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Background: While antibiotics are commonly used to treat inflammatory bowel 
disease (IBD), their widespread application can disturb the gut microbiota 
and foster the emergence and spread of antibiotic resistance. However, the 
dynamic changes to the human gut microbiota and direction of resistance gene 
transmission under antibiotic effects have not been clearly elucidated.

Methods: Based on the Human Microbiome Project, a total of 90 fecal 
samples were collected from 30 IBD patients before, during and after antibiotic 
treatment. Through the analysis workflow of metagenomics, we described the 
dynamic process of changes in bacterial communities and resistance genes 
pre-treatment, during and post-treatment. We explored potential consistent 
relationships between gut microbiota and resistance genes, and established 
gene transmission networks among species before and after antibiotic use.

Results: Exposure to antibiotics can induce alterations in the composition of 
the gut microbiota in IBD patients, particularly a reduction in probiotics, which 
gradually recovers to a new steady state after cessation of antibiotics. Network 
analyses revealed intra-phylum transfers of resistance genes, predominantly 
between taxonomically close organisms. Specific resistance genes showed 
increased prevalence and inter-species mobility after antibiotic cessation.

Conclusion: This study demonstrates that antibiotics shape the gut resistome 
through selective enrichment and promotion of horizontal gene transfer. The 
findings provide insights into ecological processes governing resistance gene 
dynamics and dissemination upon antibiotic perturbation of the microbiota. 
Optimizing antibiotic usage may help limit unintended consequences like 
increased resistance in gut bacteria during IBD management.
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Introduction

Antibiotics, capable of killing or inhibiting pathogenic bacteria, 
have been widely used for treating and preventing bacterial infections 
in humans and other animals (Cook and Wright, 2022), representing 
one of the indispensable clinical tools (Kanj et al., 2022). However, their 
widespread usage has led to diminishing efficacy against an increasing 
array of bacterial pathogens (Patangia et al., 2022), leading to increased 
morbidity and mortality (Tillotson and Zinner, 2017; Lerminiaux and 
Cameron, 2019). Alarmingly, current estimations indicate antibiotic 
resistance kills over 700,000 people annually worldwide (Lerminiaux 
and Cameron, 2019). Moreover, within the next three decades, drug-
resistant infections could claim 10 million lives per year, exceeding the 
number of deaths from cancer (Mudenda et al., 2023). For patients 
with inflammatory bowel disease (IBD), whose long-term antibiotic 
exposure for IBD management (Khan et al., 2011; Nitzan et al., 2016), 
can increase the risk of developing drug resistance, this may potentially 
constrain treatment choices and exacerbate difficulties in care (Ledder, 
2019). Therefore, it is necessary to investigate the underlying 
mechanisms by which antibiotic misuse leads to bacterial acquisition 
of drug resistance, especially among high risk populations like IBD 
patients, in order to find ways to control antibiotic resistance.

The human gut microbiota forms a complex functional metabolic 
network through dynamic microbial interactions, which plays an 
important role in maintaining health (Cheng et al., 2019; Hertli and 
Zimmermann, 2022). The gut microbiota is not only a sophisticated 
ecosystem, but also an important reservoir of antibiotics resistance 
genes (ARGs) (Hu et  al., 2013; Hofer, 2022). Several metagenomic 
analyses have revealed that the structure of the gut microbiota is 
markedly influenced by these resistance genes (Dhariwal et al., 2023), 
with a shared network of ARGs existing between pathogenic and 
commensal gut microorganisms (Forster et al., 2022). In order to solve 
the increasingly severe problem of drug resistance, we must understand 
how bacteria acquire and disseminate resistance genes in clinical 
settings. Notably, higher abundances of ARGs have been detected in the 
gut microbiota of IBD patients compared to healthy controls (Fredriksen 
et al., 2023). Understanding the mechanisms of antibiotic resistance 
gene dissemination within gut microbiota is critically important for 
controlling and preventing the development of antibiotic resistance.

