg virus. Direct-acting antivirals (DAAs) 
target specific steps in the viral life cycle by directly inhibiting essential 
viral enzymes or proteins. For instance, they can disrupt viral 
replication by targeting non-structural proteins. While predominantly 
discussed in the context of hepatitis C virus (HCV), DAAs for 
Marburg virus are likely to function similarly, aiming to inhibit viral 
enzymes crucial for genetic material replication. This may involve 
blocking the viral RNA-dependent RNA polymerase or other key 
enzymes. However, their application to Marburg virus treatment is 
still under investigation, necessitating further research to establish 
efficacy and safety (Teoh et al., 2020; Cross et al., 2021). Tilorone and 
Quinacrine demonstrate potential in treating Marburg virus through 
their antiviral properties. Tilorone is believed to induce interferon 
production, a crucial component of the body’s immune response 
against viral infections. Its ability to penetrate the blood–brain barrier 
could be advantageous for treating central nervous system-involved 
viruses. Quinacrine’s antiviral activity likely stems from its 
lysosomotropic properties, altering cellular pH and disrupting 
organelle function crucial for viral replication. Additionally, its 
binding to the Ebola virus glycoprotein suggests a potential 
mechanism of action against Marburg virus. While these mechanisms 
suggest promise, further investigation is needed to determine their 
efficacy and safety for treating Marburg virus (Puhl et  al., 2021). 
However, licensed medical countermeasures are currently unavailable, 
and the development of effective treatments is ongoing (Kortepeter 
et al., 2020). Small molecule inhibitors targeting the Marburg virus 
function through diverse mechanisms aimed at hindering the virus’s 
infection and replication process. These mechanisms include direct 
binding to specific regions of the Marburg virus glycoprotein (GP), 
such as the internal fusion loop or the HR2 domain, thereby impeding 
the virus’s fusion with host cells. Additionally, some inhibitors are 
capable of being trapped in the lysosome, intensifying their exposure 
within this cellular organelle and augmenting viral inhibition, owing 
to the lysosome’s acidic environment. Furthermore, certain inhibitors 
prevent virus-host interactions by obstructing the proteins in host 
cells that viruses exploit during the late stages of infection. These 
findings underscore the potential of small molecule inhibitors as 
viable therapeutic options against the Marburg virus (Edwards and 
Basler, 2019; Schafer et al., 2021). These inhibitors demonstrate good 
potency and low cytotoxicity, providing insights for potential antiviral 
therapeutics (Edwards and Basler, 2019; Schafer et al., 2021). Screening 
studies have identified various drugs with MARV entry-specific 
inhibition and synergistic effects on inhibiting viral entry (Cheng 
et  al., 2015; Zhang et  al., 2020; Schafer et  al., 2021). Additionally, 
compounds with potent inhibitory activity against both Ebola and 
Marburg viruses have been identified (Wang et al., 2021) (Table 1).

3 Exploring molecular targets and 
therapeutic approaches

Research on Marburg virus assembly and budding emphasizes the 
pivotal role of viral proteins, particularly VP40, which drives the 
process (Martin et  al., 2018; Gordon et  al., 2019). This involves 
hijacking the host cytoskeleton and utilizing ubiquitin ligases, ESCRT 
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proteins, and calcium-dependent molecules. Although numerous 
studies aim to inhibit this process, no approved medications exist yet 
(Hartlieb and Weissenhorn, 2006; Welsch et al., 2010; Kajihara et al., 
2012). Nucleic acid antisense therapeutics, like antisense 
oligonucleotides (ASOs), have shown potential in inhibiting Marburg 
virus protein expression and release by targeting viral RNA (Spurgers 
et  al., 2008; Tarn et  al., 2021). Despite challenges in stability and 
delivery, recent advancements enhance their efficacy, making them 
promising for Marburg virus treatment (Cross et al., 2018; Reza et al., 
2021). RNA interference (RNAi) holds promise in Marburg virus 
treatment, with small interfering RNA (siRNA) demonstrating efficacy 
in animal models (Ursic-Bedoya et  al., 2014). Despite promising 
results, further research and clinical trials are necessary to evaluate 
their safety and effectiveness in humans (Ursic-Bedoya et al., 2014; Ye 
et al., 2023). Host-targeting antivirals, such as T-705 (favipiravir) and 
remdesivir, show potential against Marburg virus through preclinical 
investigations (Alsaady et al., 2023; Srivastava et al., 2023). However, 
no licensed medical countermeasures are available, necessitating 
further research and clinical trials for effective treatment development 
(Kortepeter et  al., 2020; van Eijk et  al., 2023). Interferons and 
interferon stimulators are under investigation for Marburg virus 
treatment, considering the virus’s evasion of interferon responses. 
Further research is required to ascertain their potential effectiveness 
(Valmas et  al., 2010; Valmas and Basler, 2011). Cytokine and 
chemokine modulators’ potential for Marburg virus treatment 

