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Phasmatodea, commonly known as stick insects, are recognized as noteworthy 
pests globally, impacting agriculture and forest ecosystems. Among them, the 
outbreak of Ramulus mikado has emerged as a notable concern in East Asian 
forests. Recently, Metarhizium phasmatodeae has been identified as utilizing 
stick insects as hosts. We have observed evidence of this entomopathogenic 
fungus infecting stick insects. Given the increase in these occurrences during 
the rainy period, this study investigated the relationship between the survival 
of R. mikado and the M. phasmatodeae infection during the rainy seasons of 
2022 and 2023. We collected stick insects in two representative forests of the 
Republic of Korea and examined insect survival, fungal infection, and various 
environmental factors. No infections were detected in specimens collected in 
June before the rainy season, but from July onwards, both the mortality of R. 
mikado and the fungal infection substantially increased. By the last sampling 
date of each year, 75% (2022), 71.4% (2023) of the specimens were infected, 
and over 90% of the total individuals succumbed as a result. Fungi isolated 
from deceased R. mikado were successfully identified as M. phasmatodeae 
using morphological and taxonomic approaches. Various statistical analyses, 
including principal component analysis and modeling, revealed a robust 
association between fungal infection and the survival of stick insects. The 
results highlight the correlation between mass deaths of stick insects and fungal 
infection, particularly during the summer rainy season. These findings offer 
valuable insights for forecasting R. mikado population in the upcoming year and 
developing effective pest control strategies.
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1 Introduction

Stick insect, Ramulus mikado (Phasmatodea: Phasmatidae), is a wingless and 
parthenogenetic forest pest. R. mikado follows a univoltine reproductive cycle with obligatory 
embryonic diapause. Eggs are primarily laid in summer, and individuals overwinter as pharate 
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first-instar nymphs (Yamaguchi and Nakamura, 2015). The stick 
insects pose a significant threat by causing serious defoliation in 
various deciduous trees. They exhibit polyphagous behavior by feeding 
on leaves. The long-term and repetitive defoliation caused by a high 
stick insect population can lead to premature seedling death and a 
reduction in the diameter growth of trees (Mazanec, 1967, 1968; Liu, 
2021). In 2020, an outbreak of the stick insect in the urban forests near 
the metropolitan area in the Republic of Korea caused damage to 
19 ha, escalating to 158 ha in 2021 and 981 ha in 2022 (Korean Forest 
Service, 2023). A comparable situation occurred in Japan, where 
R. mikado led an outbreak near residential areas over 2–3 years (Yano 
et al., 2021). Considering the economic and quality risks associated 
with the pest outbreak, various control methods, encompassing 
physical, chemical, and biological approaches, have been proposed (Ji 
et al., 2011; Klapwijk et al., 2016). Typically, synthetic pesticides such 
as fenitrothion and ethofenprox are applied to control R. mikado 
(Korean Forest Service, 2023). However, this method can affect 
non-target insects living in fields, leading to issues like 
bioaccumulation and the risk of side effects (Blacquière et al., 2012; 
Rahman et al., 2020; Yan et al., 2020).

Entomopathogenic fungi have emerged as highly promising 
alternative biocontrol agents to chemical insecticides (Erler and Ates, 
2015; Perumal et al., 2023; Vivekanandhan et al., 2023; Perumal et al., 
2024a,b). Metarhizium and Beauveria species are two main generalist 
entomopathogenic fungi widely employed in pest control across 
various insect species, including agricultural pests (Mascarin and 
Jaronski, 2016; Peng et  al., 2021; Krutmuang et  al., 2023; 
Vivekanandhan et al., 2024; Perumal et al., 2024a,b). Notably, the 
fungi of the genus Metarhizium have been recognized for their ability 
to infect and eliminate a broad range of arthropods (Zimmermann, 
2007; Brunner-Mendoza et al., 2019; Vivekanandhan et al., 2022). This 
process involves the release of cuticle-degrading enzymes and the 
application of mechanical pressure exerted by the appressorium 
(Leger et al., 1986; Barelli et al., 2016). Upon successful penetration of 
the host insect, asexual spores (blastospores) are produced to facilitate 
dispersal in the insect hemocoel. Throughout the invasion of the 
insect body, depletion of nutrients in the hemocoel and the fat body 
occurs, eventually leading to the death of the host (Gao et al., 2011; 
Peng et al., 2022). In the case of the order Phasmatodea (Insecta), 
M. phasmatodeae has recently been reported as a novel species, 
utilizing stick insects as its hosts (Mongkolsamrit et  al., 2020; 
Thanakitpipattana et al., 2020). In domestic cases, there have been 
reports of R. mikado being infected by M. anisopliae, and its biocontrol 
has been confirmed through artificial inoculation (Kim et al., 2010; 
Jung et al., 2023).

