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In nature, methylmercury (MeHg) is primarily generated through microbial 
metabolism, and the ability of bacteria to methylate Hg(II) depends on both 
bacterial properties and environmental factors. It is widely known that, as a 
metabolic analog, molybdate can inhibit the sulfate reduction process and affect 
the growth and methylation of sulfate-reducing bacteria (SRB). However, after 
it enters the cell, molybdate can be involved in various intracellular metabolic 
pathways as a molybdenum cofactor; whether fluctuations in its concentration 
affect the growth and methylation of aerobic mercury methylating strains 
remains unknown. To address this gap, aerobic γ-Proteobacteria strains 
Raoultella terrigena TGRB3 (B3) and Pseudomonas putida TGRB4 (B4), as well 
as an obligate anaerobic δ-Proteobacteria strain of the SRB Desulfomicrobium 
escambiense CGMCC 1.3481 (DE), were used as experimental strains. The 
growth and methylation ability of each strain were analyzed under conditions of 
500  ng·L−1 Hg(II), 0 and 21% of oxygen, and 0, 0.25, 0.50, and 1  mM of MoO4

2−. 
In addition, in order to explore the metabolic specificity of aerobic strains, 
transcriptomic data of the facultative mercury-methylated strain B3 were 
further analyzed in an aerobic mercuric environment. The results indicated that: 
(a) molybdate significantly inhibited the growth of DE, while B3 and B4 exhibited 
normal growth. (b) Under anaerobic conditions, in DE, the MeHg content 
decreased significantly with increasing molybdate concentration, while in B3, 
MeHg production was unaffected. Furthermore, under aerobic conditions, 
the MeHg productions of B3 and B4 were not influenced by the molybdate 
concentration. (c) The transcriptomic analysis showed several genes that were 
annotated as members of the molybdenum oxidoreductase family of B3 and 
that exhibited significant differential expression. These findings suggest that 
the differential expression of molybdenum-binding proteins might be  related 
to their involvement in energy metabolism pathways that utilize nitrate and 
dimethyl sulfoxide as electron acceptors. Aerobic bacteria, such as B3 and B4, 
might possess distinct Hg(II) biotransformation pathways from anaerobic SRB, 
rendering their growth and biomethylation abilities unaffected by molybdate.
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1 Introduction

Methylmercury (MeHg) is the most toxic form of mercury (Li and 
Cai, 2013; Yang et  al., 2020), which displays biotoxicity in 
bioaccumulation and biomagnification throughout the food chain. In 
the natural environment, the non-biological methylation rates of 
mercury are negligible (Berman and Bartha, 1986; Ullrich et al., 2001; 
Barkay et  al., 2003; Raposo et  al., 2008). Current research on the 
biological production and accumulation of MeHg focuses on 
anaerobic microorganisms possessing an inherent Hg biomethylation 
ability, which are involved in the transformation of the form of 
mercury from divalent mercury to MeHg (Parks et al., 2013; Tang 
et al., 2020). Mainly the δ-Proteobacteria class consisting of sulfate-
reducing bacteria (SRB) (Compeau and Bartha, 1985; Gilmour and 
Henry, 1991), iron-reducing bacteria (Fleming et al., 2006; Kerin et al., 
2006) and methanogens (Jensen and Jernelov, 1969; Gilmour et al., 
2013) are included. Research on SRB methylation in the water level 
fluctuation zone (WLFZ) of the Three Gorges Reservoir, China, 
showed that SRB are not the predominant mercury methylators; 
instead, aerobic or facultative anaerobic microbial populations assume 
a pivotal role in biotic Hg(II) bio-methylation (Chen et al., 2016). 
Aerobic and/or facultative aerobic bacterial strains of the 
γ-Proteobacteria class, such as Raoultella terrigena strain TGRB3 (B3) 
and Pseudomonas putida strain TGRB4 (B4) (Mi et al., 2019) were 
screened and identified; it was found that both strains are capable of 
Hg bio-methylation under aerobic conditions. Among them, 
bacterium B3 is also capable of Hg bio-methylation under anaerobic 
conditions (Feng et al., 2022). The hgcA/B gene has been identified as 
a key gene for mercury methylation (Parks et  al., 2013), MeHg 
production was detected in some habitats, but no hgcA/B gene was 
found under aerobic conditions (Podar et al., 2015); we also found that 
hgcA/B genes were absent in both B3 and B4 strains (Xiang et al., 
2020). This different distribution suggests that there may be another 
unidentified metabolic pathway of Hg(II) bio-methylation where the 
mercury methylation capacity is independent of hgcA/B genes.

