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Invasive pests may disturb and destructively reformat the local ecosystem. The 
small hive beetle (SHB), Aethina tumida, originated in Africa and has expanded 
to America, Australia, Europe, and Asia. A key factor facilitating its fast global 
expansion is its ability to subsist on diverse food inside and outside honey bee 
colonies. SHBs feed on various plant fruits and exudates in the environment 
while searching for bee hives. After sneaking into a bee hive, they switch their 
diet to honey, pollen, and bee larvae. How SHBs survive on such a broad range 
of food remains unclear. In this study, we  simulated the outside and within 
hive stages by providing banana and hive resources and quantified the SHB 
associated microbes adjusted by the diet. We found that SHBs fed on bananas 
were colonized by microbes coding more carbohydrate-active enzymes and a 
higher alpha diversity than communities from SHBs feeding on hive products 
or those collected directly from bee hives. SHBs fed on bananas and those 
collected from the hive showed high symbiont variance, indicated by the beta 
diversity. Surprisingly, we found the honey bee core symbiont Snodgrassella alvi 
in the guts of SHBs collected in bee hives. To determine the role of S. alvi in SHB 
biology, we inoculated SHBs with a genetically tagged culture of S. alvi, showing 
that this symbiont is a likely transient of SHBs. In contrast, the fungus Kodamaea 
ohmeri is the primary commensal of SHBs. Diet-based microbiome shifts are 
likely to play a key role in the spread and success of SHBs.
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Introduction

Invasive species are organisms introduced to a new habitat where they are not known to 
occur. In new habitats, these species thrive and continue to expand their territory (Rohner and 
Moczek, 2020). Invasive species compete for limited food and shelter resources and parasitize 
or prey upon local species, causing ecological and economic damage. Invasive species are 
predicted to have caused 25% of plant extinction and 33% of animal extinction events 
(Blackburn et al., 2019; Angulo et al., 2022). To which extent species can explore local food 
resources determines the success of invasions. Species with broad food breadth can have 
competitive advantages and better pathogenic bacteria tolerance (Barthel et  al., 2014; 
Machovsky-Capuska et al., 2016).
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The small hive beetle (Aethina tumida, SHB) is a honey bee pest that 
originated in sub-Saharan Africa. In its native range, honey bees 
efficiently guard against SHBs, limiting their populations (Neumann 
et al., 2016; Ouessou Idrissou et al., 2019). Thus, the impact of SHBs on 
native honey bee colonies is minor. Following international trade lines, 
SHBs have moved out of Africa and expanded rapidly into novel habitats 
(Idrissou et al., 2019; Liu et al., 2021). During this expansion, SHBs were 
first reported in the USA in 1996. SHBs were further dispersed to 
Australia, Europe, and Asia over two decades (Hood, 2000; Gillespie 
et al., 2003; Palmeri et al., 2014; Cervancia et al., 2016). SHBs have been 
introduced in and out of America several times (Neumann et al., 2016). 
Kodamaea ohmeri is a commensal fungus of SHBs, fermenting the honey 
and eventually sliming the hive, presumably attracting other SHBs 
(Benda et al., 2008; Amos et al., 2018, 2019). SHBs also carry and disperse 
bee viruses, causing colony failure (Eyer et al., 2009). SHB infestation has 
caused substantial damage to the apicultural industry (Hood, 2000; Zhao 
et al., 2020). One reason for their rapid dispersal is that the SHBs can feed 
on diverse fruits and saps while searching for bee hives (Stuhl, 2021).

By colonizing the guts or specialized organs, symbionts improve the 
nutritional yields of flies, bees, aphids, and beetles (Reis et al., 2020; Li 
et al., 2022; Smith et al., 2022; Luo et al., 2023). In SHBs, neither a 
symbiont organ nor symbiont shifts in response to nutrition have been 
reported. Previously, we found distinctive microbes associated with 
SHB larvae and the co-occurrence of several known bee symbionts 
(Huang et al., 2019). We hypothesized that the ability to feed on a 
variety of plant products, including diverse fruits and saps, along with 
the specialized diet provided by honey bee colonies may require the 
assistance of gut symbionts. Further, this symbiont community might 
adjust in response to extreme diets (David et al., 2014). As SHBs may 
disperse through the banana trade line (Liu et al., 2021), we simulated 
the dispersal and within hive stages by feeding SHBs with banana 
(Banana group) and a mixture of bee pollen and honey (Bee_Bread 
group). We also directly collected SHBs from a honey bee hive (Wild 
group) to assess natural variation in SHB microbes 
(Supplementary Figure S1). Snodgrassella alvi is a core honey bee gut 
symbiont. This bacterium colonizes the hindgut, helping lipid 
metabolism (Quinn et al., 2024). To assess whether honey bee symbionts 
play a significant role in SHB health, we also used a genetically tagged 
S. alvi and measured the transit of this microbe in the SHB gut.

