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Background: Numerous studies have established that alterations in the gut

microbiota (GM) constitute an embedded mechanism in functional dyspepsia

(FD). However, the specific GM taxa implicated in the pathological process of FD

have remained unclear.

Methods: A two-sample Mendelian randomization analysis was initially

conducted to examine the causal relationships between GM and FD, utilizing

GWAS data from the MiBioGen Consortium (18,340 cases) and FinnGenn (8,875

cases vs. 320,387 controls). The MR study primarily employed the inverse-

variance weighted (IVW) method. Sensitivity analyses were performed to test

for heterogeneity and pleiotropy. Single-nucleotide polymorphisms of causal

GM taxa were mapped to genes, which were subsequently assessed for causal

relationships with FD employing the same methodology.

Results: IVW results revealed that the genus Clostridium innocuum group

(OR: 1.12, 95% CI: 1.02–1.24, P = 0.020) and genus Ruminiclostridium 9 were

positively associated with FD risk (OR: 1.27, 95% CI: 1.03–1.57, P = 0.028), while

the genus Lachnospiraceae FCS020 group tended to exert a negative e�ect on

FD risk (OR = 0.84, 95% CI: 0.73–0.98, P = 0.023). Among GM-related genes, a

notable association was observed between RSRC1 and increased FD risk (OR

= 1.13, 95% CI: 1.07–1.20, P < 0.001). In sensitivity analyses, no significant

pleiotropy or heterogeneity of the results was found.

Conclusions: This study furnished evidence for distinct e�ects of specific GM

taxa on FD risk and hinted at a potential biological mechanism, thereby o�ering

theoretical underpinning for future microbiotherapy of FD.

KEYWORDS

Mendelian randomization, functional dyspepsia, gut microbiota, causal e�ect,

functional gastrointestinal disorders

1 Introduction

Functional dyspepsia (FD) ranks among the most common functional gastrointestinal
disorders, with a worldwide prevalence of 7–10% and is characterized by recurrent upper
abdominal symptoms including premature satiety, postprandial fullness, or epigastric
pain in the absence of structural abnormalities (Ford et al., 2020). Disturbed gastric
accommodation, rapid or retarded gastric emptying, increased visceral sensitivity, and
abnormalities in intestinal permeability have been confirmed to participate in the
development of FD (Wauters et al., 2020). Although gastrointestinal dysfunction is
pervasive in FD, currently available prokinetics demonstrate suboptimal efficacy in a
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subset of patients (Pittayanon et al., 2019). Further exploration
of upstream pathologic mechanisms is urgently needed to enable
more precise treatment.

A previous study has shown variations in the distribution
of gut microbiota (GM) in patients with FD, and treatments
based on regulating intestinal microecology have shown initial
efficacy (Zhong et al., 2017). A randomized controlled trial
(RCT) involving 86 patients with FD found that rifaximin, a
non-absorbable systemic antibiotic, was superior to the placebo
in relieving belching and postprandial fullness/bloating (Tan
et al., 2017). Another recent double-blind RCT showed that
a higher percentage of FD patients who consumed probiotics
achieved the primary study endpoint (reduction in PDS score
≥ 0.7) compared to the placebo group (48 vs. 20%; P =

0.028; Wauters et al., 2021). Moreover, an observational study
found that the GM profile of FD patients was completely
different from that of healthy controls, even at phylum level
(Fukui et al., 2020). Certain gastrointestinal microbial taxa
have been proposed as likely candidate of FD symptoms, but
significant heterogeneity exists among studies (Igarashi et al.,
2017; Vasapolli et al., 2021), with a study even suggesting no
significant differences in GM composition between FD patients
and healthy individuals (Qiu et al., 2017). This may be attributed
to diversity in sample collection sites and detection methods,
as well as biases from dietary factors. Further elucidating the
causal role of specific microbial taxa in functional dyspepsia
is of paramount importance for understanding upstream
pathogenic mechanisms and developing potential targets for
precision therapies.

