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Karst rocky desertification refers to the process of land degradation caused

by various factors such as climate change and human activities including

deforestation and agriculture on a fragile karst substrate. Nutrient limitation

is common in karst areas. Moss crust grows widely in karst areas. The

microorganisms associated with bryophytes are vital to maintaining ecological

functions, including climate regulation and nutrient circulation. The synergistic

effect of moss crusts and microorganisms may hold great potential for restoring

degraded karst ecosystems. However, our understanding of the responses of

microbial communities, especially abundant and rare taxa, to nutrient limitations

and acquisition in the presence of moss crusts is limited. Different moss habitats

exhibit varying patterns of nutrient availability, which also affect microbial

diversity and composition. Therefore, in this study, we investigated three habitats

of mosses: autochthonal bryophytes under forest, lithophytic bryophytes under

forest and on cliff rock. We measured soil physicochemical properties and

enzymatic activities. We conducted high-throughput sequencing and analysis of

soil microorganisms. Our finding revealed that autochthonal moss crusts under

forest had higher nutrient availability and a higher proportion of copiotrophic

microbial communities compared to lithophytic moss crusts under forest or

on cliff rock. However, enzyme activities were lower in autochthonal moss

crusts under forest. Additionally, rare taxa exhibited distinct structures in all

three habitats. Analysis of co-occurrence network showed that rare taxa had

a relatively high proportion in the main modules. Furthermore, we found that

both abundant and rare taxa were primarily assembled by stochastic processes.

Soil properties significantly affected the community assembly of the rare

taxa, indirectly affecting microbial diversity and complexity and finally nutrient

acquisition. These findings highlight the importance of rare taxa under moss
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crusts for nutrient acquisition. Addressing this knowledge gap is essential for

guiding ongoing ecological restoration projects in karst rocky desertification

regions.

KEYWORDS

land degradation, bryophytes, extracellular enzyme stoichiometry, assembly processes,
co-occurrence networks

1 Introduction

Land degradation associated with karst rocky desertification
is caused by both natural processes and human activities on a
fragile karst background (Meng et al., 2021). Rocky desertification
has become a challenge for the sustainable ecological development
of Southwest China (Yang et al., 2022a). Moss biocrusts are
crucial for reducing and preventing soil erosion on rock surfaces
and for supporting the long-term viability of the vegetation
restoration process (Kidron and Drahorad, 2022). On the other
hand, the microbial community in these moss biocrusts plays a
significant ecological role (Cheng et al., 2022). Therefore, it is
essential to comprehend the functions and mechanisms of these
microorganisms in ecological functions.

Moss biocrusts in the karst areas contain a large number
of highly diverse microorganisms. Microbial diversity is a
fundamental aspect of supporting the services provided by the
soil ecosystem (Fanin et al., 2018). These communities are
influential in processes such as the turnover of soil organic
matter (SOM), soil carbon (C) sequestration, and water acquisition
(Xiao and Veste, 2017). Essentially, the presence of abundant
and diverse soil microorganisms, particularly in biocrusts, can
greatly benefit various soil processes, especially those related to C
and nitrogen (N) acquisition (Bhattacharyya and Furtak, 2022).
During nutrient deficiencies, microorganisms obtain nutrients
by increasing secretion of extracellular enzymes that decompose
SOM (Cui et al., 2018). For example, in N-limited regions, it
has been shown that soil organic N mineralization is related
to soil extracellular N-acquisition enzymes (Xiao et al., 2021).
These interactions between soil microbes and soil enzymes are
essential for understanding nutrient limitations in land restoration
in degraded areas (Liu et al., 2023).

Assembly processes of microbial communities play crucial
roles in determining the rate and efficiency of microbial growth
(Anthony et al., 2020). Community assembly arises from the
interaction of deterministic factors such as heterogeneous selection,
homogenous selection, and stochastic processes such as dispersion
limitations and homogeneous dispersal (Xue et al., 2018). Assembly
processes drive ecosystem functions (Knelman and Nemergut,
2014); they are mainly reflected in aspects such as climate
regulation, nutrient cycle, and plant growth (Gao et al., 2020;
Hartmann and Six, 2022). Stochastic processes could bring
new species from the regional pool which carry traits affecting
ecosystem functioning but are not present in the initial community.
In this way, stochastic processes could enhance the effect of
biodiversity on functions through sampling effects (Knelman and
Nemergut, 2014). Meanwhile, microbial communities commonly
display an inclined distribution of species abundance with a large