Before applying cultured entomopathogenic fungi to the field, it 
is necessary to conduct preliminary research on how these biocontrol 
agents react to environmental conditions during host infection. Their 
biocontrol activities may vary under actual field conditions compared 
to laboratory environments during inoculation (De La Rosa et al., 
2000; Stafford and Allan, 2014). Particularly, the subtropical frontal 
zone of East Asia experiences heavy summer rainfall (Choi et al., 
2020). The Korean rainy season, known as Changma, is characterized 
by a prominent increase in rainfall from late June to August, leading 
to elevated temperatures and relative humidity (Wang et al., 2007). 
Studies suggest that, entomopathogenic fungi, including the genus 
Metarhizium tend to enhance their virulence in response to increased 
temperature and humidity (Arthurs and Thomas, 2001; Goble et al., 
2016). The genus Metarhizium is recognized for its presence in soil 

environments and its infection of insects inhabiting these areas 
(Mcguire and Northfield, 2020; Tamayo-Sánchez et  al., 2022). 
However, research on Metarhizium species infections in stick insects, 
predominantly residing in the canopy layer throughout most of their 
life cycle, is limited. Taken together, we hypothesized that the survival 
of R. mikado could be affected by infection with entomopathogenic 
fungi, particularly with enhanced insecticidal performance during the 
rainy season.

The objectives of this study were 1) to assess the survival of 
R. mikado and the impact of M. phasmatodeae infection during the 
rainy season and 2) to explore the environmental factors affecting the 
biocontrol activity of M. phasmatodeae. Our investigation revealed 
that the survival of R. mikado is influenced by entomopathogenic 
fungi in the forest ecosystem, along with other environmental factors. 
We  also observed a notable increase in the natural infection of 
M. phasmatodeae during the summer rainy season. These findings 
provide valuable insights for predicting the population dynamics of 
R. mikado in the upcoming years and for devising effective pest 
control strategies.

2 Materials and methods

2.1 Sample collection

Stick insects were identified morphologically by using taxonomic 
keys from National Institute of Biological Resources.1 Nymphs and 
adults of R. mikado were collected from Mt. Cheonggye (N 37° 24′ 21″ 
E 127° 00′ 02″) and Mt. Geumam (N 37° 30′ 42″ E 127° 10′ 52″) in 
Gyeonggi Province in 2022 and 2023, respectively. In each area, 
sampling was conducted by hand-picking and beating vegetation. The 
sampling was performed four times in 2022 and six times in 2023.

Approximately 40 to 50 individuals were collected per sampling, 
and 10 individuals were reared in cages (30 cm × 30 cm × 30 cm) at 
room temperature (RT) to minimize spatial stress. Specimens were 
chosen randomly and placed in separate cages for rearing. Cherry and 
oak branches with leaves (Prunus sargentii and Quercus mongolica) 
were supplied as food sources. Dead individuals were separated and 
individually transferred to petri dishes (90 × 15 mm) containing 
moistened filter paper to promote fungal sporulation. The dishes were 
incubated at 25 ± 1°C in darkness.

2.2 Data investigation

To evaluate survival and infection rates, dead individuals were 
counted every day and incubated to observe fungal conidia. Survival 
and infection rates were calculated as follows:

 
Survival rate

Number of dead samples

Number of collected
%( ) =

  samples
×100

 
Infection rate

Number of infected dead samples

Number of
%( ) =

  collected samples
×100

1 https://species.nibr.go.kr/index.do

https://doi.org/10.3389/fmicb.2024.1383055
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://species.nibr.go.kr/index.do


Min et al. 10.3389/fmicb.2024.1383055

Frontiers in Microbiology 03 frontiersin.org

To obtain environmental information, data loggers, HOBO Pro v2 
Temp / RH (Onset, Seoul, Republic of Korea) were mounted on trees 
for each sampling site and set to record temperature and relative 
humidity every hour. And then they were represented as average 
values using data from the 14 days preceding the sampling date. For 
precipitation, daily data obtained from the nearby Automatic Weather 
Station (AWS, https://data.kma.go.kr) at the sites were represented as 
cumulative precipitation data over the same period.