Mendelian randomization (MR) is commonly used to
establish a causal relationship between exposure and outcome,
which can reduce the effect of confoundings and provide
justified causal sequence. In MR studies, the causal relationship
is inferred utilizing single-nucleotide polymorphisms (SNPs)
as instrumental variables (IVs). Because alleles are assigned
randomly to the offspring and genetic information is highly
conserved across disease course, the MR study can be considered
as a randomized controlled trial in concept, that overcomes
the limitations of traditional observation studies (Burgess
et al., 2013). In our study, we comprehensively assessed the
causal relationships between GM and FD based on the design
of MR.

2 Methods

2.1 Study design

We explored the causal relationship between GM and FD as
well as related biological mechanisms, with summary data from
MiBioGen, eQTLGene, and FinnGen consortium. The flowchart
of the study design was presented in Figure 1. In MR study,
three assumptions should be adhered to obtain credible findings:
(i) IVs must be closely related to GM taxa (IVs); (ii) IVs were
not associated with confounding factors; (iii) IVs influenced the
outcome solely through exposure (Davey Smith and Hemani,
2014). This study was reported following the STROBE-MR
guidelines (Skrivankova et al., 2021).

2.2 Data source

Summary data for the human microbiome were acquired
from a genome-wide association study (GWAS) by MiBioGen
Consortium. The study included 18,340 individuals across 24
cohorts in 11 countries. The description of microbial composition
targets the V4, V3–V4, and V1–V2 segments of the 16S rRNA gene.
The study-wide cutoffs included aminimum effective sample size of
3,000 individuals and involvement in at least three separate cohorts.
A total of 211 bacterial groups were included in this study. Our
study excluded 15 unknown bacterial taxa, leaving 196 bacterial
taxa, which were distributed in 5 levels: phylum, class, order, family
and genus (Kurilshikov et al., 2021).

FD summary data was obtained from the latest version
(R9) of FinnGenn, released on May, 2023. Collectively,
8,875 patients and 320,387 controls were included in this
GWAS, with FD patients defined by ICD-10 code K30,
ICD-9 code 5368A, or ICD-8 code 5361 (mainly ICD-10
code; Kurki et al., 2023). All GWASs were approved by local
ethical review and informed consent was obtained from every
participant involved.

2.3 SNP selection

We first identified SNPs that were significantly associated with
GM taxa (p < 1 × 10−5) and then clumped with a linkage
disequilibrium (LD) coefficient of r2 = 0.001 and a window
of 10,000 kb to ensure independence of all SNPs. Associations
between included SNPS and other phenotypes were searched on
PhenoScanner. SNPs associated with confounding factors were
excluded from subsequent analyses. According to the latest review,
we considered some established risk factors of FD such as
gastrointestinal infection, use of antibiotics or non-steroidal anti-
inflammatory drugs and emotional factors (Enck et al., 2017).
In addition, we excluded SNPs associated with irritable bowel
syndrome because of their high overlap in pathogenesis and
frequent co-occurrence. F-value was calculated for each SNP to
exclude weak IVs, and SNPs with F > 10 were considered as
valid IVs.

2.4 Statistical analysis

Prior to the main analysis, we first aligned the effect alleles of
exposure and outcome to delete SNPs with palindromic structures.
According to the recommendations of the guidelines, we mainly
referred to the results of the inverse variance weighted (IVW)
method (Burgess et al., 2019). In this method, the wald ratio was
calculated to obtain the effect of each single SNP on the outcome,
and the results of all SNPs were combined by inverse variance
weighted meta-analysis. If MR assumptions are not violated, this
method provides the most accurate causal estimate (Burgess et al.,
2013). Additional methods were applied as supplement of IVW
results. The weightedmedian (WM)method provides more reliable
results in the absence of valid instrumental variables, even if half
of the information is derived from invalid instrumental variables
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FIGURE 1

Schematic illustration of this MR study design.

