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Background: Non-alcoholic fatty liver disease (NAFLD) is a type of liver metabolic 
syndrome. Employing multi-omics analyses encompassing the microbiome, 
metabolome and transcriptome is crucial for comprehensively elucidating the 
biological processes underlying NAFLD.

Methods: Hepatic tissue, blood and fecal samples were obtained from 9 
NAFLD model mice and 8 normal control mice. Total fecal microbiota DNA 
was extracted, and 16S rRNA was amplified, to analyze alterations in the gut 
microbiota (GM) induced by NAFLD. Subsequently, diagnostic strains for 
NAFLD were screened, and their functional aspects were examined. Differential 
metabolites and differentially expressed genes were also screened, followed 
by enrichment analysis. Correlations between the differential microbiota and 
metabolites, as well as between the DEGs and differential metabolites were 
studied. A collinear network involving key genes-, microbiota-and metabolites 
was constructed.

Results: Ileibacterium and Ruminococcaceae, both belonging to Firmicutes; 
Olsenella, Duncaniella and Paramuribaculum from Bacteroidota; and 
Bifidobacterium, Coriobacteriaceae_UCG_002 and Olsenella from 
Actinobacteriota were identified as characteristic strains associated with NAFLD. 
Additionally, differentially expressed metabolites were predominantly enriched 
in tryptophan, linoleic acid and methylhistidine metabolism pathways. The 
functions of 2,510 differentially expressed genes were found to be associated 
with disease occurrence. Furthermore, a network comprising 8 key strains, 14 
key genes and 83 key metabolites was constructed.

Conclusion: Through this study, we  conducted a comprehensive analysis of 
NAFLD alterations, exploring the gut microbiota, genes and metabolites of the 
results offer insights into the speculated biological mechanisms underlying 
NAFLD.
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1 Introduction

The gut microbiota (GM) constitutes a complex, dynamic and 
spatially heterogeneous ecosystem hosting numerous interacting 
microorganisms (Fan and Pedersen, 2021). Renowned as not only the 
largest “micro-ecosystem,” but also the “second largest gene pool” in 
the human body (Ren et al., 2020; Li C. et al., 2021). GM plays a 
pivotal role in human health (Álvarez-Mercado et  al., 2019). 
Alterations in the GM composition can significantly impact metabolic 
health, with abnormal changes in its abundance contributing to 
various common metabolic disorders, such as obesity, type 2 diabetes, 
non-alcoholic fatty liver disease, and cardiometabolic disease (de la 
Cuesta-Zuluaga et  al., 2018; Safari and Gerard, 2019; Sanchez-
Rodriguez et al., 2020; Wu et al., 2020). Marshall proposed the concept 
of the entero-hepatic axis (Marshall, 1998), elucidating the reciprocal 
regulation and influence of substances, cells and cytokines between 
the liver and intestine through the portal vein system. Moreover, 
studies have validated the metabolic interaction and immune 
correlation between the liver and intestine.

Studies have shown that in healthy individuals, there is usually a 
stable proportion of bacteria within the GM. Disruption of the GM 
can lead to structural, functional and diversity changes in intestinal 
tissues. Moreover, an increase in pathogenic bacteria could cause 
inflammation, energy metabolism disorders and immune disorders in 
host tissues, potentially leading to various diseases (Singh et al., 2017), 
including non-alcoholic fatty liver disease (NAFLD). According to the 
latest nomenclature standards, Metabolic Associated Steatotic Liver 
Disease (MASLD) has replaced the previous term Non-Alcoholic 
Fatty Liver Disease (NAFLD). However, for the sake of clarity and 
reference in this study, we will continue to use the term NAFLD after 
introducing MASLD. MASLD is a newer term. It is defined by hepatic 
steatosis and the presence of at least one cardio-metabolic risk factor. 
It emphasizes the central role of metabolic factors in fatty liver disease. 
This name more clearly points out the key role of metabolic disorders 
(such as obesity, diabetes, hyperlipidemia, etc.) in the occurrence of 
disease (Abdelhameed et al., 2024). NAFLD encompasses liver fat 
accumulation exceeding 5%, excluding alcohol and known liver 
damage factors, and includes non-alcoholic hepatic steatosis, 
non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular 
carcinoma (Powell et  al., 2021). Research by Li F. et  al. (2021) 
confirmed increased abundances of Escherichia, Prevotella and 
Streptococcus, alongside decreased abundances of Coprococcus, 
Faecalibacterium and Ruminococcus in patients with NAFLD. Similarly, 
a study by Loomba et al. (2017) also identified GM imbalances in 
NAFLD, specifically increased abundances of Proteobacteria and 
Enterobacteria and decreased abundances of Ruminococcus and 
Firmicutes. Further investigations revealed the crucial role of GM 
metabolites in the onset and progression of NAFLD. However, 
comprehensive analyses integrating transcriptome-metabolome-and 
microbiome data remain an area needing further exploration.