2.3 Fungal isolation

The strains used in this study were isolated from deceased 
R. mikado specimens were collected in the forest. We collected stick 
insects ranging from the 5th instar nymphs to adults. We randomly 
selected insects per sampling site and cultured fungi on potato 
dextrose agar (PDA: Difco, Detroit, United States) plates (90 × 15 mm) 
containing 100 μg/mL of penicillin and 100 μg/mL of streptomycin. 
The plates were sealed with parafilm and incubated at 25 ± 1°C in 
darkness. The emergence of mycelia was monitored daily, and the 
fungus was reisolated by single spore isolation to obtain a pure fungal 
culture. All pure isolates were stored in 20% glycerol at −80°C 
until use.

2.4 Morphological observation

To assess macro- and micro-morphological characters, each 
fungal isolate was grown on PDA at 25 ± 1°C for 14 days. The fungal 
spores were also obtained from PDA plates cultured for 14 days. 
Specimens were observed and photographed at 400 × magnification in 
a DM6 B microscope (Leica Microsystems, Wetzlar, Germany) 
equipped with a Leica DMC6200 camera.

2.5 Molecular identification and 
phylogenetic analyses

Fungal genomic DNA was extracted following the standard 
protocol (Specht et  al., 1982) with minor modifications. Briefly, a 
7-day-old fungal mass was placed in a 1.5 mL tube containing a mini 
plastic pestle after adding 450 μL of grinding buffer (20 mM Na4EDTA; 
0.1 M Tris–HCl, pH 7.5; 1.4 M NaCl). Ground mycelia were mixed by 
inversion and centrifuged at 13,000 rpm for 10 min. The supernatant 
was transferred to a new tube, and the same volumes of isopropanol 
were added. Nucleic acids were precipitated by centrifugation at 
13,000 rpm for 10 min at 4°C, dried for 15 min, and resuspended in 
20 μL of distilled water. The extracted DNA was preserved at −20°C 
and used as a template for PCR amplifications. As previously described 
(White et al., 1990), PCR amplifications were carried out in 50 μL 
reactions using Taq DNA polymerase (Takara Shuzo, Japan), 20 pmol 
of each primer, and roughly 50 ng of template DNA for four loci of all 
strains; the internal transcribed spacer (ITS) region of 18 S-28 S 
nuclear ribosomal DNA, and 5′ intron-rich region translation 
elongation factor 1-α (5’tef). PCR primer pairs used to amplify the 
gene regions for this study were: ITS1 (GARTGYCC 
DGGDCAYTTYGG)/ITS4 (CCNGCDATNTCRTTRTCCATRTA) 
for ITS (White et al., 1990), EF1T (ATGGGTAAGGARGACAAGAC)/

EF2T (GGAAGTACCAGTGATCATGTT) for 5’tef (Bischoff et al., 
2006). Thermocycler conditions for amplification of the DNA regions 
followed previously described protocols (Rehner and Buckley, 2005). 
Amplified PCR products were purified using the MEGAquick-spinTM 
plus Fragment DNA Purification kit (Intron, Seongnam, Republic of 
Korea) and sequenced (Bioneer, Daejeon, Republic of Korea).

Analysis of DNA sequences was performed with Seqman Pro 
(DNAStar, Madison, WI, United States) to assemble and edit forward 
and reverse sequences. These sequences were aligned using Clustal W 
by MEGA-X (Kumar et al., 2018). Sequences of ITS and 5’tef from 
related species were retrieved from the NCBI Genebank to elucidate 
relationships in Metarhizium (Mongkolsamrit et al., 2020). Maximum 
likelihood (ML) analyses were performed with the general time 
reversible model with Invariant sites and Gamma distribution 
(GTR + I + G) with 1,000 bootstrap replicates using RAxML (Edler 
et  al., 2021). This model was selected due to its comprehensive 
approach, accounting for base substitution rates, invariant sites, and 
rate variations among sites (Abadi et al., 2019). Bayesian posterior 
probabilities (BPP) were performed using Markov Chain Monte Carlo 
sampling (MCMC) in MrBayes v. 3.2.7 (Ronquist et al., 2012). Six 
simultaneous Markov Chains were run for 100,000 generations, and 
trees were sampled every 1,000th generation. The phylogenetic trees 
were visualized in Fig Tree v. 1.4.4 (Rambaut, 2009). The NCBI 
accession numbers of the three strains in this study are listed in 
Supplementary Table S2.

