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Human skin acts as a protective barrier between the body and the external 
environment. Skin microbiome and intercellular lipids in the stratum corneum 
(SC) are essential for maintaining skin barrier function. However, the interplay 
between skin bacteria and the lipids is not fully understood. In this study, 
we characterized the skin microbiome and SC lipid profiles from the forearm and 
face in a cohort of 57 healthy participants. 16S rRNA gene sequencing showed 
the skin microbial composition is significantly different between body locations 
and genders. Female forearm samples have the highest microbial diversity. 
The relative abundance of Staphylococcus hominis, Micrococcus luteus, 
Corynebacterium tuberculostearicum, Finegoldia magna, and Moraxellaceae 
sp. are significantly higher in the forearm than the face. The predictive 
functional analysis of 16S rRNA gene sequencing by Phylogenetic Investigation 
of Communities by Reconstruction of Unobserved States (PICRUSt2) and 
ANCOM-BC showed different bacterial metabolic pathway profiles between 
body locations or genders, and identified 271 differential pathways, including 
arginine and polyamine biosynthesis, chorismate biosynthesis pathways, which 
are more abundant in the female forearm, and sulfur oxidation pathway, which 
is more abundant in the male face. The SC lipid profiles differ between the body 
locations as well. Total free fatty acids (FFA), cholesterol sulfate and sphingosine 
are more abundant in the face. Dihydro-/6-hydroxy/phyto-ceramides are more 
abundant in the forearm. The correlation analysis of 16S rRNA gene sequencing 
and lipids revealed novel interplay between the bacteria and skin lipids. Shannon 
entropy and S. hominis negatively correlated with FFA, cholesterol sulfate and 
sphingosine; while positively correlated with dihydro-/6-hydroxy/phyto-
ceramides. The correlation of predictive pathway profiles and lipids identified 
pathways involved in amino acids metabolism, carbohydrates degradation, 
aromatic compounds metabolism and fatty acid degradation metabolism are 
positively correlated with dihydro-/6-hydroxy/phyto-ceramides and negatively 
correlated with FFA, cholesterol sulfate and sphingosine. This study provides 
insights on the potential correlation between skin microbiome and lipids.
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Introduction

The skin is the largest organ of the human body and acts as a 
protective barrier between the body and the external environment. 
The intercellular lipids in the outermost layer of the skin, the stratum 
corneum (SC), are one of the fundamental components to maintain 
the skin barrier function (Knox and O’Boyle, 2021). These lipids 
suppress excessive water and electrolyte loss and prevent the 
compounds from the environment permeating into the epidermis and 
the dermis, and thereby provoke an immune response (van Smeden 
and Bouwstra, 2016). The composition of the skin lipid matrix is 
dominated by three classes: ceramides, cholesterol, and free fatty acids 
(FFAs) (Knox and O’Boyle, 2021). Ceramides are the most common 
constituent, accounting for 40–50% of the total intercellular lipids 
(Choi and Maibach, 2005). Depending on the type of sphingosine and 
the type of fatty acid bound together, there are 12 different subclasses 
of ceramides identified in human SC (Murphy et al, 2022). Among 
these ceramides subclasses, ceramide esterified omega fatty acids 
(EOS), phytoceramide saturated fatty acids (NP), phytoceramide 
alpha-hydroxy fatty acids (AP), also called ceramides 1, 3, and 6-II 
respectively, are considered essential ceramides that excel in 
supporting skin health by preserving the integrity of the lamellar layer 
(Coderch et al., 2003; Huey-Chun and Chang, 2008). They are also 
widely used in a variety of skincare products. The distribution and 
composition of the skin lipids vary across different body locations 
(Starr et al., 2016), and are influenced by age, gender and seasonal 
variations (Rogers et al., 1996; Starr et al., 2016; Choe et al., 2018). 
Studies have demonstrated that alterations in the SC lipid composition 
can lead to impaired skin barrier functions, giving rise to skin 
disorders such as psoriasis and atopic dermatitis (Pietrzak et al., 2010; 
Emmert et al., 2021). Therefore, understanding the composition of 
skin lipids profile and the impact of host and external factors on it is 
critical for skin health.