Antibiotics exert a strong selective pressure on microbial 
populations, altering the composition and diversity of the gut microbiota 
(Grech et  al., 2021; McDonnell et  al. 2021; Patangia et  al., 2022). 
Antibiotic treatment can select for resistant pathogens that cause 
subsequent infections (Ianiro et al., 2020; De Nies et al., 2023), and 
antibiotics targeting specific species may also act on commensal species 
in patients (Korpela et al., 2016; Yang et al., 2021), thereby collectively 
disrupting microbial community stability. Disturbances to the stability 
of the gut microbiota could reduce colonization resistance against 
invading pathogens (Wu and Wu, 2012; Becattini et  al., 2016), and 
increase the risk of other diseases (Zheng et al., 2020). Particularly in IBD 
patients, the gut microbiota is already in an unstable state due to the 
disease condition (Clooney et  al., 2021; Kharaghani et  al., 2023). 
Prolonged antibiotic use may further intensify imbalances in the 
community by increasing selective pressures for resistant strains (Rashid 
et  al., 2015; Cižman and Plankar, 2018), potentially exacerbating 
antibiotic resistance in IBD patients (Park et al., 2014; Nitzan et al., 2016).

Such antibiotic-induced changes in the gut microbiota have been 
associated with an increase in ARGs (Pan et al., 2022). Dhariwal et al. 

(2023) showed that long-term antibiotic use sustains elevated levels of 
resistance genes, with these change enduring beyond the alterations 
in gut bacteria composition. Antibiotic selection may lead to 
accumulation of ARGs among commensal bacteria. Kathryn et al. 
(Winglee et al., 2017) discovered through metagenomic sequencing 
that the diversity of ARGs in the gut microbiota increases with the 
intensity of antibiotic treatment. Therefore, we need to investigate how 
antibiotics facilitate the spread of resistance genes within the 
gut microbiota.

Horizontal gene transfer (HGT) is a critical mechanism enabling 
bacteria to acquire new ARGs beyond their clonal evolutionary lines, 
thereby enhancing their antibiotic resistance (Tao et al., 2022). Jiang 
et  al. (2017) provided evidence for the transfer of ARGs from 
actinobacteria to proteobacteria. Under the pressure of antibiotics, 
HGT fosters genomic diversity and rapid adaptation in bacteria 
(Ramamurthy et al., 2022). Antibiotics can amplify the dissemination 
of ARGs among gut bacterial communities, with profound and lasting 
impacts on microbial composition (Jutkina et  al., 2016; Dhariwal 
et al., 2023). The enrichment of mobile ARGs in certain bacterial phyla 
(Hu et al., 2016) and the primary dissemination of resistance within 
the same genus or between different phyla (De Abreu et al., 2021) 
through genetic exchanges are notable findings. Particularly, a large 
number of horizontal gene transfer (HGT) phenomena were observed 
in IBD patients (Li et al., 2020), affecting the microbiome composition. 
Current research, however, lacks comprehensive understanding of 
ARGs transmission within the human gut microbiota before and after 
antibiotic use, making it crucial to characterize the resistome in this 
environment for developing personalized antimicrobial 
management strategies.

This study aims to investigate the impact of antibiotic treatment 
on the distribution and transfer of ARGs within the human gut 
microbiota. Mobile antibiotic resistance genes are particularly 
prevalent among patients with IBD (Li et al., 2020). Individuals with 
IBD are often administered antibiotic therapy (Nitzan et al., 2016) 
which can induce the horizontal transfer of ARGs within the intestinal 
microbiota. Based on this, we Utilizing metagenomic data from IBD 
patients in the Human Microbiome Project (HMP2), examining fecal 
samples at different stages of antibiotic therapy. Through analyzing the 
metagenomic sequences and interaction networks, we characterized 
the resistome and the pathways of ARG transfer induced by antibiotics. 
Our research seeks to elucidate the ecological processes governing 
ARG dynamics in the gut, potentially aiding in optimizing antibiotic 
usage and minimize unintended drug resistance promotion in 
IBD management.