2.6 Insect bioassay

To verify the pathogenicity of M. phasmatodeae against R. mikado, 
adult R. mikado specimens were used in the bioassay as described 
previously (Kim et al., 2020). Three fungal isolates were randomly 
selected and cultured on PDA plates (90 × 15 mm) at 25 ± 1°C for 
14 days. To induce exposure to conidia, individual adult R. mikado 
specimen was placed on the fungal culture. After 1 h, the infected 
adult was transferred to a plastic cup (20 mm × 90 mm × 81.6 mm) 
along with a fresh cherry branch (Prunus sargentii) as a food source. 
The stick insects were reared in the cups at 25 ± 1°C for 14 days, with 
one milliliter of sterile distilled water supplied every 2 days to maintain 
high humidity. The number of deceased adults was recorded daily. 
Once stick insects died, they were moved to petri dishes (90 × 15 mm) 
with moistened filter paper to assess infection by M. phasmatodeae. 
This bioassay was repeated three times.

2.7 Statistical analysis

The survival of R. mikado post-sampling was visualized using the 
Kaplan–Meier curve (Kaplan and Meier, 1958). Any insects surviving 
beyond this time were regarded as “censored.” Log-rank (Mantel-Cox) 
pair-wise comparisons were used to evaluate the difference in 
survivorship based on the sampling dates.

Additionally, principal component analysis (PCA) was used to 
determine the multiple correlations based on the sampling dates 
(Wold et al., 1987). In the PCA biplot, survival and infection rates, and 
environmental factors were represented by vectors, and sample IDs 
were represented by symbols. Angles between vectors reflect their 
correlation, which can be estimated as the cosine of the angle between 
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any two vectors; vectors pointing in the same direction have a positive 
correlation, those pointing in opposite directions are negatively 
correlated, and vectors at right angles mean that vectors are 
not correlated.

The relationships between survival rate and each of the variables 
(infection rate, temperature, relative humidity, and precipitation) 
were investigated. In this study, nonlinear or linear models that 
accurately describe these relationships were fitted using the R 
packages nls (nonlinear model) or lm (linear model). The 
performance of each model was estimated using the coefficient of 
determination (R2) based on the observed value and the predicted 
value from the model. All data analyses were performed using the 
software R 4.3.2 and SPSS 25.

3 Results

3.1 Survey on the survival of R. mikado in 
the summers of 2022 and 2023

Diseased stick insects exhibiting paralysis-like symptoms and 
green spore formation on their body surfaces were observed in some 
mountains of the Republic of Korea (Figure  1A). Some of these 
infected stick insects were found deceased, with a notable prevalence 
during the summer season. Therefore, we  aimed to monitor the 
survival of these insects over time and uncover potential causes of 
mortality during specific periods.

To assess the survival of R. mikado, we collected a total of 461 
individuals through four samplings in Mt. Cheonggye (CM) and six 
samplings in Mt. Geumam (GM) in the summers of 2022 and 2023, 
respectively (Figures  1B,C; Table  1). The collected individuals 
underwent a two-week rearing process, revealing that dead insects 
were covered by fungal spore masses (Figure 1D). In the CM group, 
the survival rates for CM 3 and CM 4 were 2.7% and 7.5%, respectively, 
by day 14. In instances where spore masses were detected in dead 
insects, we classified them as “infected” and investigated infection 
rates among the deceased. Notably, infection rates exceeded 50% for 
both the CM and GM groups. In the GM group, survival rates for GM 
5 and GM 6 were less than 50%, with fungal infection initiating at GM 
3 and gradually escalated, reaching a peak infection rate of 70% 
by GM 6.