The SC is also colonized by a variety of living microorganisms, 
called the skin microbiome, which is essential for maintaining skin 
barrier function. The microbes form an invisible ecosystem that 
protects the skin from opportunistic pathogens, contributes to the 
production of essential nutrients and educates the immune system to 
ensure human health (Grice, 2015; Byrd et  al., 2018). The skin 
microbial composition highly depends on the topographic locations 
of the human body and varies by age and gender (Grice et al., 2008). 
The skin barrier and microbiome have a symbiotic relationship, 
influencing one another through physical, chemical, and 
immunological interactions. The skin microbiome can secrete the 
components that make up the lipid structure. For instance, 
Staphylococcus epidermidis produces a sphingomyelinase that acquires 
essential nutrients for the bacteria and indirectly assists the host in 
producing ceramides to help build the skin lipids (Zheng et al., 2022). 
Meanwhile, epidermal lipids can serve as a nutrient source for the skin 
microbiome (Tchoupa et al., 2023). Pathogenic microorganisms are 
also directly inhibited by some lipids. For example, sapienic acid from 
the SC can effectively inhibit pathogenic S. aureus (Moran et al., 2017). 
Therefore, the cross-talk between the skin microbiome and lipids is 
very important to maintain skin barrier function, however, these 
interactions are not fully understood.

In this study, we characterized the skin microbiome and SC lipids 
profiles from the forearm and face in a cohort of 57 healthy 
participants using 16S rRNA gene sequencing and lipidomic analysis. 

The objective was to understand the impact of host factors such as age, 
gender, skin type and body location on skin microbiome and lipid 
profile, and to explore the interaction of skin bacteria and lipids. 
We  also explored the mechanism of the relationship by using 
predictive functional analysis.

Materials and methods

Study design and sample collection

The study was approved by Institutional review board of 
Concordia Clinical Research, Inc. (IBR Committee No. 188Z) (Cedar 
knolls, NJ, USA). A total of 57 healthy participants from Piscataway, 
New Jersey, USA were recruited. The study design was illustrated in 
Figure 1 (Gomes et al., 2023). The informed consent was signed by 
each participant. Prior to sampling, all participants were provided 
with a questionnaire in which they were asked for age, gender and skin 
type (oily, dry, normal). Participants were instructed not to take a 
shower or wash their face on the morning of the sample collection day. 
They were also instructed not to apply any products on the face and 
both forearms, including but not limited to soaps, shower gels, lotions, 
creams, oils, sunscreen and makeup.

One skin swab was collected from one forearm and cheek using a 
swabbing technique for microbiome analysis. A 5x5cm area of the skin 
was sampled by swabbing the skin for 30 s with a sterile flock swab, 
which was dipped into an aliquot of phosphate buffered saline (PBS). 
The lateral edge of the swab was rubbed across the entire defined area 
while being rotated between the thumb and forefinger for 30 s. More 
specifically, the rotating swab was rubbed back and forth in a cross-
wise manner in the defined area in the same fashion for each 
participant to maintain consistency. After 30 s, the head of each swab 
was placed into a sterile microcentrifuge tube and aseptically cut from 
the breakpoint of the handle before closing the tube lid. All the 
samples were frozen at −80°C until further analysis.

Tape stripping was done on the surface of one forearm and 
forehead using D-Squame standard sampling disc, 22 mm in diameter 
(Clinical & Derm, LLC, Dallas, Texas) for lipidomic analysis. The tape 
was applied to the skin surface and briefly pressed with a standardized 
pressure pen of 225 g/cm2 (D-Squame pressure instrument D500, 
Clinical & Derm, LLC). On the same spot, a total of 4 consecutive 
tapes were collected. Each collected tape was placed in a storage card 
(D-Squame standard storage card D120, Clinical & Derm, LLC) and 
stored in −80°C until the analysis.

