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Background: The relationship between gut microbiota and osteoarthritis (OA) 
occurrence remains unclear. Existing research needs to clearly understand 
how basal metabolic rate (BMR) regulates this relationship. Therefore, using a 
two-step bidirectional Mendelian Randomization approach, our study aims to 
investigate whether BMR levels mediate the causal relationship between gut 
microbiota and OA.

Methods: In this study, we examined publicly available summary statistics from 
Genome-Wide Association Studies (GWAS) to determine the correlation between 
gut microbiota and OA. The analysis included one primary dataset and two 
secondary datasets. Initially, a two-step, two-sample, and reverse MR analysis 
was performed to identify the causal relationship between gut microbiota 
and OA. Subsequently, a two-step MR analysis revealed that the relationship 
between microbiota and OA is mediated by BMR. Sensitivity analyses confirmed 
the robustness of the study results.

Results: In our analysis of the primary dataset, we  discovered a positive 
correlation between three taxa and the outcome of OA, and eight taxa 
exhibited a negative correlation with the OA outcome. Through comparisons 
with the secondary dataset and multiple testing corrections, we  found a 
negative association between the class Actinobacteria (OR=0.992886277, p-
value  =  0.003) and the likelihood of OA occurrence. Notably, knee osteoarthritis 
(KOA) and hip osteoarthritis (HOA) had a strong negative correlation 
(OR  =  0.927237553/0.892581219). Our analysis suggests that BMR significantly 
mediates the causal pathway from Actinobacteria to OA, with a mediated effect 
of 2.59%. Additionally, BMR mediates 3.98% of the impact in the path from the 
order Bifidobacteriales and the family Bifidobacteriaceae to OA. Besides these 
findings, our reverse analysis did not indicate any significant effect of OA on gut 
microbiota or BMR.

Conclusion: Our research results indicate that an increase in the abundance of 
specific gut microbial taxa is associated with a reduced incidence of OA, and 
BMR levels mediate this causal relationship. Further large-scale randomized 
controlled trials are necessary to validate the causal impact of gut microbiota 
on the risk of OA. This study provides new insights into the potential prevention 
of OA by modulating the gut microbiota.
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1 Introduction

Osteoarthritis (OA) is a degenerative disease that affects the entire 
joint. The typical features of OA included synovial inflammation, 
cartilage loss, joint osteophyte formation, meniscal injury, and the 
degeneration of tendons and ligaments (Gu et al., 2018; Wei and Bao, 
2022). OA is a condition that causes disability, and its occurrence and 
prevalence are increasing among the general population. OA is 
primarily associated with aging. Its prevalence is projected to steadily 
rise and is expected to become the leading cause of disability in the 
general population by the year 2030 (Thomas et  al., 2014). OA 
predominantly affects weight-bearing joints in the human body. A 
recent estimate indicates approximately 300 million cases of hip and 
knee OA (GBD 2015 Disease and Injury Incidence and Prevalence 
Collaborators, 2016). As a prevalent musculoskeletal disease, it imposes 
a substantial healthcare burden, impacting individuals and placing 
strain on healthcare systems (Giorgino et al., 2023). Due to its complex 
and unexplained pathogenesis, joint replacement is the only option in 
the end stage, causing pain to patients and a heavy burden on society. 
Therefore, researching early intervention strategies for osteoarthritis 
remains crucial in alleviating the overall health burden on society.

The gut microbiota actively participates in various physiological 
functions, including metabolism, immune and neural functions, 
metabolic stability maintenance, immune system development, 
resistance to infections, and the production of certain neurotransmitters 
(Adak and Khan, 2019). With the continuous advancement of high-
throughput sequencing technologies and platforms, there is a growing 
body of evidence indicating that gut microbiota has a significant impact 
on skeletal metabolism. Certain microbial communities in the 
intestines, for instance, can produce short-chain fatty acids like butyrate, 
propionate, and acetate. These fatty acids are crucial for maintaining 
skeletal health (Blaak et al., 2020). Butyrate has been discovered to 
boost osteoblasts’ functionality and hinder osteoclasts’ activity, thus 
supporting the overall well-being of bones (Medawar et al., 2021). Due 
to the susceptibility of the gut microbiota balance to various factors, 
disturbances may lead to conditions such as obesity, diabetes, metabolic 
disorders, and even cancer in individuals (Xu et al., 2020).

