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Globally, ∼8%−12% of couples confront infertility issues, male-related issues

being accountable for 50%. This review focuses on the influence of gut

microbiota and their metabolites on the male reproductive system from five

perspectives: sperm quality, testicular structure, sex hormones, sexual behavior,

and probiotic supplementation. To improve sperm quality, gut microbiota can

secrete metabolites by themselves or regulate host metabolites. Endotoxemia

is a key factor in testicular structure damage that causes orchitis and disrupts

the blood-testis barrier (BTB). In addition, the gut microbiota can regulate sex

hormone levels by participating in the synthesis of sex hormone-related enzymes

directly and participating in the enterohepatic circulation of sex hormones, and

a�ect the hypothalamic-pituitary-testis (HPT) axis. They can also activate areas of

the brain that control sexual arousal and behavior throughmetabolites. Probiotic

supplementation can improve male reproductive function. Therefore, the gut

microbiotamay a�ectmale reproductive function and behavior; however, further

research is needed to better understand themechanisms underlyingmicrobiota-

mediated male infertility.

KEYWORDS
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1 Introduction

It is estimated that about 8%−12% of couples worldwide have fertility problems, of
which about 50% are contributed by men (Agarwal et al., 2021). Apart from idiopathic
and unclassified infertility, the proportion attributed to male infertility accounts for 20% in
Western countries (de Kretser, 1997) and 18.8% in oriental countries (Zheng et al., 2019).
The increased incidence of male infertility is thought to be related to exogenous factors
(Al-Asmakh et al., 2014). The gastrointestinal tract mediates not only the efficient uptake
of nutrients but also the absorption of exogenous factors. Gut microbiota is an important
part of the gastrointestinal tract, regarded as an extensive “endocrine organ” of the host (Ly
et al., 2021), the importance of the gut microbiota has been increasingly recognized in the
past few years.
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The gut microbiota in humans mainly include Firmicutes,
Bacteroides, Proteus, Actinomycetes, Fusobacteria and
Verrucomicrobia (Consortium, 2012), and they possess
over 3 million genes while the human genome contains only
approximately 23,000 genes, playing an important role in host
physiology (Lloyd-Price et al., 2016). For example, proteins and
peptides that escape host digestion can be converted into a variety
of bioactive compounds by the gut microbiota (Liu et al., 2022).
These metabolites are classified into three types: (1) metabolites
directly produced from the diet, such as short-chain fatty acids
(SCFAs), polyunsaturated fatty acids (PUFAs), and amino acid
derivatives; (2) de novo metabolites, such as lipopolysaccharide
(LPS) and K vitamins; and (3) metabolites produced by the host
and modified by gut microbiota, such as secondary bile acids and
hydroxysteroid dehydrogenase (HSDH) (Liu et al., 2022). These
metabolites are crucial for regulating host metabolism, not only in
regulation of immunological, metabolic and neurological function
(Adak and Khan, 2019), but also in male reproductive function.

The impact of gut microbiota on male reproductive function is
a double-edged sword. On one hand, gut microbiota can improve
spermatogenesis and sperm motility, and treat male infertility.
For example, alginate oligosaccharides (AOS) have been used to
improve semen quality and testicular microenvironments through
modulating gut microbiota caused by HFD and T1DM (Zhao
et al., 2020; Hao et al., 2022a,b). Taxifolin also improved semen
quality by improving gut microbes and blood metabolites in
Duroc boars (Zhou et al., 2022). Lactobacillus, Bifidobacterium,
and Enterococcus can enhance sperm quality by alleviating
inflammatory response (Zhang et al., 2023). One the other
hand, gut dysbiosis can also disrupt reproductive function. Gut
microbiota and its metabolites can activate abnormal immune
signals via LPS, bind to TLR-24 complexes, and increase the
production of proinflammatory cytokines and ROS/RNS (Wiest
and Garcia-Tsao, 2005), and are involved in inflammation-induced
damage to testicular structures (Palladino et al., 2018; Tremellen
et al., 2018). For example, mucolytic bacteria such as Bacteroides
caccae and Akkermansia muciniphila will increase the activity
of mucin-degrading enzymes and use the mucus glycoproteins
secreted by the host as a source of nutrition, leading to the
erosion of the colonic mucus barrier (Desai et al., 2016). Structural
damage to the intestinal barrier leads to increased translocation
of LPS and reduced production of SCFAs by the intestinal
microbiota (Li et al., 2022c), leading to low-grade inflammation,
metabolic disorders, endocrine disorders, and insulin resistance, all
of which affect spermatogenesis (Wang and Xie, 2022). Prevotella
copri has also been suggested as a possible important cause
of spermatogenic defects (Ding et al., 2020). These findings
contribute to the probability of the existence of the gut microbiota-
testis axis.