The Hg(II) biomethylation ability of bacteria depends on the 
properties of the strain rather than on the species of bacteria or the 
type of metabolism (Ranchou-Peyruse et al., 2009; Bridou et al., 2011). 
Moreover, this process is notably sensitive to environmental variables 
such as pH and salinity (Podar et al., 2015). Molybdenum, a crucial 
biological trace element, and molybdate were absorbed by organisms 
through either the high-affinity ModABC system (Xia et al., 2018) or 
the low-affinity CysPTWA (SulT) sulfate-thiosulfate permease 
(Aguilar-Barajas et al., 2011). Absorbed molybdenum associates with 
molybdopterin to generate molybdenum cofactors, or it combines 
with iron–sulfur clusters to form iron-molybdenum cofactors 
(Schwarz et al., 2009). These cofactors play a fundamental role in the 
facilitation of electron transfer during intracellular bio-oxidation 
processes (Iobbi-Nivol and Leimkuehler, 2013); they also catalyze 
conversions in carbon (Huang et al., 2022), nitrogen (Seefeldt et al., 
2009), and sulfur compound metabolisms (Kisker et  al., 1997). 
Because of its electron transfer capacity and involvement in redox 
reactions (Hille, 2013), molybdate might perturb the cellular sulfur 
metabolism, thereby influencing bacterial growth or methylation 
efficiency (Fleming et al., 2006; Thomas et al., 2019). In anaerobic 
Hg(II) bio-methylation microorganisms, molybdate can affect both 
SRB growth and Hg(II) bio-methylation capacity as a sulfate reduction 
metabolic inhibitor after entering the cell (Barkay and Wagner-Dobler, 

2005; Yu and Barkay, 2022). However, information on molybdate in 
aerobic bacterial Hg(II) bio-methylation is limited. With DE as 
anaerobic control and B4 and B3 as aerobic control, an experiment 
was carried out to explore the responses of bacterial Hg(II) 
bio-methylation to molybdate, oxygen content, and different bacterial 
species. Moreover, transcriptomic sequencing was carried out to 
analyze gene expression in the aerobic B3. The effects of sodium 
molybdate at varying concentrations are tested on bacterial growth 
and Hg(II) bio-methylation efficiency, and the involvement of 
molybdenum-containing proteins/enzymes in the Hg (II) reduction 
process is evaluated. The results promote the available understanding 
of the mercury biogeochemical cycle in the soil of the seasonal WLFZ 
in the Three Gorges Reservoir area.

2 Materials and methods

2.1 Experimental design of the effect of 
molybdate on bacteria

2.1.1 Experimental strains and culture conditions
Raoultella terrigena TGRB3 (B3) (GenBank accession number: 

MK102091), which belongs to γ-Proteobacteria, was isolated from the 
soil of the WLFZ in the Three Gorges Reservoir area (E108°12′3″, 
N30°24′36″) (Mi et al., 2019). B3 is capable of Hg(II) bio-methylation 
under both aerobic and anaerobic conditions. Pseudomonas putida 
TGRB4 (B4) (GenBank accession number: MF996382), which also 
belongs to γ-Proteobacteria, was isolated from the sediment soil of the 
Three Gorges Reservoir area (E108°12′3″, N30°24′36″) (Xiang et al., 
2020). B4 is an obligate aerobic Hg(II) bio-methylation strain. For the 
Hg(II) bio-methylation experiment, B3 and B4 were cultured in the 
KB medium following activation in the LB medium (Cao et al., 2021). 
Desulfomicrobium escambiense CGMCC 1.3481 (DE), which is an 
obligate anaerobic mercury-methylated strain, was provided by the 
Research Center for Eco-Environmental Sciences at the Chinese 
Academy of Sciences. DE was cultured using modified DSMZ medium 
63, consisting of FeSO4 and sodium acetate as the electron acceptor 
and donor, respectively, as described previously (Zhi et al., 2019). 
Culture followed the GB/T14643.5–2009 national standard for 
activation and cultivation (George et al., 2008).