A comparison of survival rates based on the sampling dates (CM 
1–4 and GM 1–6 groups) indicated a significant decrease in survival 
rates as the sampling date progressed for both CM and GM groups 
(Figure 2). Log-rank pair-wise comparisons of survival curves were 
conducted to assess the statistical significance, providing the 
chi-square values (X2) and significance levels (p) 
(Supplementary Table S3). A statistically significant difference in 
survival rates was observed depending on the sampling period. As an 
example, in both 2022 and 2023, the final sampling group (CM 4, GM 
6) exhibited a rapid mortality rate compared to the first sampling 
group (CM 1, GM 1) (X2

(CM)  = 48.547, p  < 0.001; X2
(GM)  = 81.694, 

p < 0.001). Additionally, the mortality due to fungal infection varied 
based on the sampling period, with over 70% of all specimens being 

FIGURE 1

Disease symptoms of Ramulus mikado. (A) R. mikado infested on the body surface presenting a symptom of paralysis. Green spores (red arrows) were 
formed on the carcass of R. mikado. (B) Collected R. mikado samples. (C) Live (left) and dead (right) adults of R. mikado were observed. (D) Fungal 
spore masses covered the carcasses of R. mikado after incubation in humid conditions.
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infected in the final sampling group over the course of 2 years 
(Table 2). Collectively, our findings suggest a significant decline in the 
survival rates of R. mikado as the sampling period progresses. This 
prompts further exploration into whether the mortality of these 
insects is linked to fungal infection.

3.2 Fungal species identification

As described above, a significant number of fungus-infested 
insects were collected during the summer season. Notably, these 
insects exhibited green spore masses covering their bodies, a 
distinctive trait indicative of Metarhizium species infection 
(Thanakitpipattana et al., 2020). Thus, we isolated fungal strains from 
the carcasses of R. mikado to clearly identify the Metarhizium strains 
infecting R. mikado. Diseased stick insects were placed on PDA to 
isolate pure fungal cultures, and three putative Metarhizium strains 
were successfully obtained. Then we  analyzed the phenotypic 
characteristics of vegetative growth and asexual reproduction. 

Colonies of all strains showed yellow with a white edge and robust 
sporulation when grown on PDA (Figure 3A). Conidia produced on 
PDA were single-celled and cylindrical shape (Figure  3B). 
Furthermore, a multigene alignment was conducted using DNA 
barcode genes, including the internal transcribed spacer (ITS) and 5′ 
intron-rich region of the translation elongation factor 1-alpha (5’tef). 
All three strains exhibited high similarity to the barcode gene 
sequence of the M. phasmatodeae strain BCC49272, with ITS showing 
99.56–99.71% similarity and 5’tef showing 98.54–98.78%. In addition, 
phylogenetic analyses employing both maximum likelihood (ML) and 
Bayesian methods further confirmed a close relationship between the 
strains in this study and the M. phasmatodeae strain (BCC49272). As 
previously reported, M. phasmatodeae is a recently identified species 
known to infect stick insects (Phasmatodea) (Mongkolsamrit et al., 
2020; Thanakitpipattana et  al., 2020). In summary, based on 
comprehensive morphological and taxonomic characterization, the 
three strains were conclusively identified as belonging to 
M. phasmatodeae, suggesting their potential as biocontrol agents 
against Phasmatodea insects (Figure 3C).

TABLE 1 Information of sampling location.

Date Sample ID GPS coordinate Location Province Number of 
collected insects

10 Jun 2022 CM 1

37°24′21”N

127°00′02″E
Mt. Cheonggye Gyeonggi

30

24 Jun 2022 CM 2 40

9 Jul 2022 CM 3 37

22 Jul 2022 CM 4 40

9 May 2023 GM 1

37°30′42”N

127°10′52″E
Mt. Geumam Gyeonggi

50

2 Jun 2023 GM 2 53

16 Jun 2023 GM 3 50

1 Jul 2023 GM 4 50

21 Jul 2023 GM 5 55

3 Aug 2023 GM 6 56

Nymphs and adults R. mikado were sampled from Mt. Cheonggye and Mt. Geumam in 2022 and 2023, respectively. The sampling was conducted four times in 2022 and six times in 2023. 
Approximately 40 to 50 individuals of insects were collected per sampling.