proportion of rare taxa coexisting with a small number of abundant
taxa (Lynch and Neufeld, 2015; Jia et al., 2018). Under low-salt-
stress environments, the abundant taxa play an important role
in stabilizing ecological networks. However, the role of rare taxa
becomes more and more important when salt stress increases (Li
et al., 2023). Furthermore, although rare taxa have a low abundance,
they are highly diverse and have functional redundancy, such as
nitrogen fixation, sulfur oxidation, and accelerating organic matter
breakdown (Peter et al., 2011; Sauret et al., 2014; Hua et al., 2015).
The community composition of rare taxa is more stable under
the influence of climate change and other disturbances, such as
copper stress, freeze-thaw, and mechanical disturbances (Pedrós-
Alió, 2011). The role of abundant and rare microorganisms under
moss crusts in karst areas remains poorly understood. The problem
of nutrient limitation is more prominent in karst areas (Zhou et al.,
2020). Researchers have highlighted the important role of abundant
and rare taxa on nutrient acquisition. In the karst area, microbes
under moss crusts show inconsistent assembly processes. Based on
this background, understanding the contribution of abundant and
rare taxa and to nutrient acquisition is essential concerning the
restoration of karst areas. This knowledge can offer novel insights
into the microorganisms under bryophytes in karst areas.

In the present study, we focused on three different moss
habitats: (i) lithophytic moss crust of forest, (ii) autochthonal
moss crusts of forest, and (iii) lithophytic moss crust of cliff. We
used high-throughput amplicon sequencing based on 16S rRNA
genes to evaluate the community structure and network stability of
bacteria under moss crust. Enzyme stoichiometric analysis (EEA)
was performed. We also studied the abundant and rare taxa
assembly process and analyzed the links with soil physicochemical
properties and nutrient acquisition. We hypothesized that (i)
different bryophyte habitats lead to different soil properties and
soil enzyme activities; (ii) the microbial response to nutrient
restriction differs in the three habitats; and (iii) the assembly
processes of abundant and rare microorganisms are inconsistent
in different habitats. Bryophytes and microorganisms are closely
linked, and this study also aimed to provide recommendations for
the restoration of karst areas in Southwest China using bryophytes
combined with associated microbes.

2 Materials and methods

2.1 Study sites and soil sampling

Soil samples were collected from Guiyang and Anshun,
Guizhou Province, China (94◦37′9′′–103◦31′9′′ E, 36◦56′9′′–
40◦34′9′′ N). In total, 36 soil samples under bryophytes were
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collected from three different sites (site A, 11 samples from
lithophytic moss crust under the forest; site B, 17 samples from
autochthonal moss crusts under the forest; site C, 8 samples from
lithophytic moss crust of cliff). The study area is situated in a
warm and subtropical region characterized by a humid temperate
landscape with a continental monsoon pattern. The annual average
rainfall is 1,100 mm and the mean air temperature ranges from
15.3 to 19.8◦C. There is very little soil under the lithophytic moss
crust. We collected the soil using the five-point sampling method
to be mixed together as a sample; samples from the same type
of moss habitat were replications. There were 11 replications in
site A, 17 replications in site B, and 8 replications in site C. The
specific sampling method is as follows: for lithophytic moss crust,
we used a sterile blade to shovel the moss crust tightly against the
rock wall; then, we used a sterile brush to sweep the roots of the
moss crust and collect the soil. For autochthonal moss crust, we
randomly selected some 1 m × 1 m plots in the study area. The
nearest distance between sampling points in the sample field was
approximately 10 m, and the sampling depth of soil samples under
the crust was 0–2 cm. The soil samples were sieved to a particle size
of 2 mm eliminating any discernible roots or rock fragments. The
soil samples were separated into three portions: the first portion was
kept at a temperature of−80◦C to extract microbial DNA from the
soil; we put the second portion at a temperature of 4◦C to measure
the activity of soil enzymes within a week; and the third portion was
dried in air for analysis physical and chemical properties of the soil.

2.2 Determination of soil physical and
chemical properties

Soil pH and electrical conductivity (EC) were measured using
a pH-EC meter in the soil: water (1:5) extraction solution. Soil
moisture content was determined gravimetrically. Soil samples
were extracted with 2 M KCl and ammonium and nitrate nitrogen
(NH4

+-N and NO3
−-N) were determined using an automatic flow

injection analyzer (AutoAnalyzer-AA3, Sea Analytics, Norderstedt,
Germany). Soil organic carbon (SOC) content was determined by
the external heating method of K2Cr2O7 (Rayment and Lyons,
2011). Additionally, a Hanon Kjeltec 9840 analyzer (K9840, Hanon,
CHN) was used to identify soil total nitrogen (TN) while a
microplate reader (Infinite M200PRO, Tecan, CH) was used to
measure the total phosphorus (TP) in the soil. We used a 0.5 M
NaHCO3 solution and a microplate analyzer (Infinite M200PRO,
Tecan, CH) to assess the available phosphorus (AP) for plants.
Neutral ammonium acetate (1 M) was used to extract the soil
available potassium (AK), and a flame spectrophotometer (FP6450,
INESA, CHN) was used to measure the amount of AK.