Results

Minor impact of diet on SHBs survival

We first investigated the impact of the banana and bee bread on 
beetle survival in the lab condition. After 3 weeks of rearing, 30 beetles 
survived in the Banana group, and 27 survived in the Bee_Bread 
group (Supplementary Tables S1), hence the variance of the banana 
and bread on SHBs survival was minor (Pearson’s Chi-squared test, 
df = 2, P = 0.516).

De novo assembly of metagenomes 
associated with SHBs

As the microbes associated with SHB are largely unknown, we then 
assembled the microbiome genomes. We randomly selected 10 SHBs 

in the Banana and Bee_Bread groups and eight SHBs collected in bee 
hive for metagenomic analyses to quantify the associated gene content 
and microbes. On average, 5.5 ± 1.3 million reads (150 bp per read) 
were assigned to microbes in each library, and the ratios of microbe to 
host reads did not differ significantly between libraries (t-test, P > 0.05, 
Supplementary Table S2). We assembled 196,214 metagenome contigs 
(Supplementary File S2). In those contigs, 436,918 genes were 
predicted, and 200,587 protein-coding genes retrieved functional 
annotation in KEGG (Supplementary File S3-S4; Figure  1). The 
symbionts showed a substantial number of genes involved in 
nucleotide, energy, carbohydrate, and amino acid metabolism. We also 
noticed that the symbionts harbor a few xenobiotics biodegradation 
genes, presumably to degrade toxic compounds (Table  1; 
Supplementary Table S3).

Banana feeding enhanced metabolic gene 
number

To quantify the gene copy number, we aligned the reads back to 
the metagenome. In a pairwise analysis, 15,748 genes were significantly 
differentially represented between the Banana and Wild groups, 
10,678 genes between the Banana and Bee_Bread groups, and 7,994 
genes between the Wild and Bee_Bread groups (Table  2; 
Supplementary Table S4). The Banana group showed a substantially 
higher number of over-represented genes than the Bee_bread and 
Wild groups in carbohydrate, lipid, and amino acid metabolism 
(Chi-squared test, FDR < 0.001). Among the differentially represented 
genes, 143 carbohydrate-active enzymes (CAZy) were over-
represented in the Banana group, compared with 130 in the Wild 
group and 35 in the Bee_Bread group (Supplementary Table S5). The 
Banana group showed more CAZy than random among the three 
treatment groups (Pearson’s Chi-squared test, df = 2, p < 0.001).

High microbial diversity in banana feeding 
SHBs

To determine microbial diversity, we aligned the microbial reads 
to the Kraken2 standard database (Supplementary Figure S2-S4). 
Despite high symbiont diversity overall, 13 bacterial genera dominated 
the microbial community (> 99% of relative abundance, Figure 2A). 
The diet separated the microbes and accounted for 87% of the variance 
(Figure  2B). The Banana group maintained 95 microbial species/
strains, followed by 67 in the Bee_Bread group and 56 in the Wild 
group (Figure  3A). The Banana group showed the highest alpha 
diversity (2.1 ± 0.31), compared with the Bee_Bread group (1.83 ± 0.40) 
and the Hive group (1.70 ± 0.30; Kruskal-Wallis test, df = 2, P < 0.05, 
Figure 3B). We also compared the beta diversity between the paired 
groups. The Wild and Banana group showed the highest beta diversity 
(0.425), followed by 0.301 between the Wild and Bee_Bread groups. 
The Banana and Bee_Bread showed the lowest beta diversity of 0.196 
(Table 3).