2.1.2 Oxygen concentration conditions
The experiment adopted completely anaerobic (0% oxygen) and 

aerobic (21% oxygen) oxygen concentration conditions. In the 
complete anaerobic condition, 150 mL of DSMZ medium was added 
to 250 mL borosilicate glass bottles. Nitrogen of high purity was 
injected at a rate of 60.0 mL·min−1 for 5 min to effectively remove 
oxygen by the Hungate copper column method (Hungate, 1969; Miller 
and Wolin, 1974). Additionally, resazurin was added as an aerobic 
color indicator. The strains B3 and B4 were cultured in KB medium, 
while DE was cultured in modified DSMZ medium 63 to ensure 
optimal bacterial growth. Non-inoculated blank media were utilized 
as controls for each treatment. For the aerobic system, 150 mL of KB 
medium was added to a 250 mL borosilicate glass bottle, and the gas 
inside the bottle was replaced with a high-purity gas mixture 
containing 21% oxygen and 79% nitrogen, flowing at a rate of 
60.0 mL·min−1 for 5 min. B3 and B4 were cultured in KB medium, 
using a non-inoculated medium as blank controls. All treatments were 
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cultured in a constant temperature incubator at 30°C at a uniform 
speed of 120 r·min−1. After 72 h, the oxygen content of 21% oxygen 
treatment was approximately 7.5 ± 0.5 mg·L−1, while the oxygen 
content of anaerobic treatment was 0.36 ± 0.1 mg·L−1 (Cao et al., 2021; 
Feng et al., 2022).

2.1.3 Effects of molybdate on bacterial growth 
and Hg bio-methylation efficiency

Under both anaerobic and aerobic conditions, four levels of 
molybdate ion (MoO4

2−) concentrations [released from Na2MO4 
(analytical grade)] of 0, 0.25, 0.50, and 1 mM were tested (Fleming 
et al., 2006). The medium for each bacterial culture was the same as 
described in Section 2.1.2, and cells were harvested during the 
mid-exponential phase (OD600 = 0.7–0.8). After the cells had been 
harvested, they were washed three times with sterile Milli-Q water, 
then centrifuged (2,430 g, 25°C, 5 min), and finally suspended in 
sterile Milli-Q water and mixed into the culture system (Feng et al., 
2022). A bacteria concentration of approximately 107 cells·mL−1 was 
guaranteed, and bacteria were cultured under a constant temperature 
of 30°C. Finally, samples were collected at 0, 3, 6, 9, 12, 18, 24, 30, 42, 
and 72 h. The sterile medium served as a blank control for each 
treatment. In addition, molybdate and mercury solution were added 
to the culture bottle using disposable sterile syringes to eliminate 
bubbles and then added to ensure anaerobic conditions. In this 
experiment, the bacterial density was measured using 
spectrophotometry (OD600), and the maximum growth values and 
significant differences between treatments are shown in Table 1. In 
addition, the growth curves of each strain under different oxygen and 
molybdenum concentrations are shown in Figures 1, 2. All treatments 
were performed in triplicate, and the average value was used for 
analysis. The details of each experimental treatment are listed in 
Supplementary Table S1.

Based on molybdate experiments, HgCl2 (analytical grade) was 
used as an Hg(II) donor. The final concentration of experimental 
Hg(II) was set to 500 ng·L−1 (Cao et al., 2021), and treatment without 
Hg(II) addition was conducted as a control. The bacterial inoculation 
method and culture conditions were the same as mentioned above, 
and samples were collected at 0, 6, 12, 18, 30, 42, and 72 h. At harvest, 
the samples were divided into two portions: one sub-sample was used 
for bacterial growth determination; the other sub-samples were 
stopped by acidification with HCl to a final concentration of 0.5% 
(v/v), followed by storage at −20°C until total Hg and MeHg analysis. 
The detailed information about experimental treatments and their 
corresponding codes are shown in Supplementary Table S2.

2.2 TGRB3 transcriptome sequencing 
experiment

2.2.1 Experimental strains and culture conditions
Raoultella terrigena TGRB3 (B3) (GenBank accession number: 

MK102091), as well as the bacterial culture method and harvesting 
procedures, were consistent with the information provided in 
Section 2.1.3.