The advantage of using mice as a multi-omics model for NAFLD 
research lies in the following reasons. First, biological similarity. The 
biology of mice is similar to that of humans, especially in terms of 
metabolic and liver diseases. Therefore, by studying NAFLD in mouse 
models, the pathogenesis and pathophysiological processes of the disease 
can be better understood. Second, controllability. Mouse models can 
be more easily controlled and manipulated, and experimental conditions 
such as diet, environment, and gene expression can be  precisely 

controlled to better understand the development and progression of 
NAFLD. Third, experimental resources and costs. Mouse models are 
relatively inexpensive and resources are more readily available, and 
mouse experiments can be conducted more cost-effectively than human 
studies. Fourth, evaluation of potential treatment strategies. Studies 
conducted in mouse models can provide important information for the 
development and evaluation of potential NAFLD treatment strategies, 
such as drug therapy, dietary interventions, and gene editing.

In this study, we extensively elucidated the intricate biological 
mechanisms involved in the pathogenesis of NAFLD, examining 
genes, species, metabolites and metabolic pathways through multi-
omics analyses encompassing the microbiome, metabolome and 
transcriptome. Specifically, we  initially employed 16S rRNA 
sequencing to analyze differences in the species diversity and 
composition within the GM between patients with NAFLD and 
healthy controls (HCs). Subsequently, we  identified differential 
microbiota, and metabolites as well as differentially expressed genes 
(DEGs), exploring their respective functions. Additionally, we delved 
into the driving mechanisms associated with key strains of NAFLD by 
conducting correlation analyses among the genes, microbiota 
and metabolites.

2 Materials and methods

2.1 Construction of a nonalcoholic fatty 
liver model

Male C57 mice aged 8 weeks and weighing between 18 and 22 g 
were randomly allocated into two groups: 9 mice in the high-fat group 
and 8 in the control group. The high-fat group was fed through 85% 
basal feed +15% lard +1.5% cholesterol; the low-fat group was fed 
through normal feed. The feed composition includes 97 g/kg moisture, 
194.8 g/kg crude protein, 46 g/kg crude fat, 20 g/kg crude fiber, 56 g/
kg crude ash, 13.4 g/kg calcium, 8.2 g/kg total phosphorus, 0.146 mg/
kg aflatoxin B1, and < 10 CFU/g total colony count. All mice had ad 
libitum access to food and water throughout the study. The high-fat 
group received a diet high in -fat content, whereas the control group 
was provided with a standard normal diet. After a feeding period of 
13 weeks, blood samples were collected from the eyeball, fecal samples 
were collected and liver tissue was obtained through laparotomy. This 
study received approval from the ethics committee of Kunming 
Medical University.

2.2 Lipid panel tests

The blood collected from the eyeballs in each group at a range of 
2–8°C by centrifugation at 3000 rpm for 15 min. Subsequently, the 
resulting and the supernatant underwent analysis using a biochemical 
analyzer (SMT-120VP, Smart).

2.3 Fat expression detection using oil red O 
staining

The liver tissues obtained from the mice in each group were 
initially fixed in paraformaldehyde, and subsequently treated with the 
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OCT embedding agent, and rapidly frozen and embedded on the 
frozen table of microtome. To visualize lipid content, frozen sections 
were immersed in an oil red O working solution in darkness for 
8–10 min. Afterwards, differentiation was achieved by briefly 
submerging the sections in 60% isopropyl alcohol for 3–5 s. The 
staining of nuclei was accomplished using a haematoxylinstaining 
solution (G1004, Servicebio), followed by a series of washing steps 
with water to remove excess stain. Once washed, dried slightly, the 
sections were sealed using a glycerine gelatine sealing medium to 
preserve the samples.