(Bowden et al., 2016). MR-Egger method provides a intercept
estimate for the test of directional pleiotropy albeit statistically
less efficient (Burgess and Thompson, 2017). When disturbed by
possible pleiotropy, weighted mode can identify statistically more
valid causal effects with lower type I error rates (Hartwig et al.,
2017). MR-PRESSO detects horizontal pleiotropy using global test
and can eliminate it by removing significant outliers (Verbanck
et al., 2018). Simple model method is less biased than other
methods, but less precise (Hartwig et al., 2017). MR results were
expressed with odds ratio (OR) and 95% confidence interval (CI).

We carried out additional sensitivity tests to assess the
reliability of the results. Cochran’s Q-test and MR-Egger intercept
test were used to evaluate heterogeneity and pleiotropy, respectively
(Hemani et al., 2017). Leave-one-out analysis was conducted to
rule out probable significant effect of a single SNP (Luo et al.,
2022). The Bonferroni correction was applied to control Class I
errors in multiple tests. In our study, results with P < 2.6 ×

10−4 (0.05/196) were considered as significant evidence, and results
with 2.6 × 10−4

< P < 0.05 were suggestive significant. All
MR analyses were conducted using TwoSampleMR (version 0.5.6)
package in R.

2.5 Mapping SNPs to genes

To gain deeper insight into how GM influences FD, SNPs of
each significant taxa identified in preceding MR analyses were
mapped to genes employing the SNP2GENE tool in FUMA (a
platform integrating multiple databases and enabling annotation
and interpretation of GWAS results; Watanabe et al., 2017). To
understand protein-level gene interactions, PPI networks were
generated for these GM-related genes using Metascape and were
displayed with Cytoscape.
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FIGURE 2

MR results of the e�ects of all GM taxa on FD. Gut microbiota was classified in five levels, namely order, phylum, class, family, and genus. The shade

of the color reflected the size of the p-value within the circle.

2.6 MR analysis of GM-related genes

We further assessed the causal effects of these genes on
FD to uncover the underlying mechanism of GM influence on
FD. Cis-expression quantitative trait loci (cis-eQTLs) of these
gene were acquired from eQTLGen consortium. The summary
data of eQTLGen consortium, enrolling totally 31,684 blood
samples, contains cis-eQTLs for 16,987 genes, mostly obtained
from participants of European descent (Võsa et al., 2021). We
obtained valid IVs for 30 genes, with FDR < 0.05. These eQTLs
were clumped by applying a relatively loose LD threshold of r2

< 0.1, which was also applied in previous MR studies (Cao et al.,
2023). The statistic method for MR analysis was the same as above,

and the same Bonferroni method was employed to correct for
multiple tests.

3 Results

3.1 Associations of GM with FD

Preliminary MR results for associations between 196 GM
taxa and FD were presented in Figure 2. Briefly, we observed
suggestive evidence for 3 GM taxa causally associated with FD
by the cross validation of IVW and WM method (Table 1 and
Figure 3). Genus Clostridium innocuum group was found to be
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TABLE 1 MR results of the causal associations of genus Clostridium innocuum group, genus Lachnospiraceae FCS020 group, and genus Ruminiclostridium 9with FD.

Taxa Method No. SNP OR (95% CI) P-value Heterogenenity Pleiotropy MR-PRESSO global
test

Q-value p Egger intercept p p

Genus Clostridium
innocuum group

IVW 8 1.12 (1.02–1.24) 0.020 5.43 0.61 / /

Genus Clostridium
innocuum group

MR Egger 8 1.02 (0.62–1.69) 0.926 5.29 0.51 0.01 0.72 0.67

Genus Clostridium
innocuum group

Weighted median 8 1.16 (1.01–1.33) 0.032 / / / /

Genus
Lachnospiraceae

FCS020 group

IVW 12 0.84 (0.73–0.98) 0.023 11.58 0.40 / /

Genus
Lachnospiraceae

FCS020 group

MR Egger 12 0.67 (0.46–0.98) 0.067 9.97 0.44 0.02 0.23 0.46

Genus
Lachnospiraceae

FCS020 group

Weighted median 12 0.77 (0.64–0.94) 0.009 / / / /

Genus
Ruminiclostridium 9

IVW 8 1.27 (1.03–1.57) 0.028 1.95 0.96 / /

Genus
Ruminiclostridium 9

MR Egger 8 1.36 (0.49–3.73) 0.578 1.94 0.93 −0.01 0.90 0.97

Genus
Ruminiclostridium 9

Weighted median 8 1.32 (1.02–1.70) 0.036 / / / /

MR, Mendelian randomization; CI, confidence interval; OR, odds ratio; IVW, inverse variance-weighted.
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FIGURE 3

IVW estimates of the e�ects of significant GM taxa on FD.