2.3 Analysis of soil extracellular enzyme
activity and the stoichiometry of
extracellular enzymes

Quantification was made for the soil enzymes that are involved
in carbon acquisition including α-1,4-glucosidase (AG), β-1,4-
glucosidase (BG), xylosidase (XS), and β-D-cellobiohydrolase (CB);
nitrogen acquisition enzymes including leucine aminopeptidase
(LAP), and β-N-acetylglucosaminidase (NAG); phosphorus

acquisition enzymes such as alkaline phosphatase (AP).
The enzyme activities were evaluated using the microplate
method described by Ai et al. (2012). All enzyme activities were
standardized using Z-score to visually evaluate the differences
between the three sites. We used Eq. 1 to calculate the Z-score:

Z−score = x−µ/σ (1)

where x, µ, and σ represent individual activity, average activity, and
standard deviation of activity, respectively.

Two methods were used to investigate the microbial
limitations. The first method was generating a scatter plot of
the eco-enzymatic stoichiometry. The x-axis was determined
by (LAP + NAG) / AP while the y-axis was determined by
BG / (LAP + NAG). This strategy was based on the guidelines
provided by Sinsabaugh et al. (2009). In this plot, four distinct
categories of resource limitations were observed, as determined by
deviations from the expected enzyme ratio of C:N (1:1) or N:P (1:1)
as presented by Sinsabaugh et al. (2009). The soil enzyme activity
ratio were calculated using Eqs 2–4.

Soil enzyme C:N ratio = Ln(BG)/Ln (LAP + NAG) (2)

Soil enzyme C:P ratio = Ln(BG)/Ln (AP) (3)

Soil enzyme N:P ratio = Ln(LAP+NAG)/Ln (AP) (4)

The second method was calculating the lengths and angles of the
vectors for enzymatic activity to quantify the microbial nutrient
limitation. The vector length indicates the relative microbial C
limitation; the larger the vector length greater the relative microbial
C limitation degree (Ma et al., 2021). The vector angle represents
the soil relative microbial N (or P) limitation degree. Vector angles
<45◦ indicate microbial N limitation, while vector angles >45◦

indicate microbial P limitation. The vector length and angle were
calculated using Eqs 5–8.

X = (BG+ CBH)/ (BG+ CB+ AP) (5)

Y = (BG+ CBH)/(BG+ CB+ NAG+ LAP) (6)

Vector length =
√

X2 + Y2 (7)

Vector angle = Degree (ATAN2 (X, Y)) (8)

2.4 DNA extraction and sequencing data
processing

DNA Isolation Kit, which is produced by MP Biomedicals
in Switzerland, was used to extract DNA from 0.5 g of
fresh soil samples. The extraction process followed the
manufacturer’s recommendations. The extracted DNA was
assessed for its quality and quantity using a Nanodrop ND-
2000 UV-vis spectrophotometer produced by Nanodrop
Technologies in Wilmington, DE, USA. Primers 515F
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(5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) were used to enhance
the bacterial 16S rRNA gene V4 hypervariable region (Dong
et al., 2022). PCR reactions were performed in triplicate (S1000
apparatus, Bio-Rad Laboratory, Hercules, CA, USA). The PCR
conditions were 5 min at 94◦C followed by 30 cycles of 94◦C
for 45 s, annealing at 54◦C for 45 s, 72◦C for 1 min followed by
a final extension step of 10 min at 72◦C (Katiraei et al., 2022).
PCR products were purified using the Qiagen Gel Extraction
Kit produced by Qiagen in Germany, following the instructions
provided by the manufacturer. In the end, the library was
sequenced using an Illumina Nova6000 platform, which produced
paired end reads of 250 base pairs. The sequencing procedure
was conducted by Guangdong Magigene Biotechnology Co., Ltd.,
situated in Guangzhou, China.

2.5 Sequencing data processing

A series of standard processing steps, including demultiplexing,
sample inference, read merging, quality filtering, and chimeric
elimination, were applied to the raw FASTQ data. The DADA2
pipeline (version 1.20.0) was used to carry out these procedures.
After that, an amplicon sequence variant (ASV) microbiological
profile was generated (Deissová et al., 2023), ASVs with 100%
sequence identity, which are more dependable and can be
replicated, were employed to represent microbial taxonomic units.
The Ribosomal Database Project (RDP) Classifier was utilized to
determine the taxonomic details of every ASV,1 with an 80% level
of confidence (Matheri et al., 2023).

2.6 Statistics analysis

Depending on their relative abundance and/or frequency, the
microbial ASVs were divided into two groups: abundant and rare
taxa. Rare taxa were defined as those with an average relative
abundance of <0.1%, whereas an average relative abundance
of >1% was classified as abundant taxa (Galand et al., 2009).
Based on the copiotrophic-oligotrophic framework and additional
documentation, those annotated identified phyla into copiotrophic
and oligotrophic taxa (Fierer et al., 2007; Li H. et al., 2021; Li J. et al.,
2021). To calculate the microbial copiotroph:oligotroph ratios,
the relative abundance of known copiotrophic and oligotrophic
members were summed, respectively (Ma et al., 2023).