Methods

Data sources

Metagenomics are capable of identifying new taxonomic groups 
(Wang et al., 2020) and resistance genes, which offers insights into 
microbial communities and resistance mechanisms (Li et al., 2021), 
making it a valuable tool in this research. This study used the 
metagenomic data from the Infectious Bowel Disease Multi-‘omics 
Database (IBDMDB) project of HMP2 (Lloyd-Price et  al., 2019), 
focusing on patients treated with antibiotics (Dubinsky et al., 2020). 
The IBDMDB project contains 1,638 metagenomic samples from 130 
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patients, of which 54 received antibiotic treatment. Since the use of 
antibiotics for more than 10 days can significantly affect the intestinal 
flora (Jakobsson et  al., 2010; Rashid et  al., 2015), patients taking 
antibiotics for less than 2 weeks were excluded, which left 30 patients. 
Samples collected more than 30 days after antibiotic cessation were 
considered “pre-treatment” as most microbial communities require 
around a month to fully recover from antibiotics (Dethlefsen et al., 
2008). Patients taking antibiotics for 14 days represented the “during-
treatment” period. Those stopping antibiotics for at least 2 weeks post-
cessation were categorized as “post-treatment.” After thorough quality 
control, 90 total samples from the 30 patients remained. These raw 
data were downloaded from the Sequence Read Archive (SRA) 
BioProject PRJNA398089, using aspera software and subsequently 
transferred to a linux server for analysis.

Sequence processing

The metagenomic sequence processing involved several stages: 
initial quality control, filtering, host contamination removal and a 
final quality control. Kneaddata pipline was used for these tasks, 
which integrates tools such as FastQC for quality assessment, 
Trimmomatic (Bolger et al., 2014) for trimming and filtering, and 
Bowtie2 (Langmead and Salzberg, 2012) for aligning sequences to the 
host genome and removing host-specific sequences. Post-processing, 
another round of quality control using FastQC was performed to 
ensure the integrity of metagenomic sequence preprocessing.

Microbial analysis

Taxonomic assignment of metagenomic DNA sequences was 
conducted using Kraken software, which employs exact k-mer 
matching against the NCBI database and a lowest common ancestor 
(LCA) algorithm for rapid and accurate classification. Outputs 
included abundance counts for each taxon. Subsequent data 
processing and analysis were performed using R and Python. 
Specifically, the pandas package in Python was used for data 
manipulation, while alpha and beta diversities were calculated using 
the vegan package in R. Visualizations were created using matplotlib 
in Python and ggplot2  in R. Additionally, network analysis was 
conducted using the networkX package in Python, with visualization 
generated in Cytoscape.

Antibiotics resistance gene analysis

Open reading frames (ORFs) were predicted from preprocessed 
contigs, selecting genes with a nucleotide length of ≥100 bp. These 
genes were clustered using CD-HIT to create a non-redundant gene 
set, represented by the longest sequence in each cluster. High-quality 
reads from each sample were mapped against this non-redundant 
gene set using SOAPaligner to determine gene abundances.

The Comprehensive Antibiotic Resistance Database (Alcock et al., 
2023) (CARD) was utilized for antibiotic resistance gene identification. 
Resistance Gene Identifier (RGI) software was used to align target 
species gene sequences against the CARD, annotating resistance gene 
functionality and obtaining resistance gene annotations.

Determination of HGT of ARGs

The BLAST method is a powerful tool used to identify species 
by comparing DNA or protein sequences to databases of known 
sequences. A 99% nucleotide identity threshold was used to 
determine potential horizontal gene transfer of mobile antibiotic 
resistance genes between species pairs based on pre- and post-
treatment sequencing data (Hu et  al., 2016). Specifically, if a 
resistance gene region displayed 99% or greater identity between 
the two species present before and after antibiotic use, it would 
suggest this gene recently transferred horizontally between these 
species over the treatment period.

Statistical analysis

For the significantly different species wad used the 
nonparametric factorial Kruskl–Wallis test, p < 0.05 was considered 
as a significant difference. Omnibus testing was performed based 
on Bray Curtis distance matrices. The Bray Curtis distance matrices 
were derived from microbial relative abundance matrices and gene 
TPM matrices.

Results

Alterations in gut microbiota of IBD 
patients before and after antibiotic 
treatment

First, we performed quality control on the data to ensure accuracy 
in subsequent analyses (Supplementary Table S1). We  employed 
Non-metric Multidimensional Scaling (NMDS) to examine shifts in 
the gut microbial community composition of IBD patients due to 
antibiotic treatment. In Figure 1A, the microbial communities prior 
to antibiotics displayed a tight clustering, indicating similar 
community compositions across samples. During treatment, a notable 
dispersion occurred, reflecting increased community divergence. But 
the post-treatment samples regrouped, ultimately reaching a different 
steady state compared to the initial clustering.