16S rRNA gene sequencing

V1-3 hypervariable region of 16S rRNA gene sequencing was 
conducted by RTL Genomics (Lubbock, Texas) as previously 
described (Li et al., 2023). DNA was extracted via KingFisher FLEX 
instrument (ThermoFisher Scientific, Inc., Waltham, Massachusetts) 
and using Zymo ZR-96 magbead kit (Zymo Research, Irvine, 
California) following manufacturer’s instructions. The extraction 
protocol was modified to include a mechanical lysis step with a Qiagen 
TissueLyser. V1-3 region of 16S rRNA gene was amplified for 
sequencing in two-step, independent reactions using HotStar Taq 
Master Mix Kit (Qiagen) with 28F-519R primers (28F: 5”GAG TTT 
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GAT CNT GGC TCA G 3″; 519R: 5” GTN TTA CNG CGG CKG CTG 
3″). PCR amplification included 0.5 μl of 5 μM forward primer, 0.5 μl 
of 5 mM reverse primer, 5 μl of DNA template, and 14 μl of Taq Master 
Mix. To encourage amplification in low biomass samples, 2 μl BSA and 
2 μl MgCl2 were added to reactions. The negative control was a 
reaction mixture with no template DNA. PCR reaction conditions 
included initial denaturation at 95°C for 5 min, then 10 cycles of 94°C 
for 30 s, 50°C for 90 s (+0.5°C per cycle), 72°C for 1 min, followed by 
25 cycles of 94°C for 30 s, 54°C for 90 s, 72°C for 1 min, and finally, one 
cycle of 72°C for 10 min and 4°C hold. Barcoding PCR reaction 
conditions included initial denaturation at 95°C for 5 min, then 
10 cycles of 94°C for 30 s, 54°C for 40 s, 72°C for 1 min, followed by 
one cycle of 72°C for 10 min and 4°C hold. Amplification products 
were visualized with eGels (Life Technologies). Products were then 
pooled equimolar and each pool was size selected in two rounds using 
SPRIselect beads (BeckmanCoulter) in a 0.75 ratio for both rounds. 
Size selected pools were then quantified using Qubit 4 fluorometer 
(Life Technologies) and loaded on an Illumina MiSeq 2 × 300 flow cell 
at 10 pM for sequencing.

Skin lipid analysis

Stratum corneum lipids were analyzed by Metabolon Inc. 
(Morrisville, North Carolina). Total free fatty acids, cholesterol, 
cholesterol sulfate and ceramides were measured by SFC-MS/MS 
using TrueMass® Stratum Corneum Lipid Panel (Emmert et al., 2021). 
Tissue samples were extracted with hexane after addition of a known 
amount of surrogate standard solution consisting of stable-labeled 
forms of ceramides, fatty acids, cholesterol and cholesterol sulfate. The 
organic extracts were combined and evaporated to dryness. The dried 

extract was reconstituted, and an aliquot was analyzed on a Waters 
UPC2/Sciex QTrap 5,500 mass spectrometer SFC-MS/MS system in 
MRM mode using characteristic parent-fragment mass transitions for 
each analyte trace. The quantitation of the individual lipid species was 
based on a single-point calibration using a surrogate standard. 
Concentrations were determined by peak area comparisons of the 
individual lipid species with the peak areas of their corresponding 
surrogate standards for which concentrations are known. 
Concentrations were given in pmol/tape for individual analytes as well 
as each lipid class. Additionally, the percentage composition of 10 
individual ceramide subtypes is listed for each sample (Table  1), 
including ceramide alpha-hydroxy fatty acids (AS), ceramide esterified 
omega fatty acids (EOS), ceramide saturated fatty acids (NS), 
dihydroceramide alpha-hydroxy fatty acids (ADS), 6-hydroxyceramide 
alpha-hydroxy fatty acids (AH), phytoceramide alpha-hydroxy fatty 
acids (AP), 6-hydroxyceramide esterified omega fatty acids (EOH), 
dihydroceramide saturated fatty acids (NDS), 6-hydroxyceramide 
saturated fatty acids (NH), phytoceramide saturated fatty acids (NP).

Data analysis

16S rRNA gene sequencing data analysis
Raw FASTQ sequencing data (forward and reverse reads) was 

imported into QIIME2 (version 2022.2.0) (Bolyen et  al., 2019). 
Quality control analysis identified lower quality regions in the first 20 
nucleotides (primers) and, notably, in the last 20 nucleotides for the 
forward reads and the last 40 nucleotides for the reverse reads (as 
Phred read quality scores dropped below 20). To ensure sufficient 
overlap between the forward and reverse reads, the primers and the 
final 20 nucleotides were trimmed from both forward and reverse 