2.4 Data extraction

The total fecal microbiota DNA was extracted and the V3-V4 
regions of the 16S rRNA gene were amplified. DNA extraction kits 
were available for different types of samples in order to ensure DNA 
extraction efficiency and quality. (OMEGASoilDNAKit; 
OMEGAWaterDNAKi; OMEGAStool DNAKit). The PCR primer 
(Supplementary Table 1) was designed against the conserved region 
to target the variable region of the 16S /ITS2 rDNA gene. After 35 
cycles of PCR, sequencing adapters and barcodes were added for 
amplification. PCR amplification products were detected by 1.5% 
agarose gel electrophoresis. The target fragments were recovered using 
the AxyPrep PCR Cleanup Kit. The PCR product was further purified 
using the Quant-iT PicoGreen dsDNA Assay Kit. The library was 
quantified on the Promega QuantiFluor fluorescence quantification 
system. The pooled library was loaded on Illumina platform using a 
paired-end sequencing protocol (2 × 250 bp). The composition of the 
fecal microbiota was evaluated using the quantitative insights into 
microbial ecology (QIIME) software (Release 138) for 
microbiota analysis.

Additionally, the collected tissue samples were thawed on ice, and 
metabolites were extracted using a 50% methanol buffer. Briefly, 20 μL 
of each sample was mixed with 120 μL of precooled 50% methanol, 
vortexed for 1 min, and then incubated at room temperature for 
10 min. The extraction mixture was stored overnight at −20°C. The 
next day, the mixture was centrifuged at 4,000 g for 20 min, and the 
supernatants were carefully transferred into new 96-well plates. The 
samples were then stored at −80°C until further analysis by LC–
MS. In addition, quality control (QC) samples were prepared by 
combining 10 μL of each extraction mixture. QC samples with a 
relative standard deviation (RSD) greater than 30% were removed 
from the analysis to ensure data quality. Subsequently, the extracted 
metabolites were annotated and quantified using the metaX software 
in combination with the KEGG and HMDB databases to identify and 
characterize the metabolites of interest.

2.5 Species diversity analysis

The sequencing depth was assessed using the Good’s coverage 
index. Various a Alpha-diversity indexes, including Chao1, observed 
species, Shannon and Simpson, were compared to analyze the species 
richness and uniformity (Mohakud et  al., 2019). Beta-diversity 
analysis was used to evaluate the species’ complexity among different 
groups. In this study, principal coordinate analysis was used to 
illustrate the differences between the different groups. Subsequently, 

the analysis of similarities (Anosim) was used to analyze whether 
differences between the two groups were significantly greater than 
those within the groups (Draiko et al., 2019).

2.6 Species composition diversity analysis

The GM composition was further analyzed, comparing the 
distribution of the GM at both the phylum and genus levels. 
Characteristic strains were identified using linear discriminant 
analysis effect size (LEfSE), and operational taxonomic units with a 
relative abundance exceeding 0.5% were selected for analysis based on 
the linear discriminant analysis (LDA) scores (Segata et al., 2011).

2.7 Functional prediction for the diagnostic 
strains

Receiver operating characteristic (ROC) curves were calculated 
using the “pROC” R package (version 1.18.0), and the area under the 
ROC curve (AUC) values were used to access the distinguish ability 
of characteristic strains (Robin et al., 2011). Functional prediction of 
the diagnostic strains (AUC > 0.8) was assessed, and differences 
between NAFLD mice and HCs were studied using the “PICRUSt2” 
R package (version 0.2.3) (Douglas et al., 2020).

2.8 Differential analysis of the metabolites

The metabolic differences between the NAFLD mice and HCs 
were compared through the construction of an orthogonal partial least 
squares discriminant analysis (OPLS-DA) model. This model’s validity 
was assessed using a permutation test. Subsequently, three methods, 
were employed to select metabolites: the multiple change method (FC 
value), the t test method (p value, and FDR value), and the partial least 
squares discriminant analysis method (VIP value). The differentially 
expressed metabolites between the two groups were identified using 
the following criteria: VIP > 1, FC ≥ 1, and p < 0.05. In addition, 
enrichment analysis of these differentially expressed metabolites was 
performed using the online platform “Metaboanalyst” (Chong 
et al., 2019).