2.2.2 Transcriptome sequencing and data 
processing

To ensure transcriptional differences between samples, the 
experimental group was exposed to exogenous Hg(II) at a final 
concentration of 500 ng·L−1, while the control group was maintained 
without the addition of exogenous mercury (0 ng·L−1). Bacteria were 
harvested at 3, 9, and 24 h during the experiment, and a total of 12 
samples were collected. The detailed sample descriptions are 
provided in Supplementary Table S3. Bacterial total RNA was 
extracted using the rapid bacterial RNA extraction kit (AiDLab). 
Sequencing was performed on the Illumina HiSeq platform, and 
transcriptome sequencing data were completed and returned by 
Shanghai LingEn Company. The original transcriptome data have 
been uploaded to the Sequence Read Archive (SRA) in the NCBI 
database under the accession number PRJNA1111264. After that, 
transcriptomic sequencing raw data were processed using 
Trimmomatic software to remove adapter sequences and low-quality 
reads from the ends. Subsequently, filtered high-quality sequences 
were aligned and analyzed against a reference genome using 
Rockhopper software, enabling their mapping to the annotated 
genome. The expression levels of individual genes were quantified 
and normalized to reads per kilobase per million mapped reads 
(RPKM) for inter-sample differential expression calculations. RPKM 
was calculated as follows:

 
RPKM

total exon reads

mapped reads millions exon length KB
=

( )× ( ))

Finally, differentially expressed genes (DEGs) were identified based 
on stringent criteria (FDR ≤ 0.05 and |log2(FC)| ≥ 1), and DEG sequences 
were aligned to databases such as the NR, GO, COG, KEGG, and Swiss-
Prot (e-value <10−5) to obtain crucial protein annotation information for 
these genes (Kanehisa et al., 2016). The GO analysis and KEGG pathway 

TABLE 1 Maximum OD600 (Abs) of bacteria under different conditions of molybdate concentration in 72  h.

Molybdate 
(mM)

B3 B4 DE

Anaerobic Aerobic Anaerobic Aerobic Anaerobic Aerobic

0 0.40 ± 0.01 aC 3.34 ± 0.02 *aA – 2.78 ± 0.02 aB 1.91 ± 0.10 aA –

0.25 0.40 ± 0 aC 3.27 ± 0.03 *aA – 2.51 ± 0.03 abB 1.05 ± 0.10 bB –

0.50 0.39 ± 0.03 aC 3.23 ± 0.01 *aA – 2.39 ± 0.03 abB 0.19 ± 0.04 cC –

1.0 0.40 ± 0.02 aC 3.33 ± 0.02 *aA – 2.27 ± 0.01 bB 0.19 ± 0.01 cC –

The lowercase letters indicate differences in molybdate concentrations for the same strain at the same oxygen concentration (p < 0.05). The capital letters indicate differences for different strains 
at the same oxygen concentrations (p < 0.05). *represents the difference of the same strain in different molybdate concentrations under different oxygen concentrations (p < 0.05).
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enrichment analysis were performed using Goatools1 and the KOBAS2 
online platform, respectively (Klopfenstein et al., 2018; Bu et al., 2021).

2.3 Mercury detection and quality control

MeHg was quantified using distillation-ethylation cold atomic 
fluorescence spectrometry (GC-CVAFS) on a Tekran 2,500 Mercury 
Meter from Brooks Rand Ltd. The total Hg content was measured 
through double gold amalgam-cold atomic fluorescence spectrometry 
(Liang et al., 1994; Feng et al., 1998; Yan et al., 2003). Quality assurance 
and quality control were conducted based on the utilization of parallel 
samples and blank controls for all experimental samples during the 
analysis process. For MeHg determination, quality control included 
both blank distillation and spike recovery, resulting in a recovery rate of 
80–120% and a parallel sample coefficient of variation of less than 10%. 
Prior to total Hg determination, the enrichment system was thoroughly 
purified using 5% concentrated HNO3 and 1–2 mL of SnCl2 to eliminate 
potential sources of contamination. Sample analysis was only performed 

1 https://github.com/tanghaibao/Goatools

2 http://kobas.cbi.pku.edu.cn/home.do

when the mercury content in the blank sample was below 5 pg., 
guaranteeing minimal interference. All experimental reagents were of 
superior purity, and borosilicate glassware was soaked in 25% (v/v) 
nitric acid for at least 24 h, followed by rinsing with ultrapure water 
(Milli-Q, 18 Ω·CM); finally, glassware was purified by heating at 500°C 
for 30 min in a muffle furnace to eliminate mercury contamination.

2.4 Data analyses

The data (mean ± SD; n = 3) were subjected to analysis of variance. 
Significant differences between treatment means were compared using 
Tukey’s honestly significant difference (HSD) test (p ≤ 0.05) and 
independent-samples t-test in SPSS Statistics 26 (NY, USA). All figures 
are plotted with Origin 2017 (OriginLab, USA).