FIGURE 1

Overview of the study design.
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reads. The DADA2 (Callahan et al., 2016) plugin in QIIME2 was used 
to generate an ASV feature table with 6,301 ASVs (qiime dada denoise-
paired command, with trimming of leading and trailing low quality 
nucleotides). A phylogenetic tree was built from the ASV sequencing 
using mafft (Katoh and Standley, 2013) and fasttree (Price et al., 2010) 
(qiime phylogeny align-to-tree-mafft-fasttree command). The resulting 
phylogenetic tree served for unweighted UniFrac (Lozupone and 
Knight, 2005) diversity metrics computation. Alpha diversity was 
explored as a function of sampling depth, and a rarefaction depth of 
3,940 was selected for core diversity analyses because this was the 
highest sampling depth at which all 114 samples were retained, and 
Shannon alpha diversity appeared to level off after sampling depth of 
2000 (qiime diversity alpha-rarefaction command). Alpha and beta 
diversity were computed using core diversity analysis (qiime diversity 
core-metrics-phylogenetic). Group significance analysis (Kruskal-
Wallis for alpha diversity and PERMANOVA (Anderson, 2001) for 
beta diversity) was also computed (qiime diversity alpha-group-
significance and qiime beta-group-significance commands). To assign 
taxonomy to the ASV sequences, we  trained our own taxonomic 
classifier. First, the pre-formatted Silva 138 SSURef NR99 full-length 
sequences and taxonomy database (Quast et al., 2013; Robeson et al., 
2021) were downloaded from QIIME2 data resources. Then, 550 
nucleotides spanning the V1-3 hypervariable region of 16S rRNA gene 
were extracted from the full-length sequences (qiime feature-classifier 
extract-reads command with 28F-519R primers). A Naive Bayes 
classifier was trained on these extracted regions and the model then 
applied to classifying the ASVs (qiime feature-classifier classify-sklearn 
command). For species-specific analyses, the ASV feature table was 
collapsed to species level (qiime taxa collapse command) and 
converted to relative abundance (qiime feature-table relative-frequency 
command). Differential abundance analysis was run using ALDEx2 
(v1.3.2) (Fernandes et al., 2014) with Benjamini–Hochberg correction 
and ANCOM-BC (Lin and Peddada, 2020) with Holm–Bonferroni 
correction using the species-level feature table. Differential abundance 
analysis for Shannon entropy was performed using pairwise Kruskal–
Wallis with Benjamini–Hochberg correction.

Predictive functional analysis by phylogenetic 
investigation of communities by reconstruction 
of unobserved states (PICRUSt2)

The ASV feature table and sequences were input into the 
Phylogenetic Investigation of Communities by Reconstruction of 

Unobserved States (PICRUSt2) plugin in QIIME2 (qiime picrust2 full-
pipeline command) (Janssen et  al., 2018; Douglas et  al., 2020) to 
generate predicted MetaCyc pathways. PICRUSt2 performs 
phylogenetic placement of the ASVs into a reference tree and then 
estimates the functional potential of the ASVs based on the known 
functions associated with the reference organisms in the tree. The 
default reference tree was used. Six of the 6,301 ASVs aligned poorly 
to the references and were excluded from downstream analysis. A total 
of 410 pathways were predicted. The Bray-Curtis distance metric was 
used for beta diversity analysis. Differential pathway abundance 
analysis was run using ANCOM-BC.

Lipids data analysis
The Euclidean distance metric was selected for beta diversity 

analysis due to the nature of the data, which consists of absolute 
concentration of lipids.

Integration and correlation analysis
Species-lipids, species-pathway and pathway-lipids correlation 

analysis was performed using Hierarchical All-against-All 
association testing HAllA (version 0.8.20) (Ghazi et al., 2022) using 
Spearman correlation and Benjamini–Hochberg false-discovery rate 
correction (q-value). Complementary to univariate analysis 
performed using ANCOM-BC and ALDEx2, supervised multivariate 
analysis using Random Forest was applied to gain insights into the 
predictive capabilities of the species microbiome and lipids with 
regard to location and gender group classification. The Boruta 
package (v.8.0.0) (Kursa and Rudnicki, 2010) was used for feature 
selection, with a maximum of 10,000 runs. Subsequently, a Random 
Forest model was constructed using the selected features, leading to 
an out-of-bag (OOB) error rate of 14.91% based on 1,000 trees, as 
depicted in Supplementary Figure S1. A multidimensional scaling 
(MDS) plot was generated using the proximity matrix of the Random 
Forest model (rescaled to the range of [−1, 1] to standardize the axes 
and facilitate a clearer visualization of the correlation between lipids, 
16S and pathway variables and the ordination axes) and PICRUSt2 
predicted pathways, together with Random Forest selected features 
driving the separation, were fitted on the MDS plot using the envfit 
function from the Vegan package, see Supplementary Figure S2A. The 
contribution of different species to selected PICRUSt2 predicted 
pathways is shown in Supplementary Figure S2B. The statistical 
method adonis2 from the Vegan R package (v.2.6-4) was used to 

TABLE 1 Ceramides subtypes measured by TrueMass® Stratum Corneum Lipid Panel in this study.