The basal metabolic effect constitutes approximately 70% of daily 
energy expenditure (Levine, 2005), and its efficiency is referred to as the 
basal metabolic rate (BMR). BMR plays a vital role in upholding normal 
structure and function, and any discrepancy between metabolic 
requirements and BMR is strongly associated with clinical pathologies. 
In previous investigations, common risk factors for OA have been 

identified, including obesity (Johnson and Hunter, 2014; Allen and 
Golightly, 2015; Neogi and Zhang, 2013; Lane et  al., 2017), 
hyperlipidemia, and other factors that reflect features associated with 
metabolic syndrome and manifestations of metabolic aberrations. 
Metabolism is a fundamental aspect of life, in which the human body 
utilizes nutrients obtained from dietary intake for energy metabolism to 
sustain physiological functions. According to previous studies (Wei 
et al., 2022), the gut microbiota may play a role in the onset of OA by 
affecting organismal metabolism or interactions. The basal metabolic 
rate may be an intermediary factor in mediating the occurrence of 
osteoarthritis. Therefore, it is imperative to determine the potential 
interplay between BMR levels and gut microbiota in the 
development of OA.

Mendelian Randomization (MR) analysis utilizes genetic 
variations as instrumental variables for exposure to establish causality 
between exposure and outcomes (Greenland, 2018). Since common 
confounding factors do not influence the random distribution of allele 
genes, causal relationships are commonly regarded as dependable 
(Burgess et al., 2013). However, no previous MR studies have been 
identified that investigate the correlation between gut microbiota, OA, 
and their connections with BMR. Hence, we conducted a two-step, 
two-sample bidirectional MR analysis based on summary statistics 
from Genome-Wide Association Studies (GWAS) to assess the causal 
relationships between gut microbiota, BMR, and OA.

2 Materials and methods

2.1 Study design

This research employed a two-sample, two-step bidirectional 
Mendelian Randomization (MR) design based on summary data from 
Genome-Wide Association Studies (GWAS). The study followed the 
most recent recommendations for conducting MR analysis as outlined 
in the STROBE-MR guidelines and was based on three fundamental 
assumptions: (1) Instrumental variables are closely associated with gut 
microbiota. (2) Any potential confounding factors do not influence 
the chosen instrumental variables. (3) The chosen instrumental 
variables are unrelated to the outcome but related to the exposure. 
Additionally, meeting other assumptions requires the absence of 
statistical interactions (Skrivankova et al., 2021). Figure 1 illustrates 
the schematic representation of the methodology used in MR analysis.

Firstly, an MR analysis was conducted to determine the association 
between gut microbiota and OA to obtain the total effect size β1. 
We then conducted another MR analysis on the gut microbiota and 
the mediator to determine the effect size β2. Lastly, an additional MR 
analysis was conducted to investigate the link between BMR and OA, 
resulting in the effect size β3. Additionally, a reverse Mendelian 
Randomization study was conducted to eliminate the possibility of 
bidirectional causation. The study utilized GWAS summary-level data, 
for which appropriate informed consent and ethical approvals were 

Abbreviations: OA, Osteoarthritis; KOA, Knee osteoarthritis; HOA, Hip osteoarthritis; 

BMR, Basal metabolic rate; GWAS, Genome-Wide Association Studies; MR, 

Mendelian Randomization; MRC-IEU, The Medical Research Council-Integrative 

Epidemiology Unit; IVs, Instrumental variables; SNPs, Single Nucleotide 

Polymorphisms; IVW, Inverse variance-weighted; MR-PRESSO, Mendelian 

Randomization Pleiotropy RESidual Sum and Outlier; ROS, Reactive oxygen species.
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obtained from the original studies. The schematic representation of 
the study design is illustrated in Figure 2.