3 Results and discussion

3.1 Effects of molybdate on bacterial growth

3.1.1 Bacterial growth under anaerobic conditions
Molybdate concentration significantly affected the growth of 

anaerobic mercury-methylated Desulfomicrobium escambiense 
CGMCC 1.3481 (DE) (Table  1; Figure  1A). After 72 h of culture, 

FIGURE 1

(A–B) Growth curves of strains DE and B3 under anaerobic 
conditions with different molybdate concentrations. DE represents 
Desulfomicrobium escambiense CGMCC 1.3481 strain and B3 
represents Raoultella terrigena TGRB3 strain.

FIGURE 2

(A–B) Growth curves of strains B3 and B4 under aerobic conditions 
with different molybdate concentrations. B3 represents Raoultella 
terrigena TGRB3 strain and B4 represents Pseudomonas putida 
TGRB4 strain.
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compared to the maximum OD600 value of 1.91 ± 0.1 Abs in the 
treatment without molybdenum, the growth capacity of bacteria 
decreased by 45, 90, and 90% at 0.25, 0.5, and 1 mM molybdenum 
concentrations, respectively. Under a molybdenum concentration of 
0.5 mM, the growth of DE bacteria was almost completely inhibited. In 
accordance with previous research (Newport and Nedwell, 1988), the 
results showed that adenosine phosphosulfate formed when molybdate 
entered the cells. Adenosine phosphosulfate interfered with the sulfate 
reduction process of bacteria and exerted a strong inhibitory effect on 
the growth of DE (Barkay and Wagner-Dobler, 2005; Patidar and Tare, 
2005; Correia et  al., 2012). However, the treatment of Raoultella 
terrigena TGRB3 (B3) achieved no significant difference in the effect 
of changes in molybdate concentration on the growth capacity of this 
bacterial strain (Figure 1B). As B4—a strictly aerobic bacterium—
cannot grow normally under anaerobic conditions, the growth and 
subsequent methylation of strain B4 were not analyzed. These results 
suggest that the two classes of bacteria adopted different respiratory 
electron transport chains. In other words, anaerobic respiration of B3 
bacteria might adopt a non-sulfate metabolic pathway.

3.1.2 Bacterial growth under aerobic conditions
The experimental results showed that molybdate concentration did 

not affect the growth of B3 (Table 1; Figure 2A), and OD600 values of 
0.39–0.40 Abs were maintained among the four molybdate treatments. 
However, in the treatment of strain B4, the addition of 1 mM 
molybdenum significantly inhibited the number of bacteria compared 
to the treatment without molybdenum (Figure 2B); this result was not 
observed in the 0.25 and 0.5 mM treatment groups. Moreover, under 
the same oxygen concentration, the growth ability of B3 was 
significantly better than that of strain B4. Furthermore, under aerobic 
conditions, the growth of B3 was significantly better than under 
anaerobic conditions (Table 1). B4 could not grow under anaerobic 
conditions, while DE could not grow under aerobic conditions.

The aforementioned experimental results indicate that changes in 
molybdate concentration lead to significant inhibitory effects on the 
anaerobic growth of SRB but did not significantly impact the growth of 
the B3 strain. This result is consistent with previous research findings 
showing that SRB acquire energy through the reduction of sulfate; 
molybdate acts as a competitive inhibitor of sulfate, leading to targeted 
“energy uncoupling” and inhibiting the growth of SRB (Wilson and 
Bandurski, 1958; Fleming et al., 2006). Interestingly, the experimental 
results also suggest that under aerobic conditions, strains within the same 
γ-Proteobacteria class utilize different bio-oxidation pathways: Molybdate 
could not impact the growth of the B3 strain, while the growth of B4 was 
significantly affected by the molybdate concentration. This result suggests 
that bacteria of the γ-Proteobacteria class might possess multiple 
bio-oxidation pathways. Among them, certain strains do not rely on 
sulfur metabolism (e.g., B3), while others utilize alternative sulfur 
metabolism pathways (e.g., B4). The choice of metabolic pathways may 
be determined by the distinct biological attributes of different bacteria.