We found plant-associated bacteria in the Banana group, such as 
Corynebacterium glyciniphilum, which was the same species initially 
isolated from the banana for fermentation. The Banana group was 
significantly enriched in the acetic acid bacteria. Microbes associated 
with fermentation (Gluconobacter albidus, Mammaliicoccus sciuri, 
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Corynebacterium nuruki) were also highly enriched in the Bee_bread 
group. We  found a few honey bee symbionts in the Wild group, 
including Lactococcus lactis and the core symbiont Snodgrassella alvi 
(Supplementary File S5-S7).

Honey bee symbiont in SHBs and an 
antibiotic-resistant commensal fungus

We further tested whether SHB can support the colonization of 
honey bee gut symbionts. We inoculated newly emerged beetles with 
a genetically tagged clone of the symbiont S. alvi (wkB2:pBTK570). 
All the beetles survived by the end of the experiment. Tagged 
symbionts were found in all inoculated beetles, with the average CFU 
(colony forming unit) of 5,380 at 1 dpi (day post inoculation) on 
selective plates. Even though the CFU increased to 18,300, the 
colonization rate dropped to 20% at 3 dpi. When counting the CFU, 
we observed some microbial colonies morphologically different from 

S. alvi wkB2:pBTK570 in all beetles. To identify the microbial species, 
we  sequenced one such colony, and the ITS2 region aligned with 
K. ohmeri (97% identity, P = 7e-97), forming a cluster in the 
phylogenetic tree (Supplementary Figure S5).

Discussion

Beetles are the most diverse taxon, making up 40% of all described 
insect species, including many agricultural pests (Bouchard et al., 
2011). From a nutritional point of view, most plant-feeding beetles 
need more time and enzymes to process large amounts of food 
because nutrient levels in plants are often low. Symbionts assist beetles 
in surviving on foods with poor nutritional quality while also helping 
their hosts cope with toxic plant defenses (Bentz and Six, 2006; 
Morales-Jiménez et al., 2012; Salem and Kaltenpoth, 2022). In aquatic 
beetles, symbionts provide essential amino acids and the B vitamin 
riboflavin for beetle larvae and pectinases to complement host 

FIGURE 1

Functional annotation of predicted genes from the assembled metagenomic contigs. Overall, 436,918 genes were predicted, and 200,587 showed 
functional annotation. Among them, 11,650 genes were involved in carbohydrate metabolism, 6,583 in amino acid metabolism, and 3,471 in lipid 
metabolism. The color of the functional category was used in global pathway maps and genome maps of KEGG. The functional category on the right 
was indicated in the pie chart in clockwise order.

TABLE 1 The top six enriched pathways modulated by symbiotic genes.

Pathway KEGG ID SHB genome Banana Bee_Bread Wild

Purine metabolism ko00230 270 225 47 131

Pyrimidine metabolism ko00240 133 146 24 83

Oxidative phosphorylation ko00190 187 132 26 87

Glycolysis/Glucogeogenesis ko00010 107 100 14 60

Pyruvate metabolism ko00620 83 94 17 59

Cysteine and methionine metabolism ko00270 63 82 16 44

Interestingly, the same pathways were enriched by the diet, even though the number of genes varied. SHB genome indicates the genes in the beetle genomes. Banana indicates symbiotic genes 
mediated by banana feeding. Bee_Bread indicates symbiotic genes mediated by bee bread feeding. Wild indicates symbiotic genes in wild-collected beetles.
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TABLE 2 The number of over-represented genes in paired groups.

Groups Number of over-represented genes Number of over-represented metabolism genes

Banana Bee_
Bread

Wild FDR Banana Bee_Bread Wild FDR

C L A C L A C L A

Banana 574 5,616 <0.001 25 7 44 370 165 393 <0.001

Bee_Bread 10,104 5,505 <0.001 781 257 756 366 165 377 <0.001

Wild 10,131 2,489 <0.001 785 256 767 220 63 262 <0.001

The genes were assigned to carbohydrate metabolism (indicated as C), lipid metabolism (indicated as L), and amino acid metabolism (indicated as A). The Banana group showed more over-
represented genes than the other two groups in all three metabolism categories when compared with random.