Also, we evaluated the α-diversity of the microbial community
using the vegan package in R version 4.1.2. We employed
canonical principal coordinates analysis (PCoA) to investigate the
bacterial community’s pattern (Cui et al., 2019). All networks were
constructed based on Pearson correlations of log-transformed
ASV abundances, followed by an RMT-based approach that
determines the correlation cut-off threshold automatically (Yuan
et al., 2021). The random forest tests in “RandomForest” package
were used to forecast the significant factors (Chen et al., 2021).
Additionally, the “rfPermute” package in R was used to analyze

1 https://sourceforge.net/projects/rdp-classifier/

TABLE 1 The physicochemical properties of soil under bryophytes in
different sites.

Physico-
chemical
properties

Site A Site B Site C

pH 7.74± 0.3a 7± 1.04b 7.98± 0.05a

EC (µS/cm) 153.71± 42.69b 133.91± 67.84b 271.63± 27.92a

SWC (%) 8.54± 3.22b 21.28± 6.06a 5.85± 1.24b

SOC (g/kg) 41.36± 17.08b 44.19± 27.23b 64.94± 13.87a

TN (g/kg) 4.16± 1.72a 3.59± 2.14a 5.09± 1.17a

NH4
+-N

(mg/kg)
38.43± 13.12a 47.08± 20.35a 40.38± 14.18a

NO3
−-N

(mg/kg)
13.64± 10.06a 17.35± 9.89a 18.47± 9.97a

TP (g/kg) 0.99± 0.28a 0.58± 0.38b 0.66± 0.17b

A-P (mg/kg) 28.19± 16.33a 67.72± 103.04a 49.88± 19.6a

AK (mg/kg) 253.56± 51.49b 197.18± 61.61c 332.91± 47.44a

All values are reported as “mean @ standard deviation” based on measurement results for
samples. The statistical differences in physicochemical properties within a row are indicated
by different letters (one-way ANOVA, α = 0.05). pH, potential of hydrogen; EC, electric
conductivity; SWC, soil water content; SOC, soil organic carbon; TN, soil total nitrogen;
NH4

+-N, soil ammonium; NO3
−-N, soil nitrate; TP, soil total phosphorus; A-P, soil available

phosphorus; AK, soil available potassium.

each predictor’s significance (Jiao et al., 2018). To assess the
ecological processes taking place in microbial communities, we
calculated β Nearest Taxon Index (βNTI) (Stegen et al., 2012).
Through the integration of |βNTI| (2) and |RCbray| (0.95),
we successfully elucidated underlying mechanisms governing
community assembly processes. These mechanisms encompass
heterogeneous selection, homogeneous selection, dispersal
limitation, homogenous dispersal, and undominated processes
(Zhou and Ning, 2017). Mantel tests comparing βNTI values with
the Euclidean distance matrixes of physicochemical parameters
were then performed in the “vegan” R package to explore the major
factors influencing the assembly of abundant and rare taxa, and
the relationship among soil enzyme activity ratio and network
complexity standardized by Z-scores. The direct and indirect
effects between soil physical and chemical properties, assembly
processes of abundant and rare microbial communities, microbial
diversity, microbial complexity, and nutrient acquisition were
identified using structural equation models (SEMs) created with
the “lavaan” package in R software.

3 Results

3.1 Enzyme activity and soil nutrient
limitation in different habitats

The availability of SOC, NH4
+-N, NO3

−-N, and A-P in site
B was higher, but the enzyme activities were lower compared
with sites A and C (Table 1 and Figure 1A). The activity of
BG, XS, NAG, and LAP showed significant differences in sites
A and C (P < 0.05) (Figure 1A). The scatter plot of eco-
enzymatic stoichiometry reveals that most microorganisms were
limited by C&N and C&P (Figure 1B). Most microorganisms
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FIGURE 1

Enzyme activity and soil nutrient limitation in different moss biocrusts habitats: (A) soil enzyme activity of carbon, nitrogen, and phosphorus at three
sites, (B) scatter plots of soil enzymatic stoichiometry for studied sites, (C) the vector length and vector angle of the studied sites, and (D) microbial
copiotrophs and oligotrophic ratios at different sites. Different lowercase letters indicate significant differences among the three sites (P < 0.05).
Different letters indicate statistically significant differences (one-way ANOVA, α = 0.05). AG, α-glucosidase; BG, β-glucosidase; XS, xylosidase; CB,
β-D-cellobiohydrolase; NAG, N-acetyl-β-D-glucosidase; LAP, leucine aminopeptidase; AP, alkaline phosphatase.

FIGURE 2

Microbial community structure of different moss crust habitats. Principal coordinate analysis (PCoA) of the whole (A), abundant (B), and rare (C)
bacteria communities is given based on Bray–Curtis distances.

of the site A were limited by C&N, the microorganisms of sites
B and C were susceptible to be limited by C&P (Figure 1B).
Vector analysis showed that the site A had the lowest vector
length among the three sites representing microbial C limitation.
The vector angle at site A was below 45◦ whereas the vector
angles at the other sites were above 45◦ (Figure 1C). Angles
<45◦ are perceived as more constrained by N rather than

P while the converse interpretation applies to angles >45◦.
This is consistent with the low content of SOC, NH4

+-N,
and NO3

−-N in site A (Table 1). The soil microorganisms
at site B were predominantly characterized by the r-strategy
species, as indicated by the largest copiotroph/oligotroph ratio
(Figure 1D). The high ratio reflected a more nutrient-rich
environment.
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TABLE 2 The α-diversity (Shannon-index) in three sites.