2.9 Function analysis of the DEGs in NAFLD

The mRNA expression levels between the NAFLD mice and HCs 
were compared using the “limma” R package (version 3.52.4) 
(|logFC| > 0.5, p < 0.05), and visualized using the ‘ggplot2’ R package 
and Kolde R (2019). _pheatmap: Pretty Heatmaps_. R package version 
1.0.12.1 Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses of DEGs were conducted 
using the ‘clusterprofiler’ R package (version 4.4.4) (Wu et al., 2021).

1 https://CRAN.R-project.org/package=pheatmap
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FIGURE 1

Construction of the nonalcoholic fatty liver model. (A) The liver sample of each tissue. (B) Lipid panel. *p < 0.05, **p < 0.01, ****p < 0.0001.

2.10 Construction of a 
gene-microbiota-metabolite interaction 
network

The correlations between the characteristic strains and differential 
metabolites were assessed using the ‘Spearman’ package (|r| ≥ 0.3, 
p < 0.05). Metabolites in the pair were regarded as the key metabolites 
1, and diagnostic strains were regarded as key microbiota. Similarly, the 
correlations between the DEGs and differential metabolites were 
studied, and the DEGs in the pair were regarded as key genes, whereas 
metabolites were regarded as key metabolites 2. Collinear networks of 
the key microbiota-metabolites 1 and key genes-metabolites 2 were 
constructed using ‘Cytoscape’ (version 3.7.1) (Shannon et al., 2003). 
Finally, key metabolites 1 and 2 were combined, and a collinear network 
of key genes-microbiota-metabolites was constructed using ‘Cytoscape.’

2.11 Verification of the expression of 
differential genes using RT-PCR

Total RNA was extracted from the control and model groups, and 
the reverse transcription reaction was subsequently performed, followed 
by qPCR reaction with 2 × Universal Blue SYBR Green qPCR Master 
Mix kit. The PCR cycling conditions were as follows: pre-denaturation 
at 95°C for 1 min; denaturation for 20 s at 95°C, annealing for 20 s at 
55°C,and final extension for 30 s at 72°C; total, 40 cycles.

2.12 Statistical analysis

Statistical analysis was performed using R software (version 4.2.3) 
and the maps were plotted using Prism GraphPad, and the 
experimental data are presented as mean ± SEM. The Welch’s t-test was 
used to compare the measurement data between groups. p < 0.05 for 

statistical significance; p < 0.01 for high statistical significance; 
p < 0.001 for extremely high statistical significance.

3 Results

3.1 Construction of non-alcoholic fatty 
liver model

Upon examination, liver tissues from the model group of C57 
mice exhibited a distinctive yellow hue and enlarged sizes (Figure 1A). 
Moreover, the levels of TG, TC and LDL were significantly increased, 
whereas HDL levels showed a significant decrease (Figure 1B). These 
findings collectively suggest the successful establishment of the 
NAFLD model (Figure 1).

3.2 Fat formation observed upon oil red O 
staining

Excessive fat deposition represents a crucial pathological 
characteristic of NAFLD. To validate the successful establishment of 
the model, we conducted observations of adipogenesis using oil red O 
staining. Results demonstrated a substantial increase in fat content 
within the model group compared to the control group, further 
substantiating the successful construction of the model (Figure 2).

3.3 Species diversity analysis

The goods coverage curve approaching 1, indicated that sufficient 
sequencing data were acquired, affirming a reasonable sequencing 
depth (Figure  3A). No significant differences in alpha-diversity 
indexes were observed between the NAFLD and HC groups, 
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suggesting that the richness and uniformity of bacterial communities 
remained largely unchanged owing to NAFLD (Figure 3B). However, 
the PCoA results showed a distinct clustering of patients with NAFLD 
and HCs (Figure  3C). Furthermore, the ANOSIM analysis 
demonstrated greater differences between groups than within groups 
(ANOSIM statistics = 0.6233, p = 0.001), signifying the meaningfulness 
of grouping and substantial alterations in the structure and 
composition of the GM induced by NAFLD.