FIGURE 4

Scatter plot of MR results for five approaches to three significant GM taxa. (A) Scatter plot of MR results for genus Ruminiclostridium 9. (B) Scatter

plot of MR results for genus Clostridium innocuum group. (C) Scatter plot of MR results for genus Lachnospiraceae FCS020 group.

positively associated with FD risk with IVW method (OR: 1.12,
95% CI: 1.02–1.24, P = 0.020), which was further validated by
WM method (OR: 1.16, 95% CI: 1.01–1.33, P = 0.032). The
causal evaluation from the MR-Egger analysis also supported
consistent correlation (OR = 1.02, 95% CI: 0.62–1.69, P = 0.926;
Table 1 and Figure 4B). In terms of genus Ruminiclostridium

9, it was also positively correlated with the risk of FD with
IVW method (OR: 1.27, 95% CI: 1.03–1.57, P = 0.028). WM
method (OR = 1.32, 95% CI 1.02–1.70, P = 0.036) and MR-
Egger method (OR = 1.36, 95% CI: 0.49–3.73, P = 0.578) also
exhibited a consistent trend (Table 1 and Figure 4A). In contrast,

genus Lachnospiraceae FCS020 group was negatively associated
with FD risk using IVW method (OR = 0.84, 95% CI: 0.73–
0.98, P = 0.023). WM analysis produced similar and significant
estimates (OR =0.77, 95% CI: 0.64–0.94, P = 0.009). The estimate
of MR-Egger was similar to the IVW result but with a wider
CI (OR = 0.67, 95% CI: 0.46–0.98, P = 0.067; Table 1 and
Figure 4C). It appeared unlikely that pleiotropy or heterogeneity
would bias the casual estimates, according to the results of
sensitivity analyses (Table 1). Leave-one-out analyses revealed that
the causative estimates of GM and FD were not attributable to a
single SNP (Supplementary Figure 1).
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Additionally, we identified latent causal relationships between
other 12 taxa and FD with IVW method. Among them, seven taxa
were found to have potential positive causal effect on FD, namely
order phylum Cyanobacteria (OR = 1.17, 95% CI: 1.02–1.33, P
= 0.021), order Erysipelotrichales (OR = 1.22, 95% CI: 1.00–1.50,
P = 0.049), order Bacillales (OR = 1.12, 95% CI: 1.02–1.22, P =

0.021), genus Marvinbryantia (OR = 1.22, 95% CI: 1.05–1.45, P =

0.042), genus Lachnospiraceae NK4A136 group (OR= 1.19, 95%CI:
1.05–1.35, P = 0.008), family Erysipelotrichaceae (OR = 1.22, 95%
CI: 1.00–1.50, P = 0.049), and class Erysipelotrichia (OR = 1.22,
95% CI: 1.00–1.50, P = 0.049; Figure 3). On the contrary, five taxa
tended to causally reduce risk of FD, specifically containing genus
Streptococcus (OR = 0.84, 95% CI: 0.71–1.00, P = 0.045), genus
Terrisporobacter (OR = 0.78, 95% CI: 0.66–0.93, P = 0.005), genus
Bacteroides (OR = 0.77, 95% CI: 0.60–0.99, P = 0.040), family
Bacteroidaceae (OR = 0.77, 95% CI: 0.60–0.99, P = 0.040), and
family Clostridiaceae (OR = 0.79, 95% CI: 0.66–0.96, P = 0.015;
Figure 3). However, results fromWMmethod did not support these
causal associations.