Bacterial
community

Site A Site B Site C

Whole 4.23± 0.39b 4.56± 0.62a 4.42± 0.59b

Abundant 3.13± 0.23b 3.56± 0.48a 3.42± 0.19ab

Rare 3.89± 0.46b 4.26± 0.72a 3.42± 0.38c

All values are reported as “mean ± standard deviation” based on measurement results for
samples. The statistical differences in Shannon-index within a row are indicated by different
letters (one-way ANOVA, α = 0.05).

3.2 Diversity and co-occurrence network
of soil microbial communities

β-Diversity reflects differences in species composition between
the three sites. The microbial community structures can be
observed according to the principal coordinates analysis (PCoA),

and permutational analysis of variance by Adonis. The results
showed significance for the whole (R2 = 0.48, P < 0.01), abundant
(R2 = 0.48, P < 0.01), and rare (R2 = 0.66, P < 0.001) communities
(Figures 2A–C). While the structure of the rare community
was obviously differentiated in all three sites (Figure 2C). The
Shannon index of site B was significantly higher than that of
the other two sites (Table 2) (P < 0.05). The α-diversity of
rare communities was significantly different in the three sites
(P < 0.05); however, there was no significant difference between
the site C and the other two sites in abundant communities
(Table 2). We further analyzed the correlation between the
Shannon index of abundant and rare taxa and soil C, N, and P and
their stoichiometry (Supplementary Figures 1, 2) and observed
a significant correlation between rare taxa diversity and soil C,
N, and P nutrients (Supplementary Figures 1, 2). For example,
the diversity of rare taxa was negatively correlated with SOC
(R2 = −0.38, P = 0.021), TN (R2 = −0.52, P = 0.0012), and TP
(R2 = −0.4, P = 0.016). However, the diversity of abundant taxa

FIGURE 3

Co-occurrence pattern of bacteria in three sites: (A) the co-occurrence patterns among ASVs were revealed by network analysis. Large modules
with ≥5 nodes are shown in different colors, and smaller modules are shown in gray. Details of network topological attributes are listed in Table 3:
(B) ASVs abundance ratios of abundant and rare microorganisms in different modules; (C) relationships between network complexity standardized
by Z-scores and Ln (BG)/Ln (NAG + LAP); and (D) relationships between network complexity standardized by Z-scores and Ln (BG)/Ln (AP). Different
lowercase letters indicate significant differences among the three sites (P < 0.05). ns, not significant.
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had no significant correlations with soil C, N, and P nutrients.
Further, we analyzed the relationship between the dominant
phyla of rare microorganisms and soil nutrients (Supplementary
Figure 3), most of which showed negative correlation. There were
significant negatively correlations between TN and Acidobacteriota,
Actinobacteriota, Bacteroidota, and Desulfobacterota (P < 0.05),
and significant positively correlations were observed between C:N
ratio and Bacteroidota and Chloroflexi (P < 0.05). These bacterial
groups play an important role in soil C, N, and P nutrient cycling.

Most network nodes and edges were available in site B, resulting
in highly clustered microbial network modules. Site C has the
simplest network structure (Figure 3A). We used the network
topological parameters of node and edge numbers, average degree,
diameter, average clustering coefficient, and relative modularity to
assess soil microbial network complexity, with higher topological

TABLE 3 Topological properties of bacterial networks of three sites.

Topological properties Site A Site B Site C

Node 1,287 1,881 1,133

Edges 15,235 22,220 14,896

Average degree 1.64 1.95 1.14

Diameter 10.46 13.54 9.57

Average clustering coefficient 0.38 0.45 0.26

Relative modularity 0.23 0.37 0.08

properties representing greater network complexity. In the three
sites, the network topology parameters of the site B were higher
than those of the other two sites (Table 3). The key modules of

FIGURE 4

Assembly process and driving factors of abundant and rare taxa: (A) beta nearest taxon index (βNTI) value under different habitats. The horizontal
dashed lines indicate the βNTI values of –2 and 2; (B) relative contribution of each ecological process to community assembly; (C) relationships
between βNTI of the rare and abundant bacterial taxa and divergences of physical-chemical properties standardized; and (D) the random forest
model identifies the major contributors to assembly processes of the abundant and rare taxa. ns, not significant. Asterisks denote significance levels.
SWC, soil water content; EC, soil electric conductivity; TN, total nitrogen; AK, available potassium; A-P, available phosphorus; TP, total phosphorus;
pH, potential of hydrogen; NO3