We defined dominant species as those with a relative abundance 
exceeding 0.1  in at least two samples (Dhariwal et  al., 2023). By 
comparing the pre-treatment and post-treatment relative abundances 
of dominant species, six species showed a consistent increase in 
abundance after treatment in the majority of individuals. These species 
included Bacteroides fragilis, Bacteroides stercoris, Bacteroides 
uniformis, Escherichia coli, Phocaeicola dorei, and Phocaeicola vulgatus 
(Figure 1B). The findings suggest that the increased species potentially 
possess a higher abundance of resistance genes or have gained 
increased resistance capabilities.

To further investigate the impact of antibiotic usage on the gut 
microbiota of IBD patients, we  performed LEFSE analysis 
(Supplementary Figure S1), which revealed that the majority of 
differentially abundant taxa belonged to the Roseburia genus. Roseburia 
is known for its involvement in the breakdown and fermentation of 
dietary fibers, producing beneficial short-chain fatty acids crucial for 
maintaining gut health. Relative abundance boxplots illustrated a 
significant decline in short-chain fatty acid-producting bacteria during 
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the antibiotic treatment period, including Dorea formicigenerans, 
Roseburia intestinalis, Anaerobutyricum hallii, Ruminococcus torques, 
Anaerostipes hadrus, Romboutsia ilealis, and Roseburia hominis, with 
partial recovery after treatment cessation (Figure  1C). These 
observations highlighted that while antibiotic usage reduced the 
proliferation of pathogenic microbes associate with inflammatory 
bowel disease, it also disrupted the growth of beneficial bacteria.

Supplementary Figure S2A illustrates the predominant taxa at the 
phylum level in the intestinal microbiota of IBD patients, including 
Bacteroidetes, Firmicutes, and Proteobacteria. Further examination at 
the genus level reveals that Bacteroides and Phocaeicola were the 
predominant genera (Supplementary Figure S2B). Following antibiotic 
administration, significant variations were observed among patients, 
with some genera consistently responding to antibiotic treatment. 
Specifically, the abundance of Bacteroides, Bifidobacterium, and 

Phocaeicola increased, while Faecalibacterium and Alistipes exhibited 
a relative decrease. These findings suggest a degree of common 
response of specific bacterial genera to antibiotic exposure.

Microbial co-occurrence network analysis

Network analysis is a widely employed approach to investigate 
microbial interactions and to understand the changes in community 
structure. Here, microbial co-occurrence networks of Operational 
Taxonomic Units (OTUs) were constructed based on the Spearman 
correlation coefficient exceeding 0.9 for pre-antibiotic, during, and 
post-antibiotic phases (Figures 2A–C). By applying the edge-weighted 
spring embedded layout to the network graph, nodes with high 
connectivity were placed together through clustering.

FIGURE 1

Impact of antibiotics on fecal microbiota diversity and composition in IBD patients. (A) NMDS based on the Bray–Curtis distance metric transformed 
species abundance matrix. Each point represents the bacterial microbiome of an individual sample. Colors indicate different time points. Ellipses 
represent 95% confidence intervals (CI) around the group clustered centroid. (B) Subtraction of relative abundance of dominant bacteria before and 
after medication. (C) Relative abundance of differential bacteria in three periods.
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The results revealed that positive correlations predominantly 
governed the interactions among microbial species within the 
networks. Compared to the baseline, the number of nodes, number of 
edges of the co-occurrence network in the post-antibiotic stage were 
significantly reduced (Supplementary Table S2), leading to a noticeable 
reduction in the co-occurrence network complexity in the post-
antibiotic phase, indicating a decrease in the intensity of interactions. 
Remarkably, during treatment network complexity increased, as 
evidenced by the increased number of nodes, number of edges and 
clustering coefficient, suggesting heightened bacterial correlations, 
likely due to the horizontal transfer of drug resistance genes among 
diverse microbial populations.

Intestinal resistance gene dynamics after 
antibiotic treatment

Using CARD annotations, we identified a total of 1,147 distinct 
ARGs, encompassing 28 different antibiotics and 12 resistance 
mechanisms. As depicted in Figure 3A, the mupirocin-like antibiotic 
class exhibited the highest abundance of associated resistance genes, 
followed by fusidane antibiotics, pleuromutilin antibiotics, and 
antibacterial free fatty acids. We  also found that after antibiotic 
treatment, the abundance of antibiotic resistance genes corresponding 
to aminoglycoside, fluoroquinolone, macrolide, multidrug and 
phenicol classes significantly increased. Regarding drug resistance 
gene diversity, similar to the microbial composition, the NMDS also 
demonstrated a shift from clustering to dispersion before eventually 
reaching a new stable state (Figure 3B).