3.2 Mapped genes of causal SNPs

After the validation of additional MR methods and sensitivity
analysis, three taxa, namely genus Clostridium innocuum group,
genus Ruminiclostridium 9 and genus Lachnospiraceae FCS020

group were demonstrated to have causal effect on FD. To better
comprehend the biological mechanism of these findings, we
perform positional mapping of the extracted SNPs of significant
GM taxa with FUMA GWAS tool. IVs of significant GM taxa
were shown in Supplementary Table 2. Genes mapped by SNPs
located in the protein coding region were selected and enrolled
in further analysis (Supplementary Table 3). The chromosome
location of mapped genes were shown in Figure 5A. Protein-
protein interaction networks from mapped genes were generated
using Metascape, and were subsequently visualized in Cytoscape to
predict the interactions of these genes, as shown in Figure 5B.

3.3 MR analysis based on mapped genes

As illustrated in Figure 6, only RSRC1, associated with genus
Ruminiclostridium 9, was found to significantly increase FD risk
after Bonferroni correction (OR = 1.13, 95% CI: 1.07–1.20, P <

0.001). All five MR approaches generated consistent estimates with
the same effect direction (Table 2 and Figure 7). According to the
results of intercept test and Cochrane’sQ-test, there was implausible
to be horizontal pleiotropy or heterogeneity among individual
eQTLs. The expression of other five genes was suggestively
associated with the risk of FD (0.0017 < P < 0.05).

4 Discussion

This was the first study to uncover that partial GM taxa could
induce or prevent FD using MR methods. With cross-validation of
IVW andWMmethods, preliminary MR results provided evidence

that genus Lachnospiraceae FCS020 group was correlated with
a lower probability of developing FD, while genus Clostridium

innocuum group and genus Ruminiclostridium 9 may be the risk
factors of FD.

Luminal dysbiosis is widely recognized to be involved in the
pathogenesis of FD. Changes in gut microbiota can affect the
activity of digestive enzymes and subsequently impact the host’s
digestive function (Zhou et al., 2024).

Duodenal mucosal bacterial load increases accompanied with
decreased diversity in FD and is negatively correlated with the
quality of life. Researchers have found that the abundance of
Prevotella, Veillonella, and Actinomyces was significantly decreased
in patients with FD, but the abundance of Streptococcus exhibited
an inverse trend (Zhong et al., 2017). Another study showed that
the excessive abundance of genus Clostridium and Prevotella was
observed in FD, partially in line with our results (Nakae et al.,
2016). However, microbiome shifts showed in aforementioned
studies can also be attributed to pharmacotherapeutic interventions
during study period [e.g., proton pump inhibitors (Perry et al.,
2020) or antidepressants (McGovern et al., 2019)] and may suggest
biased connections, so that these alterations should be interpreted
cautiously when inferring the etiology of FD.

In our study, genus Lachnospiraceae FCS020 group was
identified as a protect factor of FD, while other two taxa as risk
factors, namely genus Clostridium innocuum group and genus
Ruminiclostridium 9. These GM taxa shape the severity of FD
possibly through key mechanisms associated with short-chain fatty
acids (SCFAs), mucosal inflammation, and gut-brain axis. In early
studies, inhibited gastric tone and accelerated intestinal motility
were observed after intracolonic infusions of SCFAs (Ropert
et al., 1996; Dass et al., 2007). Moreover, the rapid duodenal
SCFA absorption plays a vital role in the inhibition of luminal
bacterial colonization and is associated with the development
of FD caused by the bacterial overgrowth (Kaji et al., 2015).
The Lachnospiraceae is a family of anaerobic bacteria in the
Clostridiales order within the Firmicutes phylum. Lachnospiraceae
is a major producer of short-chain fatty acids, effectively regulating
gut homeostasis and improving duodenal permeability. A clinical
study found a significant correlation between increased abundance
of Lachnospiraceae and alleviation of colonic inflammation and
improved quality of life in patients with ulcerative colitis (Facchin
et al., 2020). However, it should be noted that Lachnospiraceae
could increase the concentration of secondary bile acids by
promoting primary bile acids to convert to secondary bile acids.
The higher ratio of secondary/primary bile acids has been reported
to be positively correlated with duodenal permeability in FD
patients, suggesting that its potential pathogenic effect on FD
(Byndloss et al., 2017; Beeckmans et al., 2020). Hence, the role of
Lachnospiraceae FCS020 group in the pathophysiology of FD should
be further investigated in the future.