FIGURE 2

Survival curves according to Kaplan–Meier analysis of R. mikado. Survival rates were analyzed for R. mikado samples which were collected in (A) 2022 
and (B) 2023. Mortality was examined daily by counting the number of dead insects for 14  days. Asterisk indicates a significant difference in survival 
among the groups (p  <  0.001, log-rank test).
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3.3 Insect bioassay

To assess the pathogenicity of isolated M. phasmatodeae against 
R. mikado, healthy R. mikado adults were directly exposed to the 
14-day-old fungal culture for 1 h and subsequently transferred to a 
clean dish (Figure 4A). Stick insects exposed to a clean PDA culture 
served as the control group. Following the treatments, all individuals 
in the experimental group succumbed within 6 days, in contrast to the 
control group, which survived throughout the experimental period. 
The external emergence of mycelia from the carcasses and the 
formation of green conidia were observed from the third day onward 
(Figure  4B). Taken together, our findings affirm that the 

M. phasmatodeae strains examined in this study exhibit biocontrol 
activity against R. mikado.

3.4 Association between R. mikado survival 
and environmental variables

Given the observed mortality of R. mikado during the summer 
season, our inquiry focused on understanding the factors contributing 
to the heightened virulence of M. phasmatodeae in forest ecosystems. 
As described earlier, an increase in rainfall was noted during the 
summer seasons of both 2022 and 2023, resulting in hot and humid 

TABLE 2 Investigation of the survival and infection rates and environmental factors.

Sample ID Survival rate 
(%)

Infection rate 
(%)

Temperature (°C) Relative 
humidity (%)

Precipitation (mm)

CM1 80.0 0.0 19.2 70.8 1.0

CM2 85.0 0.0 20.9 84.0 89.5

CM3 2.7 51.4 24.6 92.5 328.5

CM4 7.5 75.0 23.7 89.7 187.5

GM1 92.0 0.0 13.9 62.8 98.0

GM2 98.1 0.0 19.2 74.2 67.0

GM3 100.0 0.0 19.8 79.8 30.5

GM4 88.0 2.0 22.6 84.9 120.5

GM5 43.6 16.4 23.3 93.8 294.5

GM6 7.1 71.4 25.8 91.1 46.0

Sampling individuals were reared in 30 cm3 meshed cages, with 10 individuals in each for 2 weeks to check survivorship. Dead individuals were placed in petri-dishes and incubated at 25°C 
and the infection of M. phasmatodeae was investigated based on spores on carcass. Temperature and relative humidity are represented as average values for 2 weeks by HOBO data loggers. 
Precipitation represents the total accumulation for 2 weeks by AWS.

FIGURE 3

Morphological characterization and phylogenetic reconstruction of isolates in this study. (A) Colonies on PDA after 14  days. (B) Conidia on PDA. Scale 
bar =10  μm. (C) Phylogenetic reconstruction of M. anisopliae species complex based on ITS and 5′tef sequences using ML and Bayesian analysis. 
Number on the nodes are ML bootstrap / Bayesian posterior probability values above 70% (MLBS) or 0.7 (BPP).
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conditions. We collected data on average temperature and relative 
humidity using data loggers at the sampling sites, and accumulated 
precipitation data were obtained from AWS (Table 2). Subsequently, 
each environmental factor was compared with survival and infection 
rates (Figure 5).

The analysis revealed a decline in survival rates with increasing 
temperature and humidity, accompanied by a rapid increase in 
infection rates. This implies an inverse relationship between the 
infection rate and survival rate, indicating a positive association 
between the infection rate and environmental factors. Notably, the 
high infection rate on the last sampling dates in both 2022 and 2023 
was observed during periods of low precipitation. In this period, the 
warm and humid conditions following previous rainfall during the 
rainy season may have led to elevated infection rates, even as 
precipitation declined. In summary, our findings suggest fluctuations 
in the survival of R. mikado were influenced by the rainy season, 

which in turn affected temperature and humidity conditions. Our 
observation aligns with previous studies indicating that the insecticidal 
performance of entomopathogenic fungi could be  influenced by 
environmental conditions such as humidity and temperature (De La 
Rosa et al., 2000; Arthurs and Thomas, 2001; Athanassiou et al., 2017). 
Therefore, we  aimed to analyze their correlation through further 
statistical analysis.