2.2 Data source

The gut microbiota data used in this study originated from the 
MiBioGen Consortium (Kurilshikov et al., 2021). The consortium 
curated and analyzed genetic information of whole genomes and 16S 
fecal microbiome data from a total of 18,340 individuals across 24 
cohorts. This included data from 14,306 individuals with European 
ancestry who participated in 18 different cohorts. The consortium 
adjusted for technical covariates, such as age, gender, genetic principal 
components, and fecal DNA extraction methods, as well as 16S 
structural domains, aiming to reduce heterogeneity across cohorts.

The GWAS summary data for the European BMR were sourced 
from the IEU Open GWAS database.1 This database represents an 
analysis of the UK Biobank (Rusk, 2018) phenotype survey results 
conducted by the Medical Research Council-Integrative Epidemiology 
Unit (MRC-IEU) consortium (Elsworth and et.al, 2020; Hemani 
et al., 2018).

The outcome data analyzed in this study were obtained from the 
Medical Research Council Integrative Epidemiology Unit Open 
GWAS.2 The primary outcome data originated from the OA dataset, 
which included 462,933 European individuals. This dataset comprised 

1 https://gwas.mrcieu.ac.uk/

2 http://gwas-api.mrcieu.ac.uk/

FIGURE 1

The schematic representation of the basic methodology used in MR analysis.

FIGURE 2

The schematic representation of the study design in this article.
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424,461 healthy controls and 38,472 OA patients, with 9,851,867 
SNPs. Site-specific secondary outcome data were derived from two 
datasets of the same GWAS, representing a meta-analysis of the entire 
OA genome using UK Biobank and ArcGEN resources (Tachmazidou 
et al., 2019). The KOA dataset included 378,169 healthy controls and 
24,955 knee OA patients. The HOA dataset included 378,169 healthy 
controls and 15,704 hip OA patients. Table 1 summarizes the GWAS 
data used in this study.

2.3 SNP selection

We used genetic variation as instrumental variables (IVs). To 
satisfy assumption 2, we ensured that the selected Single Nucleotide 
Polymorphisms (SNPs) were strongly associated with gut microbiota, 
BMR, and OA, respectively. We  initially selected SNPs from the 
MiBioGen data for gut microbiota that exhibited genome-wide 
significant associations (p < 5×10-08) with the exposure. In cases 
where the number of IVs was limited, the significance threshold was 
relaxed to 1×10-05. Subsequently, based on prior experience, 
we utilized the “clump_data” function in the “TwoSampleMR” package 
of RStudio version 4.2.1 to identify SNPs in the gut microbiota dataset 
with a genetic distance of 250 kb and an r2 < 0.01. When obtaining 
SNPs for BMR, we identified SNPs in the ukb-a-268 dataset with a 
significance level of p < 5e-08, a genetic distance of 10,000 kb, and 
r2 < 0.001. When obtaining SNPs for OA, we identified SNPs in the 
dataset with p < 5e-08, a genetic distance of 10,000 kb, and r2 < 0.001. 
For secondary datasets with gut microbiota in two-sample MR, the 
threshold was adjusted to p1 = 5e-06, r2 = 0.01, and kb = 1,000. This 
modification was necessary due to a limited number of SNPs.