Mild inflammation of the duodenal mucosa, presenting as
increased eosinophils and mast cells, has been observed in FD
patients. These cells release the mediators to activate sensitive
neurons and breach the epithelial barrier, leading to visceral
hypersensitivity and abnormal gastric motility (Vanuytsel et al.,
2023). An elevation in small bowel homing T lymphocytes is also
correlated with symptom severity and retarded gastric emptying in
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FIGURE 5

Mapped genes of GM related SNPs. (A) The chromosome location of mapped genes. (B) PPI networks from mapped genes. Red circles represented

genes associated with genus Clostridium innocuum group, green circles represented genes associated with genus Ruminiclostridium 9, orange

circles represented genes associated with genus Lachnospiraceae FCS020 group.

FIGURE 6

IVW estimates of the e�ects of significant GM mapped genes on FD.

TABLE 2 MR results of the relationship between RSRC1 and FD.

Gene Method No. SNP OR (95% CI) P-value Cochrane’s Q-test Intercept test

Q-value p Egger intercept p

RSRC1 MR Egger 38 1.11 (0.99–1.26) 0.091 45.03 0.14 <0.01 0.78

RSRC1 Weighted
median

38 1.14 (1.05–1.23) 0.001 / / / /

RSRC1 IVW 38 1.13 (1.07–1.20) <0.001 45.13 0.17 / /

RSRC1 Simple mode 38 1.21 (1.06–1.38) 0.007 / / / /

RSRC1 Weighted
mode

38 1.15 (1.06–1.25) 0.002 / / / /

MR, Mendelian randomization; CI, confidence interval; OR, odds ratio; IVW, inverse variance-weighted.

FD patients (Liebregts et al., 2007). Clostridium innocuum group

can compromise the epithelial layer lining the gut by strengthening
oxidative damage in intestinal epithelial cell (Adesso et al., 2019)

and negatively affect tight junction proteins, which in turn lead to
a cytokine-rich mucosal environment perpetuating inflammatory
response (Huang et al., 2022). In contrast, Lachnospiraceae are
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FIGURE 7

Scatter plot of MR results for five approaches to RSRC1.

enriched in proximity to the mucosa, thereby situating them to
positively influence the host epithelium and mucosal immune
system (Riva et al., 2019). Specifically, the immunomodulatory
molecule polysaccharide acts in unison with butyrate produced by
Lachnospiraceae to promote regulatory T cell differentiation, which
was crucial for preventing excessive immune inflammation (Riva
et al., 2019).

Peripheral etiologies aside, the role of microbiota in FD may
be associated with central factors. The microbiota-mediated gut-
brain axis has been extensively discussed (Rupp and Stengel, 2022).
Positron-emission tomography showed that FD patients exhibited
lower Sensorimotor Network and salience network activation
threshold and failure of pain-related perigenual anterior cingulate

cortex activation, which overlaps with central mechanisms
associated with anxiety and depression (Van Oudenhove et al.,
2010). Neuroinflammation driven by GM has a profound effect
on brain structure and function, and these changes lead to the
expression of definite psychosomatic disorders such as fatigue,
hyperalgesia, and abnormal pain (Felger, 2018). GM produce a
host of neuroactive metabolites that reach the brain via circulation
(Valles-Colomer et al., 2019), and modulate central nervous
activities. On the other hand, impaired gut barrier enables the
entry of pathogenic bacteria and their products into circulatory
system, and aggravate inflammation of neurons (Dinan and Cryan,
2017). Genus Ruminiclostridium 9 and Clostridium innocuum