−-N, nitrate nitrogen; NH4
+-N, ammonium nitrogen; SOC, soil organic carbon; C/N, the ratio of soil organic carbon

and total nitrogen; C/P, the ratio of soil organic carbon and total phosphorus.
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the microbial co-occurrence network (major microbial clusters,
modules 1 and 2) in the three habitats were dominated by rare taxa
(Figure 3B). Our results showed that there was a significant positive
correlation between Ln (BG)/Ln (NAG + LAP) and network
complexity in sites A and B (P < 0.05) (Figure 3C). This indicates
that the microbial network complexity increased as N limitation
decreased in sites A and B. Further, there was a significant negative
correlation between Ln (BG)/Ln (AP) and network complexity in
site B (P < 0.05) (Figure 3D). This indicated that the complexity
of microbial network was positively related to the level of P
limitation in the site B. There was no significant relationship
between network complexity and enzyme activity ratio in site C
(Figures 3C, D).

3.3 Assembly process and driving factors
of abundant and rare taxa

In the three different habitats, most of the beta-nearest
taxon index (βNTI) values of abundant taxa and rare taxa
were between −2 and 2 indicating that the assembly process of
abundant and rare taxa was dominated by stochastic processes
(Figure 4A). However, the dispersal limitation of stochastic
processes dominated the assembly of abundant taxa (Figure 4B).
We observed that the assembly process of rare taxa was
significantly (P < 0.001) correlated with the changes in soil
physical and chemical properties (Figure 4C). To identify
the potential main contributors to the assembly processes of
abundant and rare taxa, we applied random forest analysis
which demonstrated that C/N, C/P, TN, SOC, and NH4

+-N
were the significant impact factors in determining the rare taxa
assembly process. C/N and C/P were significant factors (P < 0.01)
(Figure 4D). Overall, C/N, pH, SWC, and C/P were the significantly
impacting factors in determining the abundant taxa assembly
process, and among them, C/N was significant (P < 0.01)
(Figure 4D).

3.4 Microbial nutrient acquisition
potential and driving factors

To explore the microbial factors that affect nutrient acquisition,
we applied a random forest model. The random forest analysis
revealed that network complexity, network modules α-diversity,
and the ratio of copiotrophs and oligotrophs significantly affected
nutrient acquisition in the whole microbial community. βNTI,
β-diversity, and α-diversity significantly affected the nutrient
acquisition of the rare microbial community. In the abundant
microbial community, α-diversity significantly affected nutrient
acquisition (Figure 5A). We further employed SEMs to explore
the interaction influence between microbial factors by combining
the physical and chemical properties of soil. The findings
demonstrated that soil physicochemical properties had a significant
effect on the assembly process of rare taxa leading to an
increase in the complexity of the microbial network and diversity
of community composition, and further stimulated nutrient
acquisition (Figure 5B).

4 Discussion

4.1 Nutrient limitation on different
bryophyte habitats

The availability of SOC, NH4
+-N, NO3

−-N, and A-P in sites
A and C were lower but the enzyme activities were higher than
those of site B (Tables 1, 4 and Figure 1A). This confirms that
when the nutrient availability of the soil is low, microbes secrete
more enzymes to meet the demand for nutrients (Sinsabaugh et al.,
2002; Fierer et al., 2009; Wallenius et al., 2011; Xu et al., 2017).
Significant differences were observed between site A and site C in
the activity of BG, XS, NAG, and LAP (P < 0.05) (Table 4 and
Figure 1A). Although sites A and C were both lithophytic moss
crust habitats, site A was situated under forests, while site C was
on the cliff. The difference made site A susceptible to shade from
forests and site C susceptible to direct sunlight, resulting in varying
soil moisture and nutrient conditions at the two sites. Soil nutrients
have a significant influence on enzyme activities (Meier et al., 2020;
Li et al., 2022). The scatter plot with eco-enzymatic stoichiometry
reveals that microbial limitations in C&P, and C&N were prevalent
across all locations (Figure 1B). It has been suggested that microbial
C limitation is widespread (Schimel, 2003). N and P are mainly
released from the decomposition of SOM (Pan et al., 2016; Alewell
et al., 2020). Therefore, P or N limitation often coexists with C
limitation in the three sites. Compared with site C, site A was not
susceptible to C&P limitation (Figures 1B, C). This may be due to
the higher diversity of rare taxa in site A (Table 2). Rare taxa exhibit
diverse functions (Sauret et al., 2014), including microorganisms
that can solubilize phosphorus and accelerate the breakdown of
organic matter.