FIGURE 2

Genome sequencing-based community profiles of the bacteria mediated by the diet in the small hive beetles. (A) Relative abundance of the dominant 
bacterial genera. Banana indicates beetles fed on bananas; Bee_Bread indicates beetles fed on bee bread; Wild indicates beetles collected from bee 
hives. These bacterial genera were present across all beetle groups at >1% relative abundance. More rare genera (< 1%) were summed up as “Other.” 
(B) PCA plot of the beetles showing the impacts of diet on microbial composition. The microbes were separated by the diet.
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cellulases (Reis et al., 2020). Weevils exhibit convergence in their gut 
microbial communities when feeding on similar food sources, 
suggesting that these communities are determined by the environment 
and host ecology (Berasategui et al., 2016). The gut microbiota help 
invasive moths feed on new host plant (Zhang et al., 2024). Beetles 
feed on different plants (generalists) harbor more complex microbes 
than the specialists (Brunetti et al., 2022). Our study found more 
diverse microbes in SHBs in the banana group than in the wild group. 
This suggests that fruit feeding supports more diverse microbes than 
the protein-rich diet. Alternatively, this high alpha diversity could 
indicate more transient microbes. Additionally, we  found a plant-
associated bacterium in the banana group, C. glyciniphilum, which was 
initially isolated from the banana and could temporarily pass through 
the gut of SHBs (Al-Dilaimi et al., 2015). We also found that SHBs in 
the banana group were enriched in acetic-acid bacteria, which assist 
the fermentation of sugar and saps and have established symbioses in 
bees, flies, and bugs (Crotti et al., 2010).

In the dispersal stage of SHBs, the primary energy source is 
carbohydrates. Symbiont-mediated carbohydrate-active enzymes 
(CAZy) facilitate breaking down the major components of plant cell 
walls, releasing energy sources (Calderón-Cortés et al., 2012; Zheng 
et al., 2019). In our study, the SHBs fed with banana showed the 
highest number of CAZy, suggesting that more CAZy genes might 
be  required when providing fruit than the hive resources. In 
termites, fungus-mediated CAZy assisted the host in decomposing 
the plant (Poulsen et al., 2014). Symbiont encoding a more dynamic 
digestive range allows hosts to overcome diet restrictions 

corresponding to a broader ecological distribution (Salem et al., 
2020). In our study, the number of lipid and amino acid metabolism 
genes was folds higher in the Banana group than in the Bee_Bread 
and Wild groups. This suggests the symbionts may cooperatively 
recycle metabolites, as found in social bees (Zheng et al., 2019; Li 
et al., 2022). When bee hives are located, SHBs sneak in and switch 
their diet to bee hive resources. Thus, the beetle may switch 
microbes to adapt to the digestion of hive resources. Future studies 
quantifying the gene expression and enzymatic activity can explain 
to what extent the increased gene number reflects 
functional enhancement.

K. ohmeri has been reported to be a commensal fungus in SHBs 
(Torto et al., 2007; Benda et al., 2008; Amos et al., 2018, 2019). In our 
study, we found K. ohmeri is antibiotic-resistant. It is possible that 
other SHB-associated antibiotic-resistant bacteria cultivating under 
different or the same conditions when increasing sequenced colonies. 
K. ohmeri ferments honey and serves as a kairomone to attract other 
SHBs, a fact used to track and kill SHBs (Stuhl, 2020). The route for 
beetle progeny to acquire this symbiont remains unclear. We used 
newly emerged beetles hatched in a new container. Thus, the chance 
of acquiring fungi from parental feeding or the soil is low. The 
symbiont might instead be vertically transferred from females. In a 
previous study, we found the honey bee gut symbiont S. alvi in SHBs 
when feeding the SHBs with bee larvae (Huang et  al., 2019). A 
specialized diet may lead to different gut chemical conditions, creating 
a gut micro-ecosystem selected for other symbionts (Zmora et al., 
2019). For example, S. alvi reduces oxygen in the gut, favoring 
anaerobic microbes and shapes competition (Motta and Moran, 2024). 
We found this symbiont S. alvi again in SHBs metagenome, which is 
rarely found outside bees. In our data, the colonization rate of S. alvi 
dropped from 100% at 1 dpi to 20% at 3 dpi, even while CFUs 
increased. This suggests that this bee symbiont cannot consistently 
colonize SHBs outside the bee hive. In a follow-up study, it will 
be interesting to reveal the enzymatic activity of bee symbionts in 

FIGURE 3

Metagenomic analysis of SHB symbionts. (A) Venn diagram of microbes found in the three groups. The banana showed the highest number of 
microbes and was enriched in acetic-acid bacteria. (B) Alpha diversity of the three groups. The banana group showed significantly higher alpha 
diversity than the Hive group (Wilcoxon rank sum exact test, p  <  0.05).