3.4 Analysis of the species composition 
diversity

At the phylum level, the gut microbiota primarily comprised 
Firmicutes, Bacteroidetes, Actinobacteria, Desulfobacterota, 
Patescibacteria, Proteobacteria, Verrucomicrobiota, Campylobacterota, 
Deferribacterota, and Synergistota. Comparing the NAFLD and HC 
groups, revealed significant decreases in the abundances of Firmicutes 

FIGURE 2

Fat formation observed upon oil red O staining. *p < 0.05.

FIGURE 3

Species diversity analysis. (A) The goods coverage curve. (B) Alpha-diversity indexes between the NAFLD and HC groups. (C) The PCoA result.
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and Synergistota in the NAFLD groups (p < 0.05), whereas Patescibacteria 
and Deferribacterota showed decreased abundance, Others 
demonstrated significantly decreased abundances in the NAFLD group 
(p < 0.05) (Figure 4A and Supplementary Table 2). At the genus level, the 
NAFLD group exhibited prominent representation of Muribaculaceae, 
Allobaculum, Dubosiella, Ligilactobacillus, Ruminococcaceae, 
Paramuribaculum, Bifidobacterium, and Desulfovibrio, among others. 
The HC group showed a predominant presence of Ligilactobacillus, 
Muribaculaceae, Lactobacillus, HT002, Dubosiella, Allobaculum, 
Candidatus, and Clostridia, among others. Notably, the NAFLD group 
demonstrated significantly increased abundances of Muribaculaceae, 

Allobaculum, Paramuribaculum, and Ruminococcaceae, and decreased 
abundances of Ligilactobacillus, Lactobacillus, and HT002 (Figure 4B and 
Supplementary Table  3). Further investigation using LEfSE analysis 
identified 46 differentially abundant key gut microbiota, including 35 
with notable roles in the NAFLD groups and 11 in the HC groups. 
Among these, Ileibacterium, Ruminococcaceae (Firmicutes), Olsenella, 
Duncaniella and Paramuribaculum (Bacteroidota), and Bifidobacterium, 
Coriobacteriaceae_UCG_002 and Olsenella (Actinobacteriota) were 
characteristic strains of NAFLD. On the other hand, HT002, 
Lactobacillus (Firmicutes), Bacteroides (Bacteroidota) were characteristic 
strains of HC (Figures 4C,D and Supplementary Table 4).

FIGURE 4

Analysis of the species composition diversity. (A) The distribution of the GM at the phylum level. (B) The distribution of the GM at the genus level. 
(C) LEfSE analysis of the clustering tree. (D) Different microflora in the NAFLD and HC groups.
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3.5 Screening of the 13 diagnostic strains, 
associated with liver protection

In this study, the ROC curves of the characteristic strains were 
calculated, and 13 diagnostic strains were obtained with an 
AUC  value >0.8 (AUCBifidobacterium = 0.969, AUCOlsenella = 1.000, 
AUCEnterorhabdus = 0.812, AUCBacteroides = 0.812, AUCDuncaniella = 1.000, 
AUCMuribaculum = 0.922, AUCParamuribaculum = 0.953, AUCIleibacterium = 0.891, 
AUCTuricibacter = 0.922, AUCHT002 = 0.883, AUCLactobacillus = 0.979, 
AUCRuminococcaceae = 0.984, AUCIleibacterium = 0.891) (Figure  5A). In 
addition, the functional prediction of the diagnostic strains was 
assessed, and the results showed that 121 pathways were significantly 
different between the two groups. Among these groups, 
methylerythritol phosphate pathway, glycogen degradation, 
l-ornithine, l-valine, l-tryptophan, and l-isoleucine biosynthesis 
pathways, among others, were significantly highly expressed in the 
NAFLD groups (p < 0.05) (Figure 5B).

3.6 The function of 2,497 differential 
metabolites mainly enriched in tryptophan, 
linoleic acid and methylhistidine 
metabolism pathways

The constructed OPLS-DA model revealed distinct differences in 
metabolite composition between the two groups (Q2 = 0.837, 
R2Y = 0.999) (Figure  6A). A total of 2,497 differentially regulated 
metabolites, including 947 down-regulated and 1,551 up-regulated 
metabolites, were identified in the NAFLD group, meeting the criteria 
of VIP > 1, FC ≥ 1, and p < 0.05 (Figures  6B,C). In addition, these 
differentially regulated metabolites were predominantly enriched in 
pathways related to tryptophan, alpha-linolenic acid, linoleic acid and 
methylhistidine metabolism (Figure 6D).