Ceramides class Sphingosine base

Ceramides Ceramide alpha-hydroxy fatty acids (AS) Sphingosine

Ceramide esterified omega fatty acids (EOS)

Ceramide saturated fatty acids (NS)

Dihydroceramide Alpha-hydroxy-dihydrosphingosine (ADS) Dihydrosphingosine

Non-hydroxy-dihydrosphingosine (NDS)

6-Hydroxyceramide 6-hydroxyceramide alpha-hydroxy fatty acids (AH) 6-Hydroxysphingosine

6-hydroxyceramide esterified omega fatty acids (EOH)

6-hydroxyceramide saturated fatty acids (NH)

Phytoceramide Phytoceramide alpha-hydroxy fatty acids (AP) Phytosphingosine

Phytoceramide saturated fatty acids (NP)
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assess the significance of variation in location and gender explained 
by 16S species (unweighted unifrac), PICRUSt2 predicted pathways 
(Bray–Curtis) and lipids (Euclidian), see Figure  2. Pairwise 
PERMANOVA analysis with Holm–Bonferroni correction was 
performed using the pairwise.adonis function (based on a loop 
using adonis2) (Arbizu, 2020).

Results

Skin microbial composition and predictive 
functional metagenomic profiles vary by 
body sites and gender

Alpha diversity (Shannon entropy) of the skin microbiome was 
significantly different between face and forearm samples, as well as 
between male and female samples (Figure 3). Female forearm samples 
have the highest microbial diversity, and male face samples have the 
lowest diversity. No significant change in alpha diversity was observed 
for skin type or age group (Supplementary Figure S3).

Beta diversity of the skin microbiome (PCoA analysis using 
unweighted unifrac distance) showed significant separation of the 
samples by body location (PC1, 25% explained variance) and gender 
(PC2, 5% explained variance) (Figure 2A). Pairwise PERMANOVA 
results showed q-value = 0.006 for all pairwise comparisons between 
location or gender. Discriminating bacteria between body location or 
gender are shown in Supplementary Figure S4. For instance, 
Staphylococcus hominis (q-value < 0.001), Corynebacterium 
tuberculostearicum (q-value <0.001), Micrococcus luteus (q-
value = 0.003), Finegoldia magna (q-value < 0.001) and Moraxellaceae 
sp. (q-value = 0.002) are more location specific. The relative abundance 
of these species were significantly higher in the forearm than the face. 
While Streptococcus sp. and S. epidermidis are more gender specific 
(ANCOM-BC location q-value >0.05 for both and gender 
q-value = 0.013 and q-value = 0.047, respectively). The relative 

abundance of Streptococcus sp. is higher in females than males, and 
S. epidermidis is higher in males than females especially in 
face samples.