3.2 Efficiency of bacterial Hg(II) 
bio-methylation

3.2.1 Analysis of Hg(II) bio-methylation by DE and 
B3 under anaerobic conditions

Under anaerobic conditions with a Hg(II) concentration of 
500 ng·L−1, in the DE bacteria treatment without added molybdate, the 

peak of MeHg content was reached at 18 h. The maximum net 
concentration of methylmercury ([MeHg]max) was 22.94 ± 5.7 pg·g−1 
(Figure 3A). The concentration of MeHg showed a regular decrease 
with increasing MoO4

2− concentration. The [MeHg]max of the 0.25 and 
0.5 mM molybdate treatments were 9.59 ± 4.03 pg·g−1 at 72 h and 
1.58 ± 0.87 pg·g−1 at 30 h, respectively. Compared to the 
DE-Hg500-Mo0 treatment, the maximum Hg(II) bio-methylation 
concentrations decreased by 58.21 and 81.11%, respectively.

In contrast, the MeHg content of the facultative bacterial strain B3 
reached its peak earlier than that of DE, but its methylation capacity 
was much lower than that of DE, and its [MeHg]max was 
1.07 ± 0.28 pg·g−1 (Figure 3B). With increasing MoO4

2− concentration, 
the MeHg content of B3 did not show regular changes. Moreover, the 
deviation of the MeHg content among different concentration 
gradients was less than 0.2 pg·g−1, the decrease of [MeHg]max was less 
than 15%, and no significant difference was found.

Consistent with the results of previous studies, molybdate, as a 
metabolic inhibitor of SRB, can affect their Hg(II) biomethylation 
ability. This inhibitory effect is gradually strengthened with increasing 
molybdate concentration (Fleming et al., 2006). This conclusion is 

FIGURE 3

(A–B) Changes in unit methylmercury content of strains DE and B3 
under anaerobic conditions with different molybdate concentrations. 
Lowercase letters indicate the significant differences in MeHg 
content within 72  h at the same molybdate concentration (p  <  0.05); 
capital letters indicate significant differences in MeHg content under 
different molybdate concentrations at the same time (p  <  0.05). DE 
represents Desulfomicrobium escambiense CGMCC 1.3481 strain 
and B3 represents Raoultella terrigena TGRB3 strain.
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supported by the results of the molybdate inhibition test against strain 
DE in this experiment. The effect of molybdate on sulfate reduction 
resulted in the obstruction of cell energy acquisition, which affected 
its growth and eventually led to the loss of mercury methylation ability 
at a concentration of 1 mM molybdate. In contrast, the ability of 
Hg(II) bio-methylation in B3 treatments was not significantly 
impacted by molybdate. Although it is not possible to predict the 
specific metabolic pathway adopted by bacteria B3, the fact that the 
metabolic pathways of bacteria B3 and strain DE are different is at 
least confirmed.

3.2.2 Analysis of Hg(II) bio-methylation by B3 and 
B4 under aerobic conditions

Based on previous tests, the Hg(II) concentration of 500 ng·L−1 is 
well within the tolerance range of B3 and B4 bacteria and does not 
affect the growth of both (Cao et al., 2021; Feng et al., 2022). Under 
the 500 ng·L−1 Hg(II) condition, the [MeHg]max in the B3 and B4 
bacterial treatments without added molybdate treatments were 
6.28 ± 0.46 and 1.85 ± 0.19 pg·g−1, respectively (Figures 4A,B); however, 
their [MeHg]max decreased to 4.51 ± 1.0 and 1.56 ± 0.82 pg·g−1, 
respectively, at a MoO4

2− concentration of 0.25 mM. This trend was 
not stable and their [MeHg]max increased to 6.65 ± 0.32 and 
2.07 ± 0.06 pg·g−1, respectively, at 0.5 mM concentration. No significant 
difference was found in the effect of MoO4

2− concentration on MeHg 
concentration of B3 and B4 strains under aerobic conditions.