Site B had the higher nutrient availability and highest microbial
diversity (Tables 1, 2), yet was still susceptible to significant nutrient
limitations (Figures 1B, C). This can be explained by the nutritional
strategies of microorganisms. Nutritional strategies involve a basic
trade-off between the rate of growth and the efficiency of resource
utilization (Fierer et al., 2007; Ho et al., 2017), enabling us to
establish a direct correlation between microbial performance and
environmental conditions. The soil microorganisms at site B were
predominantly characterized as r-strategists, as indicated by the
largest copiotroph/oligotroph ratio (Figure 1D). The r-strategy
species (copiotrophic species) have a fast growth rate and a rapid
response to available C and nutrient inputs, typically flourishing
in environments enriched in nutrients (Yang et al., 2022c). In
contrast, k-strategy species (oligotrophic species) are slow-growing
and more common in oligotrophic environments (Yang et al.,
2022c). The high ratio of copiotrophs results in significant nutrient
demand, contributing to higher levels of nutrient limitations
(Giovannoni et al., 2014). This further explains nutrient limitations
of C, N, and P in site B (Figures 1B, C).

4.2 Diversity and complexity of soil
bacterial under bryophytes

Microbial diversity depends on the availability of resources
(Zhu L. et al., 2023). Varying ecosystems exhibit distinct soil
temperatures, moisture levels, pH levels, and nutrient content
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FIGURE 5

Analysis of factors affecting nutrient acquisition: (A) the random-forest model predicts the main factors for nutrient acquisition of bacterial
communities and (B) structural equation model (SEM) revealing the direct and indirect effects of abundant taxon and rare taxon on nutrient
acquisition. The numbers on the arrows are the path coefficients and are indicative of the standardized effect size of the relationship. Arrows in red
and blue indicate positive and negative effects, respectively. R2 means the proportion of variance explained.

which can influence the diversity and composition of soil
microorganisms (Bahram et al., 2018). Site B had higher available
nutrient content, such as NH4

+-N, NO3
−-N, and A-P than

the other two sites (Table 1). However, sites A and C were
characterized by lithophytic moss environments that exhibited low
nutrient levels and supported oligotrophic microorganisms. The
copiotroph/oligotroph ratio also showed the nutrient availability
in the three sites (Figure 1D). This further explains the effect of

different bryophyte habitats on microbial diversity. In addition,
the abundant and rare microbial diversity of the three sites also
showed distinct differences, rare microbes show a higher diversity
(Table 2). Qin et al. (2022) indicated that rare biosphere possesses
higher taxonomic diversity. This depended on multiple ecological
principles behind the assembly of microbial communities (Lynch
and Neufeld, 2015). The tremendous diversity of the rare biosphere
is subjected to more complicated ecological processes such as
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speciation, drift, and extinction (Mo et al., 2018). Abundant
communities have higher niche breadth and hence show strong
resistance and adaptability to different environments, and spread
in different ecosystems (Yang et al., 2022b). This explains the
lack of clear structure of abundant communities in the three
sites (Figure 2B). This study analyzed the relationship between
abundant and rare microbial α-diversity and soil C, N, and
P nutrients. There is usually a positive correlation between
microbial diversity and soil nutrients (Chen et al., 2020); however,
we found a negative relationship between diversity and soil
nutrients in rare taxa (Supplementary Figure 1), inconsistent with
previous findings. This can be explained by the competition for
scarce nutrients occurs between bacteria and dominant plants, in
nutrient-limited karst ecosystems (Wang et al., 2020). Furthermore,
lower microbial metabolic activity may lead to the negative
relationship between microbial diversity and soil nutrients (Hu
et al., 2021). The karst rocky desertification ecosystem may have
more dormant or inactive microorganisms, which explains that the
metabolic activities of microorganisms are not strong, resulting
in a slow turnover of resources. In addition, the soil C:N ratio
in this study was much lower than the normal value, hindering
the metabolic activities of soil microorganisms (Liu et al., 2018;
Hu et al., 2021). Therefore, the dominant phyla of rare taxa were
positively correlated with C/N, but negatively correlated with TN
(Supplementary Figure 3). According to a previous study, there
was a difference in structure and co-occurrence networks of the
soil bacteria between different habitats (Zhong et al., 2022). Site
B exhibited the highest complexity and community stability of
the microbial network (Figure 3A). The complexity and stability
of microbial networks are related to the network structure. As
listed in Table 3, the network topology parameter of site B was
the highest among the three sites. A previous study has reported
a positive relationship between network complexity and microbial
diversity (Ma et al., 2020). The microbial diversity at site B was
also the highest (Table 2). We further found that rare taxa were
the main component of microbial network modules 1 and 2 in
the three sites (Figure 3B). The results indicated that rare taxa
may play crucial roles in maintaining the structure of the co-
occurrence network. Rare taxa form complex interactions and
relationships with other taxa to maintain the network structure
(Zhu M. et al., 2023; He et al., 2024). Reduced N limitation or
enhanced P limitation increased microbial network complexity
in site B (Figures 3C, D). Microorganisms in site B were more
susceptible to P limitation than N limitation (Figure 1B). In
this condition, soil microbial communities of site B can adapt
their strategies in response to resource availability. Microbial
strategies enhance their complexity to maintain a steady state
(Yang et al., 2022c).