Procrustes Analysis, commonly employed to assess the 
congruence between environmental factors and community 
relationships, was applied in this study. As demonstrated in Figure 3C, 
a significant congruence relationship was observed (Protest: sum of 
squares (M2) = 0.278, p = 0.001; permutations = 999), indicating that 
drug resistance genes can influence changes in community structure. 
The lengths of the lines connecting the two points represent the degree 
of dissimilarity between the microbial and drug resistance gene 
compositions of the same samples. As shown in the Figure 3C, the 
length of the lines between the microbiome and the drug resistance 
genome in the pre-treatment phase is shorter than that of the post-
treatment phase, indicating that the dissimilarity between the 

microbial composition and drug resistance genes was lower in the 
pre-treatment phase than that of the post-treatment phase. This 
suggests that the impact of antibiotic usage on drug resistance genes 
may operate independently of changes in microbial composition.

To investigate the distribution of genes within species, 
we constructed a shared gene network among species (Figure 3D). 
Nodes in the network represent genes and species, while edges 
indicate the presence of a gene within a species. Genes found in over 
20 species are labeled, and the network encompasses a total of 374 
species and 703 drug resistance genes. Notably, the phyla Bacteroidetes 
and Proteobacteria contain the highest number of drug resistance 
genes. Specific genes such as tet(W), Mtub_murA_FOF, CfxA2, 
vanHA, and tet(O) are widely distributed across species, present in 
more than 20 different species.

ARG transfer network analysis

Since conjugation is the most important means of HGT of 
antibiotic resistance genes, and antibiotics can promote the transfer of 
resistance genes, we  performed a BLAST analysis on sequences 
containing ARGs obtained before and after antibiotic treatment. If a 
gene exhibited differing species assignments between the 
pre-treatment and post-treatment BLAST results, it indicated gene 
transfer between these two species. Using this method, we constructed 
a dissemination network (Figure 4A) depicting the spread of drug 
resistance genes among species across 30 IBD patients.

The network encompasses a total of 46 species and 74 edges. The 
quantity of transferred genes is presented in Table 1, revealing that the 
transfer of drug resistance genes predominantly occurs within the 
same phylum. Notably, the phyla Firmicutes, Bacteroidetes, and 
Proteobacteria are prominently involved in the dissemination of drug 
resistance genes.

It is hypothesized that the antibiotics could potentially narrow the 
inter-individual differences among IBD patients by targeting pivotal 
hub species within the microbial network. Consequently, investigating 
the responses of IBD patients to antibiotics using Bray–Curtis distance 
aims to discern whether these responses are universally consistent or 
specific to individual cases. However, as illustrated in Figure 4B, both 
the microbial and drug resistance gene distances between individuals 
significantly increase following antibiotic administration (p < 0.05, 

FIGURE 2

The association network of intestinal bacteria in pre-antibiotic usage (A), during antibiotic usage (B), and post-antibiotic cessation (C). Each circle 
(node) represents a bacterial species, its color represents the bacterial phylum it belongs to and its size represents the number of direct edges that it 
has. The gray edge is positively correlated and the red edge is negatively correlated. Only significant correlations (−0.7  <  r  <  0.9, p  <  0.05) are displayed.

https://doi.org/10.3389/fmicb.2024.1382332
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2024.1382332

Frontiers in Microbiology 06 frontiersin.org

FIGURE 3

(A) Box plots showing the relative abundance measured as Transcript per Kilobase per Million mapped reads (TPM) of drug resistance gene (ARG) 
classes across all samples, stratified by time points. The center horizontal line of box is median, box limits are upper and lower quartiles, whiskers are 
1.5× interquartile ranges. (B) NMDS based on the Bray–Curtis distance metric transformed gene TPM matrix. Each point represents the bacterial 
microbiome of an individual sample. Colors indicate different time points. Ellipses represent 95% confidence intervals (CI) around the group clustered 
centroid. (C) Procrustes analysis of resistome composition (filled triangles) and species composition (filled circles) of ibd patients at three time points 
using PCoA ordination. The points are colored based on sampling time points in both groups. The length of line connecting two points indicates the 
degree of dissimilarity or distance between microbiome and resistome composition of the same sample. (D) The network of ARGs shared among 
species.