warrants further investigation despite limited current information 
(Bixler and Goff, 2015; Zhu et al., 2018). Elevated expression of IL-6 in 
MARV-infected primates suggests a role for these molecules, 
necessitating additional research (Guito et al., 2021; Lu et al., 2022). 
Broad-spectrum antivirals, such as remdesivir and favipiravir, 
demonstrate therapeutic efficacy against Marburg virus, although 
specific treatments are lacking (Cross et al., 2021; Hickman et al., 
2022). Combination therapy, including monoclonal antibodies and 
small-molecule antivirals, shows promise in managing the disease 
(Zhu et  al., 2018; Albakri et  al., 2023). Antibody-based therapies, 
including monoclonal and polyclonal antibodies, such as REGN-EB3 
and mAb114, reduce mortality in Marburg virus disease patients. 
Convalescent plasma containing polyclonal antibodies also holds 
potential for treatment (Cross et al., 2018; Hargreaves et al., 2021).

4 Progressive strategies for 
combatting Marburg virus: from 
bench to bedside

Marburg virus disease (MVD) encompasses both preclinical and 
clinical evaluation of potential therapeutics and vaccines, with 
promising approaches including immunotherapeutic, small molecule 
antivirals, and monoclonal antibodies (Kortepeter et al., 2020; Cross 
et al., 2022). Various vaccine platforms are also under study, with 

TABLE 1 Promising therapeutic strategies for Marburg virus infection.

S. No. Compound Mechanism of action Experimental validation References

1 Estradiol benzoate Inhibition of VP35 protein, 

disrupting viral replication and 

immune evasion

Necessary for confirming 

therapeutic efficacy

Health NTDI (2023)

2 INVEGA (Paliperidone) Inhibition of VP35 protein, 

disrupting viral replication and 

immune evasion

Necessary for confirming 

therapeutic efficacy

Health NTDI (2023)

3 Galidesivir Binds to viral RNA polymerase, 

halting RNA replication

Efficacy demonstrated in mouse 

model

Alsaady et al. (2023)

4 Favipiravir (T-705) Acts as a nucleoside analog, 

inhibiting viral RNA-dependent 

RNA polymerase

Efficacy demonstrated in mouse 

model

Alsaady et al. (2023)

5 Remdesivir Interferes with viral RNA 

synthesis by inhibiting RNA-

dependent RNA polymerase

Demonstrated efficacy in non-

human primate model

Albakri et al. (2023) and Cross 

et al. (2021)

6 Monoclonal Antibodies Bind to virus, preventing 

infection and neutralizing it

Demonstrated efficacy in non-

human primate model

Cross et al. (2021)

7 Tilorone Believed to induce interferon 

production, enhancing immune 

response against viral infections

Further investigation needed for 

efficacy and safety

Teoh et al. (2020)

8 Quinacrine Lysosomotropic properties alter 

cellular pH, potentially disrupting 

viral replication; binds to GP 

protein

Further investigation needed for 

efficacy and safety

Teoh et al. (2020)