TABLE 3 Beta diversity in the paired groups.

Treatment groups Bee_Bread Wild

Banana 0.196 0.425

Bee_Bread 0.301

The highest variance was between the Wild and Banana groups.
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SHBs, to determine if they play a role in SHB fitness while in the 
hive environment.

Materials and methods

SHB rearing, DNA extraction, and Illumina 
sequencing

We directly collected adult SHBs from collapsed beehives (Apis 
cerana) in a commercial apiary. These beetles were maintained in an 
incubator (28 ± 1°C temperature and 65% ± 10% humidity), and then 
we transferred their pupal offspring to a new container until hatching 
(Neumann et al., 2013). We collected pollen from the honey bee Apis 
mellifera hive entrance. We randomly assigned newly hatched SHBs 
into two diet groups. SHBs fed on bananas were defined as the 
Banana group (N = 45), and those fed with simulated bee bread (an 
equal mix of pollen and 50% w/v sugar water to avoid bee hive 
microbes) comprised the Bee_Bread group (N = 45). We  then 
assigned each of the 15 SHBs to a rearing tube. We  additionally 
collected 13 SHBs from a beehive as the wild group because these 
SHBs were directly from the bee hive without lab feeding (N = 13). 
We refreshed the banana and bee bread daily and collected SHBs after 
3 weeks of feeding. We rinsed SHB surfaces with distilled water, then 
extracted genomic DNA from individual SHBs using MagPure Soil 
DNA KF Kit (MP Biomedicals, USA). We prepared DNA sequencing 
libraries using the TruSeq Nano DNA LT Sample Preparation Kit 
(Illumina, USA). Ten adult SHBs in the Banana group, 10  in the 
Bee_Bread group, and eight in the Wild group were randomly 
selected for metagenomic sequencing using the Illumina 
NovaSeq 6,000 Platform, generating 150 bps paired-end reads.

De novo metagenomic assembly and gene 
annotation

First, we  filtered the sequencing reads using Fastp (Version 
0.23.2) with default parameters (Chen et al., 2018). Then we aligned 
the reads to the small hive beetle genome assembly 
(GCA_024364675.1) using BWA (Version 0.7.17-r1188) with default 
parameters and retrieved the unmapped reads using samtools 
(Version 1.7) and converted the bam to fastq file using bedtools 
(Version 2.26.0) (Li et al., 2009; Li and Durbin, 2009; Quinlan and 
Hall, 2010). After that, the unmapped reads were concatenated for 
all samples to assemble contigs using Megahit (Version 1.2.9) with 
default parameters (Li et al., 2015), and the contigs were further 
collapsed using redundans (Version 2020.01.28) (Pryszcz and 
Gabaldón, 2016). The genes were predicted using MetaGeneMark2 
with default parameters.1 The protein sequences were queried with 
the eggNOG-mapper and KEGG database to retrieve the putative 
function (Cantalapiedra et al., 2021). The code is provided in the 
Supplementary File S1.

1 https://github.com/gatech-genemark/MetaGeneMark-2

Gene distribution among microbes 
associated with diet

The unmapped reads in each beetle were re-aligned to the 
assembled meta-contigs using BWA (Version 0.7.17-r1188) with 
default parameters. The number of reads aligned to each gene was 
quantified using bedtools (Version 2.26.0) (Quinlan and Hall, 2010). 
The number of aligned reads was normalized to the library size, and 
the over-represented genes were calculated with edgeR (Quinlan and 
Hall, 2010). The code is provided in the Supplementary File S1.