3.5 Validation of the R. mikado survival 
model

To validate the R. mikado survival model, principal component 
analysis (PCA) was employed to understand relationships among 
various environmental factors (Table 2; Supplementary Table S4). This 
analysis aimed to identify correlated variables and ascertain which 

FIGURE 4

Biocontrol effects of M. phasmatodeae on R. mikado. (A) Each insect sample was exposed to the culture of M. phasmatodeae. Pure PDA culture was 
used as a control. The treated insect was transferred to a plastic dish and checked every day until 100% mortality was achieved. (B) Representative 
images of R. mikado after treatment with M. phasmatodeae. Dead insects were removed from the dishes and incubated for an additional indicated 
period (1 or 3  days) under moist conditions until mycelial outgrowth was observed.
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factors contributed most significantly to the variation in stick insect 
survival (Figure 6). The cumulative proportion of explanation for the 
first three dimensions (PC1, PC2, and PC3) was 75.0, 13.9, and 10.0%, 
respectively, with a total of 98.9% of the variances explaining the 
model. PC1 and PC2 with an eigen values of 3.75 and 0.69 revealed a 
notable negative correlation between R. mikado survival and 

M. phasmatodeae infection, while precipitation exhibited a somewhat 
weaker correlation with the survival rate and infection rate 
(Figure 6A). Conversely, PC1 and PC3 with an eigen values of 3.75 
and 0.50 indicated a positive correlation between precipitation and the 
infection rate, with both factors negatively correlated with the survival 
rate (Figure  6B). To summarize, the survival rate displayed a 

FIGURE 5

Investigation of the relationship between environmental factors and M. phasmatodeae infection against R. mikado. The values in the bar graph indicate 
various environmental factors in (A) 2022 and (B) 2023. Solid and dashed lines indicate survival and infection rates, respectively. Average temperature 
and Average relative humidity are represented as average values for 2  weeks derived from HOBO data loggers at each sampling site. Exceptionally, 
temperature and relative humidity values of GM1 were investigated using Automatic Weather Station (AWS) data. The values of precipitation represent 
the total accumulation for 2 weeks derived from the nearby AWS.

FIGURE 6

Principal component analysis (PCA) on the survival and infection rates of R. mikado, relative humidity, and temperature. Each biplot represents the 
combination of (A) PC1 and PC2, as well as (B) PC1 and PC3. The percentages of variance explained by axes or components (PC1-3) are shown in 
parentheses. Vectors indicate significant correlations between survival rate, infection rate, and environmental factors.
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significant negative correlation with infection rate, temperature, 
relative humidity, and precipitation. However, using the Spearman 
correlation coefficient, no statistically significant correlation was 
observed between precipitation and the infection rate, as well as 
precipitation and temperature (p > 0.05) (Supplementary Figure S1).

Further, considering the close relationship observed between 
insect survival and each variable (infection rate, temperature, relative 
humidity, and precipitation), we  investigated whether these 
associations could be proposed as a host-pathogen interaction model. 
A significant curvilinear or linear relationship was identified between 
survival rate and infection rate (R2 = 0.95), temperature (R2 = 0.97), 
relative humidity (R2 = 0.68), and precipitation (R2 = 0.67) (Figure 7). 
This relationship exhibited a rapid decline in survival rate with low 
infection rates, followed by a gradual decrease as infection rates 
increased (Figure 7A). Temperatures ranging from 14°C to 23°C had 
minimal impact on the survival rate, while beyond 23°C, the survival 
rate decreased to less than 0.5 (Figure 7B). Additionally, as relative 
humidity increased, there was a progressively sharp decline in the 
survival rate, dropping below 50% at humidity levels exceeding 
approximately 85% (Figure  7C). The relationship between 
precipitation and survival rate showed a negative linear correlation 
(Figure  7D). Overall, these results suggest that the survival of 
R. mikado exhibits a nonlinear/linear relationship with various factors, 
including fungal infection, temperature, relative humidity, 
and precipitation.

4 Discussion

The order Phasmatodea, encompassing stick insects, is known for 
harboring significant phytophagous pests affecting agriculture and 
forestry in various countries (Campbell, 1960; Prathapan et al., 2008). 
In the Republic of Korea, five species of insects, namely R. mikado, 
R. koreanus, Micadina phluctainoides, M. yasumatsui, and Phraortes 
illepidus, belong to Phasmatodea. Among these, R. mikado is 
recognized as a forest insect pest that causes severe defoliation by 
feeding on leaves from diverse deciduous trees (Jung et al., 2020).