3.7 The functions of 2,510 DEGs are 
associated with the occurrence of diseases

A total of 2,510 DEGs (1,531 down-regulated and 979 up-regulated) 
were screened in the NAFLD groups compared with the HC groups 
(Figures 7A,B). In addition, these DEGs exhibited significant enrichment 
in 92 GO, categories, notably involving processes such as small molecule 
catabolic, processes and the regulation of small GTPase mediated signal 
transduction (Figure  7C). Furthermore, the KEGG results revealed 
associations of these DEGs with pathways related to cholesterol 
metabolism, amino acid biosynthesis, and primary bile acid biosynthesis, 
among others (Figure 7D).

3.8 Correlation analysis among the genes, 
microbiota and metabolites

As shown in Figure 8A, characteristic strains of the HC groups—
Bacteroides, HT002 and Lactobacillus demonstrate strong negative 
correlations with docosahexaenoic acid, n-isobutyrylglycine and 
taurine. Conversely, the key microbiota of the NAFLD groups exhibit 
strong positive correlations with cholanoic acid, 5-methyltetrahydrofolic 
acid etc. The correlation between the key metabolites 2 and genes is 
shown in Figure  8B. Shisa8 and Lrrc8e display strong positive 
correlations with cis-4-hydroxyequol, whereas Gm38220 and Gm42977 
exhibit strong negative correlations with Glu-Ile. Moreover, the 
constructed network involving 8 key strains, 14 key genes and 83 key 
metabolites elucidates potential regulatory interactions. Notably, 
Mup-ps16 has been indicated to potentially regulate the metabolism of 
3,7-dihydroxy-12-oxocholanoic acid through interactions with 
Duncaniella and Olsenella. Additionally, Proser2 shows potential 
regulatory capabilities across the metabolism influenced by most 
diagnostic microbiota (Figure 8C and Supplementary Table 5).

FIGURE 5

The 13 diagnostic strains related to liver protection and their function prediction analysis. (A) The ROC curve characteristic pressure calculation and 
4/13 diagnostic strains produced AUC values >0.8. (B) Functional prediction analysis of diagnostic strains.
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3.9 Verification of the expression of 
differential genes using RT-PCR

Based on the results of multi-omics joint analyses, we  further 
verified the expression of differential genes using RT-PCR. The results 
showed that compared with that in the control group, the expression 
of Slc22a7 in the model group was significantly increased, whereas the 
expressions of Hsd3b5, Zfp334, Ace2, Dbp and Proser2 were 
significantly decreased. Cyp2b9 and Ccr7 showed no significant 

differences. In addition to Dbp, Hsd3b5, Cyp2b9 and Ccr7, Slc22a7, 
Zfp334, Ace2 and Proser2 expressions were consistent with the results 
of multi-omics analysis (Figure 9).

4 Discussion

With the advancement in people’s living standards, NAFLD has 
emerged as the most prevalent liver disease globally. An increasing 

FIGURE 6

2,497 different metabolites and their functional enrichment metabolic pathways. (A) The OPLS-DA model shows differences in the metabolite 
composition between the two groups. (B) The volcanic map of different metabolites in the NAFLD group with VIP  >  1, FC  ≥  1, p  <  0.05. (C) Heat map of 
differential metabolite expression in the NAFLD group. (D) Differential metabolite enrichment pathway.
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body of research has established connections between imbalances in 
gut flora and a spectrum of host diseases, such as fatty liver disease, 
metabolic syndrome, inflammatory bowel disease, and colon cancer. 
The direct linkage between the intestine and liver through the portal 
vein, enables the intestinal microflora to remotely influence liver 
health (gut–intestinal microbiota – liver axis). Consequently, 
disruptions in intestinal microflora can alter the biological metabolism 
beyond the liver, potentially contributing to the onset and development 
of NAFLD. However, comprehensive joint analyses integrating 
transcriptomic, microbiomic and metabolomic data in NAFLD 
remain unreported.