FIGURE 4

(A) Transmission network of ARGs in species. Each circle (node) represents a bacterial species, its color represents the bacterial phylum it belongs to 
and its size represents the number of direct edges that it has. (B) Distribution of Bray–Curtis dissimilarity of individual bacteria.

https://doi.org/10.3389/fmicb.2024.1382332
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2024.1382332

Frontiers in Microbiology 07 frontiersin.org

Mann–Whitney test). This suggests that antibiotic usage exacerbates 
the inter-individual divergence in both microbial and drug resistance 
gene profiles.

Given the inherent individuality in both the microbial composition 
and drug resistance genes, we reconstructed the individualized transfer 
networks for drug resistance genes (Supplementary Figure S3). In this 
network, the line thickness denotes the quantity of shared resistance 
genes, and nodes represent genera. As indicated in Table 2, the vanH 
exhibited transfer phenomena across 13 individuals, consistently 
involving various species within the Bacteroides genus. This gene is 
associated with glycopeptide antibiotics. Subsequently, the Hpin_
gyrA_FLO, conferring resistance to fluoroquinolones, demonstrated 
transfer in 10 individuals. This resistance gene corresponds to 
fluoroquinolone antibiotics, a class of broad-spectrum antibiotics.

By constructing both global and individual drug resistance gene 
transfer networks, we observed that gene transfers predominantly 
occur within the same phylum, with the phyla Bacteroidetes and 
Firmicutes exhibiting the highest number of transferred genes. 
Moreover, the transferred genes are primarily associated with 
resistance to broad-spectrum antibiotics.

Discussion

Antibiotics, while a mainstay in managing inflammatory bowel 
disease (IBD), also pose a risk of generating antibiotic-resistant 
bacteria and propagating antibiotic resistance genes (Ledder, 2019; 
Lerminiaux and Cameron, 2019), potentially leading to the treatment 
intolerance. To evaluate the impacts of antibiotics on the gut 
microbiota and resistome, this study analyzed the dynamic of the 
intestinal flora and the transfer of resistance genes by encompassing 
the metagenomic data through various treatment phases.

While antibiotics target pathogenic bacteria, they may also disrupt 
the normal gut microbiota’s balance, either directly or indirectly 
(Rashid et al., 2015). Typically, the majority of the microbiota revert 
to their pre-exposure state within 2–4 weeks following antibiotic 
treatment (Rashid et al., 2012, 2015). Our research align with this 
notion, illustrating a significant reduction in short-chain fatty acid-
producing bacteria during antibiotic administration, followed by a 
gradual recovery after antibiotic withdrawal. This pattern indicates an 
inherent resilience within the microbial community (Dethlefsen et al., 

2008; Jian et  al., 2021). Our study found that both the intestinal 
microbiota and drug-resistant profile exhibited self-recovery 
capabilities post-antibiotic treatment, as shown in the network 
analyses and Procrustes analysis. Network analysis showed increased 
co-occurrence of taxa during antibiotic exposure, implying inter-
species interactions at the genetic level such as resistance gene transfer. 
Procrustes analysis corroborated the potential congruence between 
the resistome and microbiota over time, suggesting resistance genes 
may affect the evolution of microbial community structure.

Previous studies have established that bacteria can exchange 
ARGs through various mechanisms such as conjugation, 
transformation and transduction, thus spreading antibiotic resistance 
(Munita and Arias, 2016; Tao et al., 2022). Our study, focusing on the 
distribution and transmission of ARGs within human gut microbiota 
induced by antibiotic exposure, identified Bacteroides and Proteus as 
having the most ARGs. While we  found the GC content after 
treatment to be higher than before treatment, the difference was not 
significant (Supplementary Figure S4). This is consistent with findings 
in the literature (Jaramillo et  al., 2015) demonstrating no clear 
association between GC content and horizontal gene transfer. Based 
on this, we  constructed comprehensive and individual-level ARG 
transfer networks, and found that ARG transfers predominantly 
occurred between closely related taxa within the same phylum, hinting 
at a phylogenetic barrier to gene transfer (Hu et al., 2016). In the 
transfer networks, Firmicutes, Bacteroidetes, and Proteobacteria 
harbored the most of the transferred ARGs. Furthermore, consistent 
with our findings, a retrospective study (Kusan et  al., 2022) have 
demonstrated that antibiotics can induce resistance development in 
pathogenic E. coli, which belongs to the phylum of Proteobacteria. 
Notably, genes like vanH, associated with glycopeptide antibiotic 
resistance (Marshall et  al., 1998; Blaskovich et  al., 2018) were 
commonly transferred in most individuals, potentially linked to 
vancomycin use in IBD treatment (Guinan et al., 2019; Lei et al., 2019).