This review focuses on the relationship between gut
microbiota and the male reproductive system to gain a
comprehensive understanding of why gut microbiota is
related to male infertility. We hope that this review will
serve as a modest spur to encourage more scholars to come
forward with their valuable contributions, inspire them to
explore how it is related, and provide fresh insights into the
diagnosis and treatment of male reproductive dysfunction in
clinical practice.

2 Gut microbiota change sperm
quality

The gut microbiota is involved in a variety of male reproductive
physiological processes and can affect sperm quality. For example,
studies have found that sperm motility in Duroc pigs can be
improved by the gut microbiota, especially Rikenellaceae (Li
et al., 2022b). Probiotic supplements are effective in repairing
spermatogenic impairment (Zhang et al., 2023). Most of these
effects are mediated bymetabolites produced by the gut microbiota.
In this section, we will refer to some types of typical metabolites
to argue for this, especially for accelerating Ca2+ influx to sperm,
stabilizing the spermmembrane, maintaining sperm energy supply,
and participating in spermatogenesis.

2.1 Metabolites of gut microbiota improve
sperm motility

Tryptophan is an essential amino acid that plays a vital role
in the daily diet. There are three primary metabolic pathways
for tryptophan in the gastrointestinal tract: indole derivatives,
kynurenine pathway, and 5-hydroxytryptamine (5-HT) pathway.
Among these pathways, the kynurenine pathway is regulated by the
major rate-limiting enzyme Indoleamine2,3-dioxygenase1 (IDO1),
whose synthesis can be expedited by the gut microbiota. In the 5-
HT pathway, tryptophan hydroxylase 1 (TpH1) is the key enzyme
responsible for 5-HT synthesis by colonic enterochromaffin cells
(ECs) (Agus et al., 2018). Gut microbiota is of great significance
in this process, specifically for indigenous spore-forming bacteria
(Yano et al., 2015). For example, Clostridium ramosum (Mandić
et al., 2019) and Blautia (Golubeva et al., 2017) were proved
to promote 5-HT secretion from ECs. This specific mechanism
may be related to the increased expression levels of Tph1, Sert,
and Ido1. Tph activity determines the amount of 5-HT produced
and released, whereas Sert controls the rate of 5-HT reuptake
and breakdown (Mawe and Hoffman, 2013). Although the precise
mechanism remains unclear, it is certain that the gut microbiota has
a close affinity for tryptophan metabolism and the 5-HT pathway,
which may be due to its metabolite SCFAs (Reigstad et al., 2015).

Furthermore, 5-HT exists in the sperm and is involved in
sperm physiology. It can be observed in the mid-segment of human
sperm (Jiménez-Trejo et al., 2012). A similar pattern for 5-HT
selective reuptake transporter (SERT) was found in horse sperm
(Gao et al., 2018). 5-HT can activate transmembrane adenylate
cyclase (tmAC) and open membrane Ca2+ channels (CatSper),
resulting in an influx of Ca2+ and the activation of protein
kinase A (PKA) (Alasmari et al., 2013), which is involved in
regulating tyrosine phosphorylation and sperm protein Ser/Thr
phosphorylation (Kwon et al., 2014; Bae et al., 2020; Kushawaha
et al., 2020). In addition, related to both CatSper and Ca2+ stores,
the spermatozoon is hyperactivated, which is essential for sperm
motility and fertilization (Alasmari et al., 2013). This range of Ca2+