To manage stick insects, a common approach involves the use of 
commercial sticky traps, which are encased around the tree trunks to 
capture hatched young nymphs climbing up from the ground (Korean 
Forest Service, 2023). Additionally, chemical control methods are 
employed, utilizing synthetic pesticides such as fenitrothion and 
ethofenprox. However, the application of sticky traps comes with 
inherent challenges, requiring individual installation in the forest and 
incurring substantial labor costs. Similar to chemical control methods, 
sticky traps also pose the disadvantage of impacting non-target 
organisms (Blacquière et al., 2012; Rahman et al., 2020). Moreover, the 
efficacy of chemical control may diminish over time due to the 
development of resistance in target insects (Hemingway and 
Ranson, 2000).

In this study, M. phasmatodeae, first reported in Korea and 
previously documented in Thailand and China, has demonstrated 

FIGURE 7

Modeling between survival rate and other factors. (A) infection rate; (B) temperature; (C) relative humidity; (D) precipitation. Red line shows the 
relationship and the equation of each red line is described beside the red line. The performance of each model was examined using the coefficient of 
determination (R2). Gray dot (highlighted using red dash line) excluded when creating the model.
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pathogenicity for stick insects as hosts (Thanakitpipattana et al., 2020; 
Zhao et al., 2023), suggesting its potential as a promising biocontrol 
agent. Our observation revealed that all insects inoculated with 
M. phasmatodeae succumbed within 5 days. Considering the rapid 
onset, M. phasmatodeae holds promise as a biocontrol agent against 
stick insect outbreaks in forest ecosystems (Sabbahi et  al., 2022; 
Vivekanandhan et  al., 2022; Perumal et  al., 2023). However, for 
application in forest ecosystems, additional host specificity tests are 
necessary. To enhance the effectiveness of fungal infection, it is 
essential to develop spray techniques that consider the ideal timing in 
accordance with environmental conditions.

We established the correlations among environmental factors, 
insect survival, and fungal infection through various statistical 
analyses. PCA indicated a minimal correlation between precipitation 
and infection rate in PC1 and PC2, while a positive correlation was 
identified between precipitation and infection rates in PC1 and PC3. 
This disparity can be  attributed to the characteristics of the rainy 
season, where precipitation undergoes rapid fluctuations, experiencing 
sudden increases followed by subsequent decreases (Wang et al., 2007). 
These changes, driven by the hot and humid conditions during the 
rainy season, persist even with reduced rainfall, enhancing the 
insecticidal performance of M. phasmatodeae. Consequently, the 
infection rate peaked on the last sampling date for each year, despite 
decreased precipitation, influencing the outcomes of 
PCA. Furthermore, modeling was conducted to examine the survival 
rates and various other factors. According to the infection rate-survival 
rate formula, a 16% or higher infection rate results in a 50% mortality 
rate among stick insects. Therefore, even a relatively low infection rate 
could induce a significant number of deaths in the stick insect.

The extensive mortality observed in R. mikado may be influenced 
by the population density of stick insects. A similar study conducted 
on locust populations reported a low infection rate (Shah et al., 1998), 
suggesting that population density could play a role in this disparity. 
The sampling sites in this study were forests experiencing significant 
stick insect outbreaks, resulting in much higher population densities 
than usual. The heightened density of hosts facilitates the acceleration 
of horizontal transmission among individuals (Roy and Pell, 2000). 
Additionally, the collective deaths of the stick insects could be related 
to the reproduction strategy. The formation of colonies through 
asexual parthenogenesis may indicate relatively equal susceptibility to 
a fungus (Steinkraus, 2006).

In conclusion, this study confirmed the natural infection of 
R. mikado by M. phasmatodeae and observed the mass mortality 
phenomenon in the stick insects due to the increased virulence of 
M. phasmatodeae in the hot and humid environment formed during 
the rainy season. Our findings will contribute to predicting population 
levels for the next year based on the rainy season. The adult female stick 
insects normally lay eggs per day in the summer (Kobayashi et al., 
2014; Lee et al., 2018). This trait implies that the total number of eggs 
laid may vary depending on the onset of the rainy season, consequently 
impacting population levels in the subsequent year. The fecundity of 
insects is one of the crucial factors in predicting the size of the next 
population (Peters and Barbosa, 1977; Powell and Bentz, 2009). 
Forecasting the future population could potentially assist in 
formulating pest control strategies. To ascertain whether this 
phenomenon is exclusive to R. mikado or common among stick insects 
within the Phasmatodea order, further research will be necessary.
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