To further investigate the functional potentials of the skin 
microbiome in this cohort, PICRUSt2 analysis was performed to 
predict MetaCyc metabolic pathways using 16S rRNA gene ASV data. 
In contrast to the skin microbial composition profiles, the PCoA plot 
for predicted functional profiles (Figure  2B) showed significant 
separation of the samples only for male face and forearm (q-
value = 0.09) and male face and female forearm (q-value = 0.09). 
ANCOM-BC analysis identified 271 metabolic pathways (q-
value <= 0.05) showing differential abundance between location or 
gender. The differential pathways are listed in Supplementary Table S1. 
To investigate the relationship between differentially abundant 
predicted pathways and the measured species and lipids, a Random 
Forest model was built on skin lipids and microbiome species data and 
a multidimensional scaling (MDS) plot generated using sample 
proximities (Supplementary Figures S1, S2). Differentially abundant 
predicted pathways were fitted onto the MDS plot and illustrated 
pathway distribution across sample groups. This analysis revealed 
stronger correlation of pathways to the forearm, especially in females, 
such as chorismate metabolism (ALL-CHORISMATE-PWY, r2 = 0.28), 
arginine and polyamine biosynthesis (ARG + POLYAMINE-SYN, 
r2 = 0.46), polyamine biosynthesis I (POLYAMSYN-PWY, r2 = 0.45) 
and polyamine biosynthesis II (POLYAMINSYN3-PWY, r2 = 0.44). 
Pathways exhibited a stronger correlation to forearm samples, with an 
average r2 = 0.14 for pathways having MDS1 scores less than 0, aligning 
with the observed higher Shannon entropy in the forearm samples as 
compared to the face. In contrast, the average r2 = 0.07 for pathways 
having MDS1 scores greater than 0. Of the 1,411 species in the full 16S 
feature table, Streptococcus spp. had the highest number of ASVs 
which were mapped to either of these four pathways (by parsing the 
PICRUSt2 stratified output abundance table), suggesting a potential 
functional contribution of Streptococcus spp. within these 
metabolic pathways.

FIGURE 2

PCoA plot and PERMANOVA analysis of skin microbial composition characterized by (A) 16S rRNA gene sequencing (B) predictive metabolic pathway 
profiles analyzed by PICRUSt2 using 16S rRNA gene sequencing data (C) skin lipidomic profiles characterized by SFC-MS/MS. F, female; M, male.
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Skin lipid profile differs between body sites

Total FFA, ceramides, cholesterol and cholesterol sulfate in the 
skin surface were quantified and the percentages of each ceramides 
subtypes were measured by SFC-MS/MS (Table 1). The PCoA plot of 
the lipid profiles using a Euclidean distance matrix showed significant 
separation between the body locations (Figure 2C). Females and males 
have different lipids profiles in the face samples (pairwise adonis 
q-value = 0.01), not in the forearms (pairwise adonis q-value = 0.09). 
No significant differences were observed in age and skin type groups 
(data not shown). Total FFA, cholesterol sulfate, sphingosine (AS and 
NS) are more abundant in the face, while Dihydro-/6-Hydroxy/phyto-
Ceramides (NH, NP, AH, AP) are more abundant in the forearm 
(Supplementary Figure S5).

Correlations between skin microbiome and 
lipid profiles

To explore the relationship of the skin microbial composition and 
lipids profiles, HAllA analysis was performed. Eighty-two species 
clusters were identified to have significant correlation with Shannon 
diversity and/or lipids (Supplementary Table S2). The most significant 
bacteria cluster including S. hominis, Corynebacterium sp., 
Corynebacterium tuberculostearicum, Finegoldia magna had positive 
correlation with Shannon diversity, dihydro- (ADS)/6-hydroxy (AH, 
NH)/phyto-cCeramides (AP, NP), and negative correlation with FFA, 
cholesterol sulfate, sphingosine based ceramides (AS, NS). A few other 
bacteria, for instance, Pseudomonas sp., Moraxellaceae sp. and 
Roseomonas sp. and Brevibacterium casei had similar correlation 
patterns as Cluster 1. In contrast, C. acnes tended to have inverse 
correlation patterns as compared to the clusters described above. They 

are positively correlated with FFA, cholesterol sulfate, sphingosine 
based ceramides, and negatively correlated with dihydro−/6-hydroxy/
phyto-ceramides. The relationship among Shannon entropy, 
representative bacteria clusters and lipids was illustrated in Figure 4.

To further explore the potential mechanism of the correlation 
between the species and lipids, HAIIA analysis was run using the 
predictive metabolic pathways generated by PICRUSt2 and lipids. 
Hundred and forty-seven pathway clusters of species were identified 
to have significant correlation with lipids (Supplementary Table S3). 
The most representative pathway cluster is composed of 9 lipids and 
226 pathways, which are involved in amino acids metabolism, 
carbohydrates degradation, and aromatic compounds metabolism. 
This cluster is positively correlated with ADS, NP, AP, AH, NH, 
while negatively correlated with FFA, cholesterol sulfate, AS, 
NS. Many of the pathways in this cluster have positive correlation 
to S. hominis, Corynebacterium tuberculostearicum and 
Corynebacterium sp. (Figure 4); all species are more abundant on 
the forearm.