To address assumption 1, we utilized the PhenoScanner database 
to identify potential confounding factors, including body mass index 
and smoking, within the dataset. Then, we harmonized the exposure 
and outcome datasets by removing palindromic SNPs with allele 
frequencies close to 0.5. We ensured the strength of the instrumental 
variables by calculating the F-statistic using the formula: F = (n − k 
− 1)/k × [R^2/(1 − R^2)], where R^2 represents the cumulative 
explained variance in the selected SNPs, n is the sample size, and k is 
the number of SNPs in the analysis. A value of F greater than 10 
indicates that the exposure strength is sufficient to mitigate weak 

instrumental bias in a two-sample model (Burgess et al., 2011). The 
selected SNPs for gut microbiota and BMR are presented in 
Supplementary Tables 1–3.

2.4 Statistical analysis

We conducted a bidirectional two-sample MR analysis to assess 
the relationship between the gut microbiota and OA. The primary 
analysis utilized the inverse variance-weighted (IVW) method to 
obtain unbiased estimates of the causal relationship between exposure 
and outcome. Secondary analyses were conducted using the weighted 
median method (Bowden et  al., 2016) and MR-Egger regression. 
Cochran’s Q test, based on IVW estimates, was employed to detect 
heterogeneity among IVs (Pierce and Burgess, 2013). In the presence 
of heterogeneity, we  applied the IVW random-effects model for 
analysis. We assessed the potential impact of directional pleiotropy by 
testing the intercept value of the MR-Egger regression. A p-value 
greater than 0.05 indicates weaker evidence for pleiotropic effects in 
causal analysis (Burgess and Thompson, 2017). Additionally, 
we utilized the Mendelian Randomization Pleiotropy RESidual Sum 
and Outlier (MR-PRESSO) method to detect and adjust for horizontal 
pleiotropy and potential outliers. This approach provides more reliable 
and robust estimates of causal effects (Gao et al., 2023).

3 Results

3.1 Causal associations of gut microbiota 
with OA statistical analysis

Three major methods were employed to investigate the association 
between gut microbiota and OA. The OA dataset was considered the 
primary outcome, with the KOA and HOA datasets serving as 
secondary outcomes. In the primary outcome analysis 
(Supplementary Table 4), negative correlations were observed for class 
Actinobacteria, phylum Actinobacteria, family Bifidobacteriaceae, 
Pasteurellaceae, order Bifidobacteriales and Pasteurellales, and genus 
Slackia. Conversely, positive correlations were observed for the genera 
Bilophila, Anaerotruncus, and RikenellaceaeRC9 gut group. In the 

TABLE 1 A comprehensive summary of the GWAS data sources and information utilized.

Variable GWAS ID/PMID Data sources Population Sample size Web resource

Exposure

Gut microbiota PMID: 33462485 MiBioGen consortium European 18,340 https://mibiogen.gcc.rug.nl/

Mediation

Basal metabolic rate ukb-a-268 Neale Lab European 331,307 https://gwas.mrcieu.ac.uk/

datasets/ukb-a-268/

Outcome

Osteoarthritis ukb-b-14486 MRC-IEU European 462,933 https://gwas.mrcieu.ac.uk/

datasets/ukb-b-14486/

Knee osteoarthritis ebi-a-GCST007090 NA European 403,124 https://gwas.mrcieu.ac.uk/

datasets/ebi-a-GCST007090/

Hip osteoarthritis ebi-a-GCST007091 NA European 393,873 https://gwas.mrcieu.ac.uk/

datasets/ebi-a-GCST007091/
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secondary outcomes, only the class Actinobacteria showed consistency 
with the primary outcome. Additionally, in the HOA dataset, 
consistency with the primary outcome was observed for the phylum 
Actinobacteria and the genus Bilophila. Figure 3 depicts the forest plot 
of odds ratios (OR) for the association between gut microbiota and OA.

Actinobacteria (OR=0.992886277, p-value = 0.003) showed a 
negative association with the likelihood of OA occurrence. Strong 
correlations were observed in both KOA and HOA (OR = 0.927237553 
and 0.892581219), suggesting a potential link with OA development. 
Figure 4 displays two circular heatmaps of complete p-value results for 
211 gut microbiotas using the IVW method about OA.