In this study, we observed significant increases in the abundances 
of Bacteroides, Muribaculaceae, Allobaculum, Paramuribaculum and 
Ruminococcaceae, alongside notable decreases in the abundances of 
Ligilactobacillus, Lactobacillus and Enterococcus faecalis HT002 within 
the NAFLD group. Specifically, Ileibacterium valens, Ruminococcaceae, 

Duncaniella frettoniella, Paramuribaculum, Coriobacteriaceae, 
Marmorella UCG_002 and Olsenella were identified as characteristic 
strains associated with NAFLD. Previous studies have highlighted the 
negative association of the Ruminococcaceae family with hepatic 
markers, including liver weight, serum transaminase levels and the 
degree of hepatic steatosis and inflammation (Milton-Laskibar et al., 
2022). Moreover, our findings align with previous reports indicating 
increased abundances of Blautia, Romboutsia, Faecalibaculum and 
Ileibacterium alongside decreased levels of Allobaculum and 
Enterorhabdus in NAFLD mice (Gu et  al., 2022). Our results are 
consistent with those of previous literature reports. The relationship 
between the other five strains and NAFLD has not been reported in 
detail. However, Fang et al. (2022) found that Olsenella is negatively 
correlated with lower levels of free fatty acids, a pivotal factor in 
alcoholic liver disease- development. Additionally, Zhou et al. (2022) 
investigated the intestinal microecology in hepatocellular carcinoma 

FIGURE 7

Differentially expressed genes and their enrichment analysis. (A) Volcanic map of 2,510 DEGs associated with disease occurrence. (B) Heat maps of 
2,510 DEGs associated with disease occurrence. (C) GO enrichment analysis of DEGs. (D) KEGG enrichment analysis of DEGs.
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model mice induced by diethylnitrosamine, emphasizing 
Coriobacteriaceae as a dominant bacterial group at the genus level. 
This further suggests the potential importance of Olsenella and 
Coriobacteriaceae in liver diseases.

Jiang et al. (2023) discovered that free fatty acid receptor4 (FFAR4) 
deficiency hindered the protective effects of high endogenous n-3 
polyunsaturated fatty acids on intestinal barrier dysfunction and 
hepatic steatosis. Moreover, FFAR4 deficiency decreased gut 
microbiota diversity and increased the prevalence of Rikenella, 
Anaerotruncus, and Enterococcus, while reducing that of Dubosiella, 
Ruminococcaceae UCG-010, Ruminococcaceae UCG-014, 
Coriobacteriaceae UCG-002, Faecalibaculum, Ruminococcaceae 
UCG-009, and Akkermansia. Alterations in the abundances of these 
specific bacterial genera led to changes in the overall production of 
free fatty acids and their interaction manner with FFAR4, ultimately 

diminishing the protective mechanisms against hepatic steatosis. 
These findings underscore the potential significance of 
Ruminococcaceae and Coriobacteriaceae in liver diseases.

We observed significantly higher expression levels of the 
methylerythritol phosphate, glycogen degradation, l-ornithine, 
l-valine, l-tryptophan, and l-isoleucine biosynthesis pathways in the 
NAFLD group. Isoprenoids were associated with the methylerythritol 
phosphate pathway. Glycogen degradation was found to be correlated 
with liver metabolism, processes, contributing to the onset and 
development of NAFLD. L-ornithine and L-aspartic acid (LOLA) act 
as effective amino-decreasing agents in hepatic encephalopathy 
(Teunis et al., 2022). LOLA facilitates ammonia removal through urea 
synthesis and glutamine production via the action of glutamine 
synthetase. Plausible mechanisms of LOLA in NAFLD involve 
enhanced ammonia removal, increased antioxidative capacity, and 

FIGURE 8

The correlation between the key metabolites, microbiota and DEGs and the collinear network diagram. (A) Correlation between the key metabolites 
and microbiota. (B) Correlations between some differential metabolites and DEGs. In Figures, the “X” indicates non-significant (p  >  0.05). (C) Collinear 
network diagram of the genes –microbiome –metabolites.
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reduced lipid peroxidation via the action of glutamine and glutathione. 
Additionally, LOLA improves hepatic microcirculation by producing 
l-arginine-derived NO (Canbay and Sowa, 2019).