Additionally, we  performed HAIIA analysis to explore the 
correlation between bacteria species and predictive metabolic 
pathways, especially lipid related pathways. We  observed lipid 
related pathways that are significantly correlated with certain 
bacteria (Supplementary Table S4). For instance, S. hominis, 
C. tuberculostearicum, Micrococcus luteus, Finegoldia magna, and 
Moraxellaceae sp. are more location specific and had significant 
positive correlations with fatty acid degradation pathway (FAO-
PWY: fatty acid β-oxidation I  (generic); PWY-7094: fatty acid 
salvage). S. epidermidis and family Neisseriaceae had significant 
correlations (q-value <= 0.05) with fatty acid synthesis pathways 
including super pathway of fatty acid biosynthesis initiation 
(FASYN-INITIAL-PWY) and fatty acid elongation -- saturated 
pathways (FASYN-ELONG-PWY). The correlations of 
representative predicted metabolic pathways and bacteria/lipids 
are illustrated in Figure  4. The correlations of all predicted 
pathways having a significant q-value and bacteria/lipids are 
illustrated in Supplementary Figure S6.

Discussion

Skin microbial composition varies by the body locations and is 
highly influenced by age, gender and skin types etc. (Grice et al., 2008; 
Ross et al., 2017; Li et al., 2019; Boxberger et al., 2021). Our findings 
are consistent with other studies showing significant differences in 
skin microbial composition between body locations and gender. The 
female forearm has the highest microbial diversity (Figure 3) and 
certain bacteria were identified as either location specific, such as 
S. hominis, M. luteus, C. tuberculostearicum, F. magna and 
Moraxellaceae sp.; or gender specific, e.g., Streptococcus sp. and 
S. epidermidis (Supplementary Figure S4). More interestingly 
we found that predicted bacteria metabolic pathway profiles differed 
by body location and gender as well. Predicted pathways involved in 
arginine, polyamine, and chorismate biosynthesis and fatty acid 
degradation are more abundant in the female forearm, and sulfur 
oxidation and fatty acid biosynthesis pathways are more abundant in 
male face. The differences in skin microbial composition and 
metabolism might be  due to the difference in sweat or sebum 

FIGURE 3

Alpha diversity of skin microbiome in different body sites and gender 
characterized by 16S rRNA gene sequencing. Kruskal–Wallis pairwise 
q-values represent ‘***’ 0–0.001, ‘**’ 0.001–0.01, ‘*’ 0.01–0.05, ‘+’ 
0.05–0.1. F, female; M, male.
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production, cosmetics application, skin pH, thickness, or hormone 
production which may favor the growth or activity of specific bacteria 
in a certain body location or gender (Grice and Segre, 2011; Ross et al., 
2017). The bacterial species statistically enriched according to body 
location and gender show phylogenetic conservation of genes involved 
in specific metabolic pathways suggests that they may be involved in 
these metabolisms in the skin. For instance, S. hominis, M. luteus, 
C. tuberculostearicum, F. magna and Moraxellaceae sp. may be involved 
in arginine/polyamine biosynthesis, chorismate biosynthesis and fatty 
acid degradation, while Streptococcus sp. and S. epidermidis may 
be involved in sulfur oxidation and fatty acid biosynthesis metabolism. 
Further investigation into the actual genomic content of these 
organisms, and their expression in situ, will be necessary to establish 
these relationships.

The composition and distribution of skin lipids also vary by the 
body sites (Ludovici et al., 2018). Different ceramides subclasses are 
also distributed differently. In line with the previous study showing the 
relative abundance of NS is higher in forehead than arm in healthy 
and atopic skin, and NH is higher in arm than forehead (Emmert 
et  al., 2021), we  observed that total FFA, cholesterol sulfate, 
sphingosine (AS and NS) are more abundant in the face, while 
dihydro−/6-hydroxy/phyto-ceramides (NH, NP, AH, AP) are more 
abundant in the forearm. It may be due to the different sebaceous 
gland density and secretion in different body sites (Ludovici 
et al., 2018).

Age and skin type also impact the skin microbiome composition 
and/or lipid profiles (Rogers et al., 1996; Grice et al., 2008). However, 
in this cohort, we  did not observe significant differences in skin 
microbiome or lipids profiles between skin types and age groups. This 
study relied on self-reported skin type, so the lack of significance may 
be due to incorrect assessments. The low number of participants in 
each age group would also reduce our ability to identify 
significant differences.