influx can lead to improved sperm quality.
Although it has been proven that gut microbiota can improve

tryptophan in serum and 5-HT in the central nervous system
(Clarke et al., 2013), studies on whether 5-HT secreted with the help
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of gut microbiota can enter the testis through the blood circulation
and play a role directly have yet to be conducted. Therefore, we
supposed 5-HT secreted by the synergy of ECs and gut microbiota
as a key factor that can enter the testis via blood circulation and
maintain an effective concentration, which affects sperm motility
partly by regulating Ca2+ (Figure 1).

2.2 Metabolites of gut microbiota stabilize
sperm membrane and maintain sperm
motility

Unsaturated fatty acids (UFAs) are fatty acids with double
bonds in the hydrocarbon chains. They can be divided into
monounsaturated fatty acids (MUFAs) and PUFAs. MUFAs do
not have the potential adverse effects of PUFAs, such as lipid
peroxidation, and can be used as precursors for PUFAs synthesis.
PUFAs, especially long-chain polyunsaturated fatty acids, such as α-
linoleic acid (ALA), arachidonic acid (ARA), and docosahexaenoic
acid (DHA), are considered as essential fatty acids in the human
body. Studies have found that PUFAs have important biological
effects: (1) anti-inflammatory effects by interfering with the
TLR4/MyD88 pathway and the GPR120/NF-κB pathway; (2) anti-
oxidation effects by increasing the expression and activity of
catalase and superoxide dismutase (SOD) to reduce reactive oxygen
species (ROS) (Korbecki et al., 2019); and (3) increased stability and
fluidity of lipid rafts (Kotlyarov and Kotlyarova, 2021) to ensure
sperm activity (Castellini et al., 2022).

Interestingly, the gut microbiota can change the content and
proportion of PUFAs in the body (Albouery et al., 2019). One of
the reasons for this is the biotransformation by microorganisms.
For example, Bacillus proteus and Lactobacillus plantarum reduce
gut PUFAs levels by converting linoleic acid (LA) and ALA into
stearic acid (Blanchard et al., 2013). Another reason may be that
intestinal bacteria can regulate lipid droplet accumulation (Danielli
et al., 2023) to affect the absorption of PUFAs.

For male reproductive function, PUFAs mainly affect sperm
membrane stability, sperm motility, acrosome reaction, and
sex hormone synthesis and increase the anti-inflammatory and
antioxidant capacity of testicular cells (Please see Table 1 for
details.).

2.3 Metabolites of gut microbiota promote
sperm energy supply

Testicular tissue is a hypoxic organ that primarily uses the
lactate produced by glycolysis within Sertoli cells as an energy
substrate. Glucose transporters (GLUT) in Sertoli cells transport
glucose from the interstitial fluid of seminiferous tubules to the
cytoplasm of Sertoli cells for glycolysis. The resulting lactate
is transported out of the cells through the monocarboxylate
transporter (MCT) 4 on Sertoli cells, and then transported into
spermatogenic cells by MCT2 for energy supply (Rato et al., 2012).
Even under aerobic conditions, the head and principal piece (tail)
of the spermatozoon are capacitatedmainly by glycolysis (du Plessis
et al., 2015).

Gut microbiota and its metabolites can promote glycolysis to
maintain sperm energy supply and enhance sperm motility. For
example, leucine supplementation can improve the average curve
speed of sperm in boars (Lin et al., 2022). 5-HT can keep tryptophan
away from themelatonin pathway through the kynurenine pathway
to reduce circulating melatonin levels (Laborda-Illanes et al., 2021),
which play a vital role in male reproduction, including promoting
the production of lactate by Sertoli cells, activating some glycolysis-
related enzymes (Rocha et al., 2014), and increasing the energy
supply of sperm (Rato et al., 2012). In addition, Bacteroides,
Streptococcaceae, Akkermansia are thought to improve the energy
supply for spermatid cells by improving glycolysis (Zhu et al., 2021).
Previous studies have found that some drugs, such as Pioglitazone
(Meneses et al., 2016), Metformin (Alves et al., 2014), Spermidine
(Wang et al., 2022) and Nicotinamide mononucleotide (Ma et al.,
2022a), can support spermatogenesis by benefitting gut microbiota
and improving the glycolysis of Sertoli cells.