Furthermore, we identified key metabolites significantly enriched 
in tryptophan metabolism, alpha-linolenic acid linoleic acid metabolism 
and methylhistidine pathways. Notably, NAFLD, a known risk factor 
for cirrhosis, is linked with metabolic conditions such as obesity, type 2 
diabetes, dyslipidaemia, and atherosclerosis, conditions potentially 
mitigated by tryptophan metabolism. The canine pathway, a significant 
route in tryptophan metabolism is modulated by indoleamine 2, 
3-dioxygenase, whose increased activity is positively associated with 
inflammation and fibrosis in NAFLD (Teunis et al., 2022). In addition, 
substituting linoleic acid or long-chain n-3 polyunsaturated fatty acids 
has shown potential in preventing the onset of NAFLD associated with 
a western diet (Musso et al., 2010; Yuan et al., 2016).

The key microflora associated with NAFLD, such as 
Muribaculaceae, Allobaculum, Dubosiella, Ligilactobacillus, 
Ruminococcaceae, Paramuribaculum, and Bifidobacterium, exhibited 
strong positive correlations with cholinic acid, 5-methyltetrahydrofolic 
acid and other substances. A study has indicated that primary bile acids 
and deoxycholic acids tend to accumulate in mice on a choline-deficient 
diet. Moreover, the introduction of Aerococcus, Oscillospiraceae, 
Ruminococcaceae, Bilophila, Muribaculaceae, Helicobacter and Alistipes 
has been linked to increased liver steatosis, lobular inflammation and 
fibrogenesis in mice, consequently promoting the progression of 
NAFLD (Jian et al., 2022). These findings align with our analyses.

In this study, our analysis revealed associations of DEGs with 
processes such as small molecule catabolism and the regulation of small 
GTPase-mediated signal transduction. Notably, NAFLD can progress 
into NASH, where the activation of the inflammasome protein scaffold 
(NLRP3) plays a pivotal role in NASH-related inflammation. Moreover, 
our findings indicate that Mup-ps16 could regulate the metabolism of 
3,7-dihydroxy-12-oxocholanoic acid through the action of Duncaniella 
and Olsenella. Similarly, Proser2 appears to regulate metabolism across 
most diagnostic microbiota. Mouse major urinary proteins, primarily 
expressed in the liver, and circulating major urinary proteins regulate 
metabolism by suppressing hepatic gluconeogenesis and lipid 
metabolism (Charkoftaki et al., 2019). In line with our observations, 

Xiang et al. (2021) suggested that Olsenella and Slackia genera potentially 
contribute positively to fat and energy metabolism, correlating with 
increased chicken abdominal fat deposition. Based on these findings, 
we  hypothesize that Mup-ps16 and Duncaniella may regulate the 
production of 3, 7-dihydroxy-12-oxocholanoic acid, impacting energy 
metabolism by inhibiting liver gluconeogenesis and lipid metabolism, 
potentially affecting the progression of non-alcoholic fatty liver.

In summary, Ileibacterium valens, Ruminococcaceae, Olsenella, 
Duncaniella Frettoniella, Paramuribaculum, Coriobacteriaceae, and 
Marmorella UCG_002 were identified as the characteristic strains 
associated with NAFLD. Additionally, significant upregulation of 
pathways such as the methylerythritol phosphate, glycogen 
degradation, l-ornithine, l-valine, l-tryptophan, and l-isoleucine 
biosynthesis pathways was observed in the NAFLD group.

Furthermore, our findings suggest that Mup-ps16 might influence 
the metabolism of 3,7-dihydroxy-12-oxocholanoic acid through the 
action of Duncaniella and Olsenella. Similarly, Proser2 seems to 
regulate metabolism across most diagnostic microbiota. Based on 
these observations, we hypothesize that Mup-ps16 and Duncaniella 
could potentially regulate the production of 3, 7-dihydroxy-12-
oxocholanoic acid, influencing energy metabolism by inhibiting liver 
gluconeogenesis and lipid metabolism, thereby affecting the 
progression of non-alcoholic fatty liver.

In the future, we will focus on conducting an in-depth study of the 
combined mechanisms of gene–strain metabolic processes in NAFLD.
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