The comprehensive experimental results indicate that the Hg(II) 
bio-methylation efficiency of δ-Proteobacteria class strains might 
be significantly negatively correlated with molybdate concentrations. 
This correlation stems from the interference of molybdate with the 
bacterial sulfur metabolism, leading to the inhibition of bacterial 
growth and consequently affecting Hg(II) bio-methylation (Fleming 
et al., 2006). Because of their lack of sulfur metabolism, the bacterial 
growth of γ-Proteobacteria could not be inhibited by molybdate, and 
the effect on Hg(II) bio-methylation was not significant. Further 
analysis from a mechanistic perspective shows that the hgcA/B gene 
can be found in most anaerobic mercury methylation microorganisms, 
especially SRB. Research has shown that there is a strong covariance 
between mercury methylation and sulfate reduction in both time and 
space, indicating the critical contribution of SRB to mercury 
methylation (Regnell and Watras, 2019). At the same time, an 
increasing number of studies have detailed the contribution of aerobic 
microorganisms to methylation (Jones et al., 2019; Zhang et al., 2021). 
In this study, the mercury methylation ability of B3 and B4 bacteria was 
also confirmed, but no evidence of hgcA/B gene was found in B3 and 
B4 strains; moreover, no reports of the presence of hgcA/B were found 
in aerobic mercury methylation microorganisms. This suggests that the 
evolutionary migration of hgcA/B genes is also related to metabolism.

3.3 Transcriptome data analysis of B3 
strains under Hg(II) stress conditions

3.3.1 Analysis of DEGs under Hg(II) stress 
conditions

To examine the metabolic type of mercury methylation in 
Raoultella terrigena TGRB3 (B3), DEGs were analyzed under 
500 ng·L−1 Hg(II) conditions. In the comparison between the control 
group and the experimental group at 3, 9, and 24 h, totals of 490, 42, 

and 27 DEGs were identified, respectively; among them, 188, 11, 
and 10 genes were upregulated, respectively, while 302, 31, and 17 
genes were downregulated, respectively (Figure 5A). A comparison 
of unique DEGs in each group is shown in Figure 5B. Notably, the 
highest number of DEGs (471) was observed at 3 h. These results 
suggest that the bacterial response to environmental Hg (II) toxicity 
might occur in the initial stage of exposure to environmental Hg (II) 
conditions. At 9 h, however, the number of DEGs decreased 
significantly to 26, which could be explained by bacterial adaptability 
and their regulatory ability to the environment.

3.3.2 Analysis of DEGs in bacterial metabolism 
under Hg(II) conditions

The abovementioned criteria (FDR ≤ 0.05 and |log2(FC)| ≥ 1) were 
used to screen for DEGs related to bacterial metabolism (Table 2). Under 
500 ng·L−1 Hg(II) and aerobic conditions, the cydB gene associated with 
aerobic respiration was significantly differentially expressed. This gene 
was annotated to a subunit of the cytochrome bd-I complex located at 
the terminal oxidase of the Escherichia coli respiratory chain and 

FIGURE 4

(A–B) Changes in unit methylmercury content of strains B3 and B4 
under aerobic conditions with different molybdate concentrations. 
Lowercase letters indicate significant differences in MeHg content 
within 72  h at the same molybdate concentration (p  <  0.05); capital 
letters indicate the significant difference in MeHg content under 
different molybdate concentrations at the same time (p  <  0.05). B3 
represents Raoultella terrigena TGRB3 strain, and B4 represents 
Pseudomonas putida TGRB4 strain.
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assumes a pivotal role in the NADH decomposition metabolism 
(Hamed et al., 2020). In addition, a series of genes related to cellular 
anaerobic metabolism (i.e., frdc, frdD, dcuA, dcuB, and napA) were 
significantly upregulated, which were annotated to engage in nitrate or 
nitrite reduction. The results were in accordance with the results of 
E. coli under aerobic conditions (Ingledew and Poole, 1984).

Based on the identified DEGs, it can be speculated that facultative 
anaerobic bacteria (i.e., strain B3) undergo adaptive modifications 
because of the fluctuating oxygen availability in the soil of the WLFZ in 
the Three Gorges Reservoir (Cao et al., 2021). The adaptive process of 
multiple energy metabolic pathways could simultaneously or alternately 
utilize diverse energy sources and metabolic strategies (Ortiz et al., 2020). 
This result is similar to a previous study that found Bin 144 bacteria from 
the candidate phylum Aminicenantes in the Louis River watershed, 
northern Minnesota, also without the hgcA/B gene. The reason for this 
observed similarity is that it encodes the respiratory complex cytochrome 

C oxidase (coxABCD), suggesting that it has other respiratory functions 
and may be able to use these oxygenases to resist mercury stress under 
low oxygen conditions (Jones et al., 2019). Perhaps the respiratory and 
metabolic types of strain B3 in this study are similar to those of strain Bin 
44, but further verification of this supposition is needed.