groupwere elucidated to be positively associated with the risk of FD,
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whosemechanismmay involve brain-gut interaction. A prospective
study found that neuropsychiatric symptoms and fatigue after
the recovery of COVID-19 infection were correlated with the
enrichment of Clostridium innocuum in lumen (Liu et al., 2022).
In line with these findings, another study identified the causal
relationships between Clostridium innocuum and neuroticism (Ni
et al., 2021). A longitudinal study showed that more abundance
with Ruminiclostridium 9 was related to psychoneurological
symptoms patients with head and neck cancers (Bai et al.,
2020). Excessive Ruminiclostridium 9 is related to synaptic
dysfunction characterized by neuroinflammation. Correcting the
increase of Ruminiclostridium 9 is beneficial to the amelioration of
neuroinflammation, along with the suppression of NF-κB pathway
and the upregulation of CREB/BDNF/TrkB pathway (Lan et al.,
2023). Therefore, these GM taxa may affect the function of
the relevant brain regions, thus resulting in stomach upset and
psychological disorders.

As for MR results of GM mapped genes, the expression
of RSRC1 was in a strikingly negative relation to FD. RSRC1
is widely expressed throughout the human brain according to
data from Human Brain Atlas (http://www.human.brain-map.
org/). The expression of RSRC1, which is also a hub gene in
the PPI network of depression-related genes, is significantly up-
regulated in depression, demonstrating its critical role of in the
pathological process of depression. Related genes downstream
of RSRC1 are also involved in other psychiatric manifestations,
such as temper tantrums (Perez et al., 2018). In our study, we
identified a close interaction between RSRC1 expression and genus
Ruminiclostridium 9 based on the gene mapping of GM-related
SNPs, which was not reported before. The expression of certain
genes can significantly modulate the composition of intestinal
microbiota. It has been found that compared to normal controls,
the deficiency of the TLR4 can lead to a significant increase
in the abundance of genus Ruminiclostridium 9 (Xiao et al.,
2019). Hence, it is plausible to infer that up-regulated RSRC1
expression may activate the affective center and related cortical
circuit, and impair the descending modulatory system where
pain transmission is modulated, thereby triggering or amplifying
perceptions of stomach displeasure even under physiological
stimuli. The results of the other genes did not reach a significant
threshold after Bonferroni correction, still awaiting more studies
in future.

This study has several advantages. Building upon the MR
design, we employed two approaches to cross-validate the causal
impact of intestinal flora on FD. Through this methodology, we
were able to provide potential candidates for microbial-related
targets. Future randomized controlled trials can be designed to
further explore the efficacy of microbial therapy targeting these
significant GM taxa in FD.Moreover, we have elucidated the
pivotal role of RSRC1 in establishing a causal link between the
genus Ruminiclostridium 9 and FD, thereby offering novel insights
into the exploration of the molecular mechanisms governing
microbial modulation of gastrointestinal motility. Importantly, FD
encompasses two distinct subtypes, namely postprandial distress
syndrome and epigastric pain syndrome, each associated with
distinct microbial profiles as reported previously (Tziatzios et al.,
2021). Subsequent investigations could delve into this interaction
within both subtypes, thereby advancing the comprehension

of the pathological mechanisms underlying the microbiome’s
involvement in FD.

There are also some limitations in this study. First of all, the
summary data used in our study only involved the European, but
given the global prevalence of FD, futureMR studies based on other
populations should be conducted to improve the generalizability
of the conclusion. Second, the variability of the MiBioGen meta-
analysis is relatively high. Future GWAS studies should employ
more advanced methods such as shotgun metagenomic sequencing
analysis to generate high-resolution GM data for more accurate
results of future MR studies. Finally, after Bonferroni correction,
our results of GM effect on FD were not significant. However, due
to biological plausibility, applying a strict correction method may
be too cautious to overlook possible pathogenic strains.

5 Conclusions

Our study thoroughly analyzed the causal effect of GM on FD
risk. We found that the altered abundance of specific bacteria,
namely genus Lachnospiraceae FCS020 group, genus Clostridium

innocuum group and genus Ruminiclostridium 9, may significantly
contribute to the etiology of FD. Further analysis found that RSRC1
gene may be involved in the mechanism of the causal relationship.
These findings hold promise for the future microbial therapy of FD.
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