Reverse analyses were conducted for the taxa showing positive 
results, which revealed no significant impact of OA on gut microbiota 
(Supplementary Table 8). To further confirm the robustness of the 
results, we conducted multiple sensitivity tests (Supplementary Table 8). 
Moreover, all results from Cochran’s Q test were above 0.05, indicating 
no significant heterogeneity. Furthermore, neither the MR-Egger 
intercept test nor the global test p-value yielded statistically significant 
results, indicating the lack of horizontal pleiotropy.

3.2 Causal associations of gut microbiota 
with BMR levels

Similarly, we conducted a two-sample analysis to examine the 
relationship between gut microbiota and BMR. The IVW fixed-effects 
analysis in the Supplementary Table 5 reveals a negative correlation 
between order Methanobacteriales, family Methanobacteriaceae, class 
Methanobacteria, and BMR levels (β = −0.014, p = 0.002). Genus 
Lachnospiraceae UCG004, order Bifidobacteriales, family 
Bifidobacteriaceae, and Family XIII, class Actinobacteria, also exhibited 
negative correlations with BMR levels. Only the genus Coprobacter 
showed a positive correlation with BMR levels, and similar causal 
estimates were obtained through WM analysis.

A series of sensitivity analyses were performed, including WM, 
Cochran’s Q test, MR-Egger regression, and intercept test 
(Supplementary Table  5). Furthermore, all p-values from the 
MR-Egger intercept test were greater than 0.05, indicating no evidence 
of horizontal pleiotropy. Three positive results indicating heterogeneity 
were found in Cochran’s Q test. Subsequently, we conducted an IVW 
random-effects model analysis and utilized it as the primary outcome. 
Reverse analyses revealed no impact of BMR on the gut microbiota, 
showing positive associations (Supplementary Table 9).

3.3 Causal associations of BMR with OA

Finally, we conducted a two-sample MR analysis to examine the 
impact of BMR on OA. After removing confounding SNPs related to 
factors such as obesity and smoking, the resulting SNPs are listed in 
Supplementary Table 3. Supplementary Table 6 presents the results. 
IVW fixed-effects analysis shows a positive correlation between BMR 
levels and OA, with a more significant positive correlation observed 
in the secondary datasets KOA and HOA. Furthermore, heterogeneity 
tests and pleiotropy tests strengthened the robustness of the 
study’s findings.

3.4 Mediation effect of BMR levels in the 
causal association between gut microbiota 
and OA

Previously, it was believed that energy demands increase during 
illness, as elevated measurements of BMR are frequently observed 
during disease states (Gibney, 2000). Therefore, we conducted reverse 
analyses but found no significant association between OA and BMR 
(Supplementary Table 7).

Summarizing the results, as shown in Table 2, positive results were 
found for the class Actinobacteria in both the primary and secondary 
datasets. BMR plays a significant role in the causal pathway from class 
Actinobacteria to OA, with a mediated effect of 2.59%. The effect is 
most pronounced in KOA, with a mediated effect of 16.40%, and a 
5.15% mediated effect in HOA. It also exerts a 3.98% mediated effect 
in the pathway from order Bifidobacteriales and family 
Bifidobacteriaceae to OA.

4 Discussion

This study utilized large-scale GWAS summary data and employed 
a two-sample, two-step bidirectional MR analysis to investigate the 
associations between gut microbiota, BMR levels, and OA. This study 
represents the first comprehensive and in-depth investigation into the 
causal relationships between BMR-mediated gut microbiota and OA 
based on publicly available GWAS data. According to our extensively 
corrected study results, an increase in the abundance of Actinobacteria 
and Bifidobacteria may negatively correlate with the risk of developing 
OA. Additionally, we  observed that the decrease in OA risk may 
be mediated by a reduction in BMR (mediated proportions = 2.59 and 
3.98%, respectively). Consistent directional effects were observed in 
all analyses using MR Egger and the weighted median method, 
suggesting that targeting Bifidobacteria and Actinobacteria may hold 
promise for preventing OA.