In addition, the gut microbiota can regulate blood glucose
levels, which is also an important substrate for supporting
testicular glycolysis. For example, bile salt hydrolase (BSH)
producing bacteria, Barnesiella and Clostridium XlVa, promote the
production of unconjugated cholic acid (CA), chenodeoxycholic
acid (CDCA), and the secondary bile acid deoxycholic acid
(DCA) to inhibit hepatic gluconeogenesis via the FXR-SHP-
FOXO1 pathway, thereby reducing blood glucose levels (Zhuang
et al., 2021). And in one study, metformin was used to alter folate
and methionine metabolism to inhibit the growth of B. fragilis,
reduce BSH activity, thereby inhibiting intestinal FXR signaling
(Sun et al., 2018) which can induce endoplasmic reticulum (ER)
oxidative stress to significantly attenuate mitochondrial citrate
synthase activity, triggering an increase in hepatic mitochondrial
acetyl-CoA levels and pyruvic carboxylase (PC) activity (Xie
et al., 2017). Furthermore, September Numata et al. also found a
molecular basis to support our argument: not only SCs express
GLUT, but sperm can also express a Na+-dependent sodium-
glucose cotransporter (SGLT), whose deletion decreases glucose
uptake, glycolytic activity, and ATP production (Numata et al.,
2022). Therefore, we hypothesized that gut microbiota may
alter sperm motility by regulating blood glucose levels through
metabolites that affect SCs and sperm glycolysis. All in all, gut
microbiota and its metabolites may act on testicular glycolysis
and regulate blood glucose to affect germ cell energy supply and
altering sperm motility. Metabolites of Gut Microbiota Participate
in Spermatogenesis.

Insulin-like growth factor type I (IGF-1) is a key factor
in maintaining the pluripotency of mouse spermatogonial stem
cells (Huang et al., 2009). Gut microbiota metabolites such as
branched chain amino acids (BCAAs) can also improve the
secretion of IGF-1 (Pedrosa et al., 2013; Habibi et al., 2022).
Serum IGF-1 levels can be increased by supplementation with
Bacillus amyloliquefaciens C-1 and Bacillus subtilis (Du et al.,
2018). IGF-1 can activate the Ras/MAPK, Ras/ERK (Shen et al.,
2014) and PI3K/AKT (Pitetti et al., 2013) pathway to promote
cell proliferation, cell differentiation, and cell survival, which
can accelerate the differentiation of spermatogonia to primary
spermatocytes (Hakuno and Takahashi, 2018; Józefiak et al.,
2021). The insulin/IGF signaling pathway are involved in follicle-
stimulating hormone-mediated (FSH-mediated) proliferation of
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FIGURE 1

The production of gut microbiota-derived 5-HT and utilization in spermatozoa. (1) Gut microbiota improve tryptamine by expressing tryptophan

decarboxylase (TPD), and secrete SCFAs to promote 5-HT by stimulating ECs expressing tryptophan hydroxylase (TPH1), selective reuptake

transporter (SERT) and Indoleamine2,3-dioxygenase1 (IDO1). After serum 5-HT passes testis through blood circulation and enters sperm membrane

through SERT, it activates tmAC and opens CatSper, resulting in Ca2+ influx increasingly, activating PKA, ultimately enhancing sperm hyperactivation

and promoting sperm motility. (2) 5-HT in green suggests that recent research has only shown elevated levels in the central nervous system. It

remains to be confirmed whether the gut microbiota can raise the levels of 5-HT in the testes.

immature Sertoli and Leydig cells. Without this, the proliferation
and development speed of Sertoli and Leydig cells would slow,
leading to testicular shrinkage and reduced sperm production
(Pitetti et al., 2013; Neirijnck et al., 2018).