4.3 Factors of affecting nutrient
acquisition

Community assembly describes how different ecological
processes shape the composition and structure of microbial
communities (Ning et al., 2024). Studying the effects of
environmental factors on the assembly of microbial communities
is critical to understanding microbial biodiversity and ecological

TABLE 4 The soil enzyme activities in three sites.

Soil
enzymes

Site A Site B Site C

AG (µmol/L) 14.47± 5.38a 12.41± 7.47b 18.14± 4.57a

BG (µmol/L) 49.18± 25.4ab 44.52± 27.55b 73.48± 32.85a

XS (U/g) 20.98± 11.57b 16.39± 13.8c 26.75± 3.76a

CB (U/g) 19.84± 13.5a 14.94± 9.12a 17.78± 13.51a

NAG (U/g) 27.75± 9.92a 16.76± 9.74c 21.43± 13.97b

LAP (U/g) 7.67± 2.44b 3.23± 1.84c 8.69± 2.97a

AP (g/kg) 40.19± 14.94a 34.48± 11.31b 47.72± 10.45a

All values are reported as “mean ± standard deviation” based on measurement results
for samples. The statistical differences in soil enzyme activities within a row are indicated
by different letters (one-way ANOVA, α = 0.05). AG, α-glucosidase; BG, β-glucosidase;
XS, xylosidase; CB, β-D-cellobiohydrolase; NAG, N-acetyl-β-D-glucosidase; LAP, leucine
aminopeptidase; AP, alkaline phosphatase.

function (Kang et al., 2023). The present study found that the
community assembly of both abundant and rare microbes was
mostly influenced by stochastic processes. Further, it was noted
that the assembly process of abundant taxa was dominated by
dispersal limitations of stochastic processes (Figure 4B). More
individuals of abundant taxa are likely to be involved in dispersal
events but vulnerable to physical barriers, distance and other
factors (Liu et al., 2015). Diverse assembly processes contribute to
the rare taxa (Figure 4B). Rare taxa occupy narrower niches, are
closer in phylogenetic clustering, and are more likely to be filtered
and dispersed by diverse assembly processes (He J. et al., 2022).
Diverse assembly processes can drive high diversity and versatility
of rare taxa (Zhou and Ning, 2017). From this perspective, the
rare taxa may be the main driving force for maintaining ecosystem
functional stability and diversity of the soil microbial communities
(Gobet et al., 2012; Hugoni et al., 2013; Alonso-Sáez et al., 2015).
Determining the elements that lead to the occurrence of different
processes in the formation of microbial communities is essential in
the study of community ecology. Prior studies have demonstrated
a correlation between assembly processes and soil attributes such
as pH and NH4

+-N (Jiang et al., 2019; Wan et al., 2021). We found
that soil C/N and C/P together significantly affected the community
assembly of both abundant and rare taxa (P < 0.05) (Figure 4D).
Especially, our findings indicated that TN, SOC and NH4

+-N
significantly influenced the assembly processes of the rare taxon.
The assembly processes of the abundant taxa were significantly
influenced by soil pH and SWC (P < 0.05) (Figure 4D). Soil
C, N, and P are essential nutrients in soil ecosystems, and the
stoichiometric ratio of soil C, N, and P affected the assembly
process of microorganisms by affecting microbial investment in
nutrient acquisition (Li J. et al., 2021; Xu et al., 2022; Duan et al.,
2023). Therefore, both abundant and rare microbes were affected
by soil C/N and C/P. It was worth distinguishing that abundant
taxa were more susceptible to the non-nutrient properties of soil,
such as pH and SWC. Soil pH and SWC can affect the cellular
homeostasis of microorganisms and thus affect the exchange with
external substances. The versatility of rare microbes allows for their
ability to withstand substantial variances and be less affected by
changes in environmental pH and SWC (He Z. et al., 2022). In total,
the SEM demonstrated that the physical and chemical properties
of soil mainly significantly affected the community assembly of the
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rare taxa, indirectly affecting microbial diversity and complexity
and finally nutrient acquisition (Figure 5B). This suggested that
rare microbial taxa were major drivers of nutrient.

5 Conclusion

This study aimed to determine the response of microorganisms
under moss crust to nutrient acquisition in karst area. There
were nutrient limitations in the three habitats. Our study
demonstrated that nutrient acquisition was mainly driven by
microbial assembly, diversity, and complexity. The microbial
diversity and complexity were higher in the autochthonal moss
crust of forest compared to the lithophytic moss crust. The
microbial responses were influenced by the specific habitats of
bryophytes, especially differences in soil nutrients. To enhance
the efficiency of ecological restoration initiatives in karst rocky
desertification areas, it is imperative to understand the influence of
soil microbial communities on ecosystem processes. Further, with
a full understanding of local nutrient limitations, the practice of
cultivating bryophytes alongside rare microorganisms serves as a
significant approach to managing and mitigating the process of
rocky desertification. By addressing these technological limitations,
it is possible to enhance the effectiveness and precision of the
restoration activities aimed at mitigating karst rocky desertification
and land degradation.
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