The human gastrointestinal tract is home to trillions of symbiotic 
bacteria, forming a mutually beneficial relationship with the human 
body and contributing to the maintenance of our health (Qin et al., 
2010). Recent research has highlighted the crucial role of gut 
microbiota imbalance in metabolic diseases (Zhang et  al., 2015; 
Stewart et al., 2016). OA is classified as a metabolic disease (Gowd 
et al., 2020), and there are often interconnections between different 
metabolic disorders. For example, obesity is a risk factor for type 2 
diabetes, and excessive weight can also contribute to the onset of 
non-alcoholic fatty liver disease (Wu et al., 2019). Adverse changes in 
gut microbiota can contribute to the beginning of metabolic syndrome 
and inflammation, both playing crucial roles in the development and 
advancement of OA (Jin et al., 2015). Recent findings indicate that the 
gut microbiota may stimulate systemic inflammation by triggering the 
innate immune response. This discovery establishes a potential link 
between metabolism and the establishment of mechanisms associated 
with OA (Metcalfe et al., 2012).

Previous experimental studies have suggested that prebiotic 
oligosaccharides derived from corn starch and lentil diets can promote 
the growth of Bifidobacteria while reducing the abundance of 
Firmicutes bacteria. These bacteria could benefit overweight and 
obese populations (Barczynska et  al., 2016; Siva et  al., 2018; 
Panichsillaphakit et al., 2021). It may even reduce the occurrence of 
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FIGURE 3

The forest plot of gut microbiota with an inverse variance weight (IVW) < 0.05. (A) Odds ratios (OR) for the association between gut microbiota and OA. 
(B). Odds ratios (OR) for the association between gut microbiota and KOA, HOA.

https://doi.org/10.3389/fmicb.2024.1371679
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2024.1371679

Frontiers in Microbiology 07 frontiersin.org

OA. Eric M. Schott’s et al. animal experiment also indicated that lean 
mice predominantly harbor Bacteroidetes and Actinobacteria, with a 
notably abundant presence of the genus Bifidobacterium (Schott et al., 
2018). Research on Bifidobacterium and OA is extensive, indicating 
that Bifidobacterium may influence OA through its metabolites, 
specifically short-chain fatty acids, including acetate, propionate, and 
butyrate. Butyrate, for instance, has been discovered to boost 
osteoblast function and suppress osteoclast activity, consequently 
fostering comprehensive bone health (Medawar et al., 2021). Butyrate 
induces autophagy and reverses detrimental autophagic processes, 
thereby ameliorating the inflammatory milieu, reducing necroptotic 
tendencies, and potentially improving osteoarthritis progression 
through modulation of intestinal environment and autophagic flux 
(Cho et al., 2022).This mechanism is pivotal in regulating the immune 
system and maintaining metabolic balance (Wang et al., 2015). Schott 
et al. (2018) demonstrated that saturated fatty acids are toxic to OA 
pathogenesis (Csekar et al., 2017). Supplementation with prebiotic 
fibers can reverse the detrimental effects of a fat-rich diet (especially 

saturated fatty acids) on the gut microbiota by increasing the 
abundance of Bifidobacterium. Bifidobacterium also contributes to 
absorbing and utilizing essential nutrients, including calcium, vitamin 
D, iron, and phosphorus. These nutrients are necessary for muscle 
metabolism (Montazeri-Najafabady et al., 2019).

Moreover, Bifidobacterium exhibits a richness in genes encoding 
proteins associated with carbohydrate and amino acid transport and 
metabolism, which influence protein synthesis and the utilization of 
nutrients (Tu et al., 2023). This could represent one of the potential 
mechanisms by which Bifidobacterium may mitigate the onset of 
OA. Henrotin et al. (2021) demonstrated that oral administration of 
Bifidobacterium longum CBi0703 for 12 weeks can reduce cartilage 
structural damage and decrease the degradation of type II collagen, 
suggesting a potential preventive role in the development of OA.