3 Gut microbiota disrupt the testicular
structure

Using fecal microbiota transplantation (FMT) from HFDmice,
the researchers observed that the recipient mice were infiltrated
by T cells and macrophages in the gut, and had a significant
increase of pro-inflammatory cytokines in the epididymis and
a remarkable decrease in spermatogenesis and sperm motility.
This evidence demonstrates an intimate link between microbiota
dysbiosis and male infertility (Ding et al., 2020). Furthermore,
Zheng et al. directly observed that macrophages and dendritic cells
capture spermatozoa in the caudal cavity of the epididymis for the
first time, directly proving that chronic epididymitis is a possible
cause of oligospermia in patients (Zheng et al., 2021). We suggest
that one of the potential reasons for the association between gut
microbiota and male infertility is elevated LPS, which can result
in local testicular inflammation and oxidative stress disorders, and
does harm to the normal testicular structure such as the BTB (Shen
et al., 2022).

3.1 Gut microbiota cause endotoxemia
and orchitis

Endotoxemia refers to systemic inflammation caused by a
poorly regulated host response to LPS (Płóciennikowska et al.,
2015). When intestinal barrier permeability changes, microbial-
related molecular patterns (MAMPs), such as LPS, lipoproteins,
peptidoglycans, and lipoproteins, can cross the intestinal barrier
and enter the circulation, then arrive at the testicles through the
testicular artery and bind to pattern recognition receptors (PRRs)
on the cell membrane of testicular cells, eventually causing cellular
oxidative stress, local inflammation and destruction of the testicular
structure (Wiest and Garcia-Tsao, 2005). The most typical and
main-affecting MAMPs are LPS. The entry of LPS into circulation
is believed to be a frequent cause of idiopathic male infertility
due to systemic inflammation and oxidative stress (Agarwal et al.,
2017).

Studies suggest that the classical inflammatory pathway,
the Toll-like receptor (TLR) pathway, is involved in the
response to orchitis induced by endotoxemia (Palladino
et al., 2018). The TLR4/MyD88 pathway can activate IKK
to induce orchitis via NF-kB (Saad et al., 2016), elevate the
level of inflammation and oxidative stress, and finally result
in direct damage to Leydig cell function and sperm DNA
damage (Pearce et al., 2019). In addition, LPS-mediated
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TABLE 1 E�ects of unsaturated fatty acids from gut microbiota on male reproductive function.

UFAs E�ects in male reproduction Related gut microbiota

MUPAs \

OA Escherichia coli (Ma et al., 2022b),
Lachnospiraceae (Vascellari et al., 2020)

Omega-3 PUFAs Reduce endotoxemia, inflammation and oxidation damage (Kaliannan et al., 2015; Sundaram
et al., 2020; Ferramosca and Zara, 2022); change fatty acid composition of the sperm membrane
(Castellini et al., 2022) and are closely associated with sperm motility (Rodríguez et al., 2019).

\

ALA As the precursor of DHA, DPA and EPA (Salem et al., 2001; Rodríguez et al., 2019). Bifidobacterium (Fu et al., 2021)

DHA Enriched in the head of human sperm (Esmaeili et al., 2015), DHA stabilizes sperm membrane
(Castellini et al., 2022); restores serum testosterone levels and future sperm quality in juvenile
male rats (Menezes-Garcia et al., 2020); maintains sperm quality (Shishikura et al., 2019) and
improves sperm structure and function (Moallem et al., 2015); improves insulin resistance
(Zhuang et al., 2021); ameliorates the damage in the testicular microenvironment caused by
HFD and DM to save spermatogenesis and improve semen quality (Hao et al., 2022b; Yan et al.,
2022). DHA deletion resulted in a shrunken testis, oligospermia, and spermatogenic epithelium
disorder (