Our findings underscore that antibiotic use in IBD not only alters 
the richness and balance of the gut microbiota, but also facilitates the 
spread of ARGs, posing potential risks to patient prognosis. Our 
results provide evidence for the ecological dysbiosis in the microbiota 
and resistome due to antibiotic intervention, and reveal the pathways 
of ARGs dissemination within the gut. To mitigate these unintended 
effects, future antibiotic treatment regimens for IBD could incorporate 
fecal bacteria transplantation with healthy patients (Keshteli et al., 

TABLE 1 ARG transfer across various phylums in Transmission network of ARGs depicted in Figure 4A.

Phylum before 
HGT

Phylum after 
HGT

Gene counts Gene name

p__Bacteroidota p__Bacteroidota
15

tet(Q), MCR-3.38, Mtub_murA_FOF, Ecol_murA_FOF, adeA, mel, Mef(En2), vanH, vanN, 

CfxA4, APH(4)-Ia, ErmF, ANT(9)-Ia, SPR-1, lnuA

p__Firmicutes 1 mel

p__Firmicutes p__Firmicutes
16

tet(W), tet(O), Cdif_gyrB_FLO, Saur_murA_FOF, tet(40), mefH, mtrC, vanS,  

PC1_blaZ, bcrA, ErmB, ECM-1, PLN-1, bcrB, dfrF, lnuC

p__Proteobacteria 2 tetA(46), ErmG

p__Actinobacteria p__Actinobacteria 3 Bado_rpoB_RIF, Saur_LmrS, Erm(48)

p__Bacteroidota 1 APH(3′)-IIIa

p__Firmicutes 3 tetB(46), APH(3′)-IIIa. SAT-4

p__Proteobacteria 1 Ecol_parE_FLO
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2017; Cai et  al., 2021). Providing beneficial microbes along with 
antibiotics may help restoration of microbial diversity and resistome 
balance after treatment (Cubillos-Ruiz et  al., 2022), leading to 
optimized management of IBD while mitigating risks of exacerbating 
antibiotic resistance in the gut. However, this study’s limited sample 
size calls for caution in generalizing the findings, necessitating further 
validation with larger cohorts. Additionally, the observed horizontal 
gene transfers of resistance genes through bioinformatics require 
experimental confirmation. Furthermore, exploring the resistome-
microbiota dynamics across various antibiotic classes and 
combinations remains an area for future research.
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phylum_before phylum_after gene Drug Class Resistance 
Mechanism

Patient counts

p__Bacteroidota p__Bacteroidota vanH glycopeptide antibiotic antibiotic target alteration 13

p__Bacteroidota p__Bacteroidota Hpin_gyrA_FLO fluoroquinolone antibiotic antibiotic target alteration 10

p__Bacteroidota p__Bacteroidota cmeA multidrug antibiotic efflux 8

p__Bacteroidota p__Bacteroidota Mtub_murA_FOF fosfomycin antibiotic target alteration 8

p__Firmicutes p__Firmicutes tet(O) tetracycline antibiotic antibiotic target protection 6

p__Bacteroidota p__Bacteroidota ErmG multidrug antibiotic target alteration 6

p__Bacteroidota p__Bacteroidota vanN glycopeptide antibiotic antibiotic target alteration 6

p__Bacteroidota  

p__Firmicutes

p__Bacteroidota  

p__Bacteroidota
mel multidrug antibiotic target protection 5

p__Bacteroidota p__Bacteroidota catIII phenicol antibiotic antibiotic inactivation 5

p__Proteobacteria  

p__Bacteroidot  

p__Bacteroidota

p__Bacteroidota  

p__Bacteroidota  

p__Proteobacteria

APH(4)-Ia aminoglycoside antibiotic antibiotic inactivation 5
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