Binning the sequencing reads to microbial 
species

We performed two steps to bin the sequencing reads to the 
microbial species. We first aligned the assembled contigs to the most 
closely related microbes using the BusyBee tool (Laczny et al., 2017). 
Additionally, we  aligned the reads to the Kraken2 (Version 2.1.2) 
standard database (built on 12/9/2022) (Wood et al., 2019). The number 
of reads assigned to each microbe was normalized using bracken 
(Version 2.8) (Lu et al., 2017). The relative abundance of the microbial 
species was used to calculate alpha (Shannon’s alpha diversity) and beta 
(Bray–Curtis dissimilarity) diversity using KrakenTools (Lu et al., 2022). 
The code is provided in the Supplementary File S1.

Inoculating the bee symbiont to the small 
hive beetles

As the bee symbionts were constantly reported from SHB 
metagenomes, we  inoculated SHBs with a genetically tagged bee 
symbiont to validate its colonization. The honey bee symbiont S. alvi 
wkB2:pBTK570 (Addgene accession ID#110615) was previously 
engineered to be  spectinomycin resistant and stored at −80°C 
(Leonard et  al., 2018). This symbiont isolate was activated on 
Columbia Blood Agar Base (Difco™, 279,220) with 5% sheep blood 
for 72 h, after which bacterial cells were diluted in 1000 μL PBS and 
adjusted to OD600 = 1. Then, we mixed the homogenized bacterial cells 
with filter-sterilized 50% sucrose (50%) at a 1:1 ratio. SHBs were fed 
sucrose with tagged S. alvi wkB2:pBTK570 (N = 50), then SHBs were 
rinsed in ethanol and homogenized individually. Homogenates were 
plated on Columbia Blood Agar Base with 5% sheep blood and 
spectinomycin (60 μg/mL) to count the Colony Forming Unite (CFU) 
at 1, 3, 5, and 7 days post-inoculation. Detailed procedures are 
described in the Supplementary File S1.

Commensal fungal identification

We observed microbes morphologically distinct from S. alvi 
in all CBA plates. We  collected a colony using an inoculating 
loop to extract DNA using the Qiagen DNeasy Plant Mini kit 
(cat#69104). The DNA was amplified using fungal ITS 
primers (FungITS.F 5’GTTAAAAAGCTCGTAGTTG3’; FungITS.
R5’CTCTCAATCTGTCAATCCTTATT 3′) in a 30ul reaction 
consisting of 0.2ul Taq DNA polymerase (Invitrogen, 18038–240), 
0.4ul primers, 0.2ul 10uM dNTP mix. The reactions were run with the 

https://doi.org/10.3389/fmicb.2024.1387248
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://github.com/gatech-genemark/MetaGeneMark-2


Huang et al. 10.3389/fmicb.2024.1387248

Frontiers in Microbiology 07 frontiersin.org

cycling parameters: 94°C for 3 min., followed by 35 cycles of (94°C 
15 s., 54°C 30s., 72°C 1 min.), 72°C for 5 min, and maintained in 
4°C. The products were visualized on a 1.75% agarose gel, producing 
a single band. PCR products were sent for PCR clean-up and Sanger 
sequencing at Azenta Life Sciences, Rockville, Maryland. Sequences 
were searched in the NCBI Blastn MegaBlast. An additional nine 
sequences of fungal species were downloaded from NCBI and aligned 
with MUSCLE (Version 5.1) with default parameters. The tree was 
built with MrBayes (Version 3.2.7) and viewed with FigTree (Version 
1.4.4). Detailed procedures are described in the Supplementary File S1.

Statistics

We performed all statistics with R (Version 4.2.2) in RStudio (Version 
2022.12.0) (R Core Team, 2013; RStudio Team, 2020). We compared 
surviving SHBs using Pearson’s Chi-squared test. The number of 
differentially enriched genes among the paired comparisons was analyzed 
with Pearson’s Chi-squared test and viewed with the VennDiagram 
package (Gao et al., 2021). The number of genes in metabolic categories 
was compared with random using a Chi-squared test, adjusted with the 
false discovery rate (FDR). The alpha diversity was first analyzed using 
the Kruskal-Wallis rank sum test, followed by pairwise comparisons 
using the Wilcoxon rank sum exact test, adjusted with FDR.
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