9 Small Molecule Inhibitors Direct binding to Marburg virus 

glycoprotein, lysosome trapping, 

prevention of virus-host 

interactions

Further investigation needed for 

efficacy and safety

Kortepeter et al. (2020) and 

Schafer et al. (2021)
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some, like cAd3-Marburg, showing efficacy in Phase I clinical trials. 
Additionally, T-705 (favipiravir), a broad-spectrum antiviral, has 
demonstrated effectiveness against Marburg virus in preclinical 
studies, highlighting its potential as a treatment option. These 
developments are crucial given the lack of approved vaccines or 
therapeutics for MVD (Zhu et al., 2018; NIH, 2023; Srivastava et al., 
2023). Evaluation of antiviral treatments for Marburg virus involves 
both in vitro and in vivo models. For instance, studies have shown 
T-705’s effectiveness in reducing viral replication and infectious viral 
loads in mice infected with MARV (Zhu et al., 2018). Furthermore, 
the establishment of a bioluminescent imaging mouse model for 
Marburg virus allows real-time analysis of infection processes without 
sacrificing hosts, facilitating the evaluation of various treatments. 
Animal models including mice, guinea pigs, and nonhuman primates 
have been instrumental in understanding disease pathogenesis and 
evaluating potential treatments and vaccines (Bente et al., 2009; Lei 
et al., 2020; Srivastava et al., 2023). Phase I and II clinical trials for 
Marburg virus drugs have demonstrated safety, dose-finding, and 
proof-of-concept. Several vaccine candidates have shown safety and 
immunogenicity in healthy adult participants. Phase III trials are in 
development to assess vaccine efficacy (Cross et al., 2022; Srivastava 
et al., 2024). Ongoing research efforts in both preclinical and clinical 
settings aim to develop effective preventive vaccines and treatments 
for Marburg virus disease, addressing the urgent need for medical 
countermeasures against this highly infectious and severe illness.

5 Challenges and future directions

While current treatments for Marburg virus disease leave much 
to be  desired, a wave of promising antiviral strategies is surging 
through the development pipeline. This mini review dives into these 
novel approaches, dissecting small molecule inhibitors, nucleic acid 
therapies, and immune modulators vying to tackle the virus at its core. 
We then navigate the treacherous waters of clinical trials, highlighting 
the hurdles of safety, efficacy, and resistance. Recognizing the crucial 
role of rapid diagnostics and public health preparedness, we chart a 
course toward equitable access and outbreak readiness. Looking 
beyond antivirals, we propose venturing into immunomodulatory 
therapies and unravelling the mysteries of viral reservoirs. By 
embracing these future directions, we can rewrite the narrative of 
Marburg, transforming it from a terrifying threat to a story of human 
ingenuity and triumph.

6 Conclusion

The battle against Marburg virus disease is far from over, but the 
tides are turning. With a burgeoning arsenal of novel antiviral 
strategies in the pipeline, we are no longer at the mercy of this deadly 
pathogen. Small molecule inhibitors, nucleic acid therapies, and 
immune modulators are wielding their weapons against the virus, 

disrupting its replication, and bolstering our defences. Yet, the path to 
victory is fraught with challenges. Clinical trials, with their stringent 
safety and efficacy demands, stand as gatekeepers, ensuring only the 
most potent weapons pass through. The Specter of drug resistance 
looms large, urging us to develop combination therapies and remain 
vigilant. To truly conquer Marburg, we must equip ourselves with 
rapid diagnostic tools, ensuring swift intervention. Public health 
preparedness, built on a foundation of education, infrastructure, and 
global collaboration, will be our shield against future outbreaks. But 
our ambitions must not be confined to mere defence. We must venture 
beyond antivirals, exploring the frontiers of immunomodulatory 
therapies that empower our own immune system to combat the 
invader. Unravelling the secrets of viral reservoirs, the hidden 
sanctuaries where Marburg lurks, could be the key to severing its 
transmission chain. This is not just a medical pursuit; it is a testament 
to the human spirit, a refusal to succumb to fear and despair. The 
future is uncertain, but with unwavering resolve and a united front, 
we can emerge victorious from this invisible war.
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