Our MR analysis observed significant negative associations 
between Bifidobacteria and Actinobacteria with BMR. Additionally, 
Methanobacteriales also displayed notable differences in association 
with BMR. Various factors, including temperature, hormone levels, 

TABLE 2 Two-step Mendelian randomization.

Exposure Mediation Total effect (Beta) A (Beta) B Indirect effect 
(Beta)

Mediation 
effect/Total 

effect

Osteoarthritis

class.Actinobacteria.id.419 BMR −0.007139 −0.0219 0.00845 −0.000185211 0.025942973

order.Bifidobacteriales.id.432 BMR −0.006381 −0.0301 0.00845 −0.000254304 0.039854581

family.Bifidobacteriaceae.id.433 BMR −0.006381 −0.0301 0.00845 −0.000254304 0.039854581

Knee osteoarthritis

class.Actinobacteria.id.419 BMR −0.075545 −0.0219 0.56506 −0.012390196 0.164009749

Hip osteoarthritis

class.Actinobacteria.id.419 BMR −0.113638 −0.0219 0.26678 −0.00584971 0.051476808

FIGURE 4

Circular heatmap of complete p-value results for 211 gut microbiotas using the IVW method about OA. (A). Causal relationship between 131 gut 
microbiota genera and OA. (B). Causal relationship between 80 non-microbiota genera and OA.
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body surface area, muscle mass, gender, genetic factors, age, and 
nutritional status, influence BMR. BMR signifies the daily energy 
needs essential for sustaining fundamental bodily functions. It 
significantly contributes to energy expenditure (Shetty, 2005) and is 
an essential parameter for estimating daily energy needs (Ferro-Luzzi, 
2005). Gut microbiota plays a role in regulating metabolism and 
maintaining energy balance (Nieuwdorp et al., 2014).

On the one hand, the human body metabolizes nutrients from 
food for energy metabolism (Li et  al., 2023), and gut microbiota 
regulates gastrointestinal functions, influencing the digestion, 
absorption, and breakdown of food, thus affecting BMR. On the 
other hand, muscle metabolism is a critical factor in determining the 
basal metabolic rate, and a positive correlation has been observed 
between the skeletal muscle mass index and BMR (β = 30.96, p < 0.01) 
(Kim et al., 2016). The “gut-bone/muscle” axis has become a focal 
point of interest within the realms of bone health and orthopedic 
diseases. Numerous studies suggest that the composition of gut 
microbiota is involved in the pathogenesis of orthopedic diseases 
through various pathways (Tu et  al., 2021; Zhang et  al., 2021). 
Nardone et  al. (2021) found that the gut-muscle axis plays a 
significant role in treating muscle wasting. They hypothesized that 
targeted or supplemental treatment of the gut microbiota could 
be implemented for patients with muscle wasting. However, limited 
literature discusses the specific regulatory mechanisms of the gut 
microbiota on BMR.

In recent decades, studies on BMR have predominantly focused 
on metabolism-related disorders and obesity, with successful 
applications found in the treatment of diabetes (Guan et al., 2022). It 
is well known that risk factors for OA include aging, diet, and obesity, 
all of which are associated with the body’s metabolism (Mooney et al., 
2011). Traditionally, it has been understood that obesity or aging often 
leads to a decrease in the body’s metabolic rate. However, in our study, 
we observed a notable positive correlation between BMR and the 
occurrence of OA.

