AUTHOR=El-Sharkawy Reyad M. , Khairy Mohamed , Abbas Mohamed H. H. , Zaki Magdi E. A. , El-Hadary Abdalla E. TITLE=Innovative optimization for enhancing Pb2+ biosorption from aqueous solutions using Bacillus subtilis JOURNAL=Frontiers in Microbiology VOLUME=Volume 15 - 2024 YEAR=2024 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2024.1384639 DOI=10.3389/fmicb.2024.1384639 ISSN=1664-302X ABSTRACT=Toxic heavy metals pollution has been considered as a major ecosystem pollution source. Unceasing or rare performance of Pb 2+ to the surrounding environment causes damage to the kidney, nervous, and liver systems. Microbial remediation has acquired prominence in recent decades due to its high efficiency, environment-friendliness, and cost-effectiveness. The lead biosorption by Bacillus subtilis was optimized by two successive paradigms, namely, a definitive screening design (DSD) and an artificial neural network (ANN), to maximize the sorption process. Five physicochemical variables showed a significant influence (P < 0.05) on the Pb 2+ biosorption with optimal levels of pH 6.1, temperature 30°C, glucose 1.5%, yeast extract 1.7%, and MgSO4.7H2O 0.2, resulting in a 96.12% removal rate. The Pb 2+ biosorption mechanism using B. subtilis biomass was investigated by performing several analyses before and after Pb 2+ biosorption. The maximum Pb 2+ biosorption capacity of B. subtilis was 61.8 mg/g at a 0.3 g biosorbent dose, pH 6.0, temperature 30°C, and contact time 60 min. Langmuir's isotherm and pseudo-second-order model with R 2 of 0.991 and 0.999, were suitable for the biosorption data, predicting a monolayer adsorption and chemisorption mechanism, respectively. The outcome of the present research seems to be a first attempt to apply intelligence paradigms in the optimization of the low-cost Pb 2+ biosorption using B. subtilis biomass, justifying their promising application for enhancing the removal efficiency of heavy metal ions using biosorbents from the contaminated aqueous systems.