The novel discovery from this study is we observed a unique 
pattern of the interaction between skin bacteria and lipids. For 
instance, S. hominis, Staphylococcus sp., C. tuberculostearicum, 
F. magna are positively co-correlated with Shannon diversity and 
skin lipids especially the essential ceramides (AP, NP), indicating 
a potential functional ecotype where these bacteria are replying 
on and/or involving in production of a particular skin ceramides 
profile. S. hominis is the second most frequently isolated 
coagulase-negative staphylococci (CoNS) from healthy skin 
(Kloos and Schleifer, 1975; Becker et al., 2014). Researchers have 
shown that S. hominis is a protective CoNS preventing pathogenic 
S. aureus from colonizing or infecting the skin (Severn et  al., 
2022). The correlation between S. hominis and skin ceramides 
suggested that S. hominis could be a beneficial bacteria to help 
build the skin ceramides, similar to its closely related species 
S. epidermidis, which has been shown to produce ceramides to 
maintain skin barrier (Zheng et  al., 2022). Therefore, 
we hypothesize that S. hominis and other bacteria in the same 
clusters could be beneficial to enhance skin barrier function.

We further conducted PICRUSt2 analysis to predict the 
functional metabolic pathways of the skin microbiome using 
characterized 16S rRNA gene sequences and correlated the 
pathways to bacteria and the lipids. The correlation between skin 
lipids, skin bacteria and representative predicted metabolic 
pathways is illustrated in Figure  4. We  did not observe any 
ceramides synthesis pathways that are correlated with S. hominis, 
C. tuberculostearicum, Micrococcus luteus, Finegoldia magna, 
Moraxellaceae sp. In contrast, these bacteria had significant 
positive correlations with fatty acid oxidation and salvage 
pathways, indicating that these bacteria may be also involved in 
long chain fatty acid degradation metabolism. While S. epidermidis 
and bacteria from family Neisseriaceae had significant correlations 
with fatty acid elongation and initiation synthesis, indicating that 

FIGURE 4

Heatmap illustrating the relationship between 16S species, representative predictive metabolic pathways and lipids. Columns represent 84 species 
discriminating between location and gender. The discriminating species were selected as the union of (i) species having at least one significant (q-value 
<= 0.05) HAllA correlation to lipids or Shannon entropy (ii) species selected using the Boruta feature selection algorithm for the Random Forest model 
using only species as input, and (iii) species selected using the Boruta feature selection algorithm for the Random Forest model using species and lipids 
as input. The MeanDecreaseGini score represents feature importance in the Random Forest classification model. Benjamini-Hochberg q-values (HAllA 
correlations) and Kruskal–Wallis q-values (ALDEx2 differential abundance) represent ‘***’ 0–0.001, ‘**’ 0.001–0.01, ‘*’ 0.01–0.05, ‘+’ 0.05–0.1. 
(A) Relative abundance of 16S species per location-gender group (B) HAllA correlation of 16S species to lipids. Lipids are grouped by their Sphingoid 
Base (Ceramides, Dihydro-ceramides, 6-Hydroxy-ceramides, Phyto-ceramides) or Other. (C) Rows represent 8 PICRUSt2 predicted pathways, amino-
acid and lipid-related, discriminating between location or gender (ANCOM-BC q-value  <=  0.05). Cells are colored by HAllA correlation between 16S 
species and predicted pathways. Black circles within cells are scaled by the number of ASVs contributing to PICRUSt2 predicted pathways. HAllA 
correlation between discriminant predicted pathways and lipids shown to the right. F, female; M, male.
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these bacteria may be  involved in fatty acid biosynthesis.. 
However, the hypothesis was generated based on computational 
correlation analysis. Future in situ studies are needed to further 
explore the mechanism of the relationship between the bacteria 
and skin lipids.

In summary, we  investigated the impact of body location and 
gender on skin microbial composition, functional metabolic pathway 
profiles and skin lipids profiles, and revealed unique patterns of 
interactions between skin bacteria and lipids. This study provides 
valuable insights on the relationship of skin microbiome and lipids, 
and gains a deeper understanding of how skin microbiome shapes and 
is being shaped by skin lipids.
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