The consensus on whether BMR directly influences OA has not 
been reached in prior retrospective studies. Mobasheri et al. (2017) 
pointed out that OA is a metabolic disorder, emphasizing the crucial 
role of metabolism in the functionality of cartilage and synovial 
joints. They provided a comprehensive overview of the involvement 
of metabolism in the pathogenesis of OA. Several biological 
mechanisms can elucidate the positive correlation between elevated 
BMR and the risk of OA. Primarily, the theory of ‘free radicals’ 
proposes that the oxidative stress produced through metabolism is 
harmful, with the cumulative damage compromising bodily systems 
over time (Park and Yeo, 2013). Secondly, a higher BMR implies a 
greater cellular energy demand to meet metabolic requirements (Wu 
et al., 2022). Mitochondria function as the primary hub of cellular 
metabolism, and the mitochondrial respiratory chain significantly 
contributes to generating cellular reactive oxygen species (ROS). 
While ROS plays a crucial role in physiological signaling, elevated 
ROS poses significant pathological risks as a medium for the 
progression of OA (Chen et al., 2008). Additionally, research suggests 
a connection between metabolism and chronic inflammation 
(Lepetsos et  al., 2019). Under the premise of a high BMR, 
inflammation and the degradation of protein biosynthesis increase, 
inducing catabolic metabolism and advancing the progression of OA 
(Hotamisligil, 2006). The production of excess metabolites and 

nutrients further promotes the advancement of inflammation (Wang 
et al., 2015). Inflammation, by affecting chondrocyte differentiation, 
expression of metalloproteinases, and the formation of aggregates, 
ultimately results in cartilage degradation and joint damage, 
influencing the onset of OA (Robinson et al., 2016).

In summary, our discoveries propose that BMR may function 
not only as a metabolic indicator but also contribute to mediating 
the pathogenic mechanisms of OA. These results potentially 
establish the involvement of specific gut microbiota in systemic 
inflammation and metabolic responses. Our investigation has 
unveiled intricate interactions and potential mechanisms that 
underlie the relationship between gut microbiota, BMR levels, and 
OA. Key mechanisms may involve inflammation or immune 
imbalance triggered by dysbiosis of the gut microbiota and 
metabolic alterations induced by the “gut-bone/muscle” axis. 
Subsequent research endeavors should delve deeper into potential 
therapeutic strategies for early intervention in osteoarthritis by 
modulating metabolism through the regulation of specific 
microbiota, such as Bifidobacteria and Actinobacteria.

However, it is crucial to recognize the limitations of this study. 
Firstly, MR hinges on the fundamental assumption that the genetic 
variations acting as instrumental variables influence the outcome 
exclusively through the exposure factor. Although we endeavored to 
mitigate confounding factors and applied diverse methods to address 
pleiotropy, the presence of unmeasurable confounding factors remains 
a possibility. Secondly, our study predominantly concentrates on the 
European population, and the applicability of our findings to other 
populations might be constrained. Our next plan is to select datasets 
with larger sample sizes and more racial sources for analysis to obtain 
more robust results. We acknowledge that, in addition to BMR levels, 
there may be other potential mediators that might contribute to the 
observed relationship between gut microbiota and OA. Subsequent 
investigations could delve into these mediating factors to acquire a 
more thorough understanding of the intricate interactions at play. 
Furthermore, if more comprehensive gut microbiota data become 
available in the future, it would be  a valuable supplement to our 
current findings.

5 Conclusion

In conclusion, our bidirectional Mendelian randomization 
analysis indicates a causal relationship between specific gut 
microbiota and a reduced risk of OA, while the hypothesis of reverse 
causation does not hold. Significantly, our findings indicate that BMR 
plays a role in mediating the influence of Actinobacteria and 
Bifidobacteria on OA. To enhance comprehension of the established 
correlation between gut microbiota and OA, future studies should 
prioritize investigating potential mechanistic pathways and 
accounting for potential confounding factors such as diet, lifestyle, 
and medications when presenting these findings. Further 
experimental and clinical studies are needed to validate and expand 
upon our findings. We aspire that our study acts as a catalyst for 
further exploration in this field, making a meaningful contribution 
to the ongoing endeavors aimed at addressing the potential risks 
associated with OA.
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