AUTHOR=Kathbaruah Shiney , Bhattacharyya Badal , Borkataki Shimantini , Gogoi Bhabesh , Hatibarua Preeti , Gogoi Sailen , Bhairavi K. Sindhura , Dutta Pranab TITLE=Termite mound soil based potting media: a better approach towards sustainable agriculture JOURNAL=Frontiers in Microbiology VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2024.1387434 DOI=10.3389/fmicb.2024.1387434 ISSN=1664-302X ABSTRACT=

Termite mound soils are known to possess unique physico-chemical and biochemical properties, making them highly fertile. Considering their rich nutrient content, the objective of the current experiment is to assess the physico-chemical properties and enzyme activities of termite mound based potting media and evaluate theirperformance for further exploration in floriculture. Potting media consisting of termite mound soil (TS) of a subterranean termite, Odontotermes obesus were prepared in 7 different combinations with garden soil (GS), sand (S) and farmyard manure (FYM) and a control (without termite mound soil), i.e., T1 (TS, GS, S, FYM (v:v:v:v /1:2:1:1)), T2 (TS, GS, S, FYM (v:v:v:v / 2:1:1:1)), T3 (TS, S, FYM (v:v:v / 2:1:1)), T4 (TS, GS, FYM (v:v:v / 2:1:1)), T5 (TS, GS, S (v:v:v / 2:1:1)), T6 (TS, S, FYM (v:v:v / 3:1:1)), T7 (TS, S, FYM (v:v:v / 1:1:2)) and control (GS, S, FYM (v:v:v / 2:1:1)). The samples were then analysed in laboratory. Experimental analysis on physico-chemical and biological parameters revealed superiority of T7 (TS, S, FYM (v:v:v / 1:1:2)) in terms of pH (7.15), organic carbon (2.13%), available nitrogen (526.02 kg ha−1), available phosphorus (56.60 kg ha−1), available potassium (708.19 kg ha−1), dehydrogenase activity (18.21 μg TTF g−1 soil day−1), Phosphomonoesterase (PME) activity (46.68 54 μg p-nitrophenol/gsoil/h) and urease activity (3.39 μg NH4-N g−1 soil h−1). Whereas T4 (TS, GS, FYM (v:v:v /2:1:1)) registered superiority in terms of PME activity (50.54 μg p-nitrophenol/gsoil/h), Fluorescein diacetate (FDA) activity (11.01 μgfluorescein/gsoil/h) and Soil Microbial Biomass Carbon (SMBC) (262.25 μg/g). Subsequent to the laboratory analysis, two best potting mixtures (T7 & T4) were selected and their performance was assessed by growing a test crop, Tagetes erecta cv. Inca Orange. Considering the growth parameters, the potting media: T7 was found to be significantly superior in terms of plant spread (39.64 cm), leaf area index (4.07), fresh weight (37.72 g), yield (317.81 g/plant), and diameter (9.38 cm) of flower over T4 & control. The Benefit:Cost (B:C) ratio meaning the ratio of net returns to total cost of cultivation was determined. The B:C ratio of raising marigold flower as potted plant in T7 was 1.10 whereas the B:C ratio of the potting mixture of T7 was 2.52. This shows that T7 potting media is also economically viable choice for commercial purposes.