3.3.3 Analysis of expressions of genes related to 
molybdenum

Analysis of the transcriptional data showed that certain genes 
related to molybdenum unexpectedly showed significant alterations 
(Table  3). These genes are involved in the nitrate reductase 
molybdenum cofactor assembly chaperone (narJ), the dimethyl 
sulfoxide reductase (DMSO) subunit, the selenate reductase subunit 
(ygfK), and the molybdate-dependent oxidoreductase FAD-binding 
subunit (ygfM). In addition, certain molybdenum enzyme families 
were involved in the DMSO family, the xanthine oxidase family, and 
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(A) Analysis of differentially expressed genes at different sampling times compared to control groups. (B) Venn diagram analysis of the proportion of 
differentially expressed genes at different sampling times.

TABLE 2 Cell respiration and genes related to metabolism.

Symbol Gene ID KEGG ID Gene name Gene description Log(2)FC

(3 h) Hg500 vs. Hg0

B-1000711 K00247 frdD Fumarate reductase subunit D 1.16

B-1000712 K00246 frdC Fumarate reductase subunit C 1.16

B-1000695 K07791 dcuA
Anaerobic C4-dicarboxylate 

transporter
1.28

B-1000676 K07792 dcuB
Anaerobic C4-dicarboxylate 

transporter
1.18

B-1003236 K00373 narJ
Nitrate reductase molybdenum 

cofactor assembly chaperone
−1.47

B-1003237 K00371 narH nitrate reductase subunit beta −1.44

B-1003238 K00370 narG Nitrate reductase subunit alpha −1.38

B-1003585 K02567 napA
Nitrate reductase catalytic 

subunit
1.0

B-1001725 K00247 cydB
Cytochrome bd-I ubiquinol 

oxidase subunit
1.0
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the sulfite oxidase family (Iobbi-Nivol and Leimkuehler, 2013). 
Notably, DEGs belonging to both the DMSO and nar-type nitrate 
reductase groups were members of DMSO. These genes participate in 
the synthesis and consumption of dimethyl sulfide, with DMSO 
reductase forming an integral component of the bacterial respiratory 
chain. These genes could act as an alternate terminal reductase, thus 
playing a role in anaerobic respiration and energy conservation under 
anaerobic conditions (Wilson and Bandurski, 1958).

Based on the DEGs of Mo-related genes, it can be speculated that 
molybdenum enzymes might be  associated with the metabolic 
pathways of the facultative anaerobic B3 strain. As an essential trace 
element, molybdenum plays a crucial role in bacterial growth and in 
the metabolism of cellular carbon, nitrogen, and sulfur (Kisker et al., 
1997; Leimkuehler and Iobbi-Nivol, 2016). However, molybdate has 
been documented to function as a metabolic inhibitor in SRB, 
disrupting their sulfur metabolism and impeding both growth and 
methylation processes (Thomas et al., 2019). In non-sulfur-metabolizing 
Hg(II) bio-methylation bacteria, molybdenum-containing proteins or 
enzymes might assume an active role in alternative metabolic pathways 
to environmental mercury stress. Thereby, they play a role in the 
biological mercury stress defense. However, whether molybdate was 
involved in the Hg(II) reduction process cannot be identified, as current 
limitations in technical conditions prevent effective determination.

4 Conclusion

Anaerobic bacterial growth and Hg(II) bio-methylation of 
δ-Proteobacteria (i.e., strain DE) were significantly inhibited by 
molybdate because of a disruption of the bacterial sulfur metabolism. 
However, the aerobic bacteria of γ-Proteobacteria (i.e., strains B3 and 

B4) could grow normally in the molybdate-containing medium. These 
results suggest that B3 and B4 might be non-sulfuric in the bacterial 
electron transfer chain, as the metabolic pathway was not dependent 
on sulfate as an electron acceptor.

According to the temporal differences of the transcriptomic DEGs 
of B3, the bacterial response to environmental Hg(II) toxicity occurs 
in the initial stage of Hg(II) exposure. Therefore, the observed 
significant differences in molybdenum-containing proteins in B3 
bacteria might be due to their participation in various intracellular 
biological oxidation processes. Examples of these processes are nitrate, 
nitrite, and DMSO energy metabolic pathways, as well as the role they 
play in electron transfer; ultimately, these processes mediate the 
defense mechanism of bacteria against mercury stress. In general, 
facultative B3 bacteria might have environmental oxygen adaptability 
and Hg(II) bio-methylation compensating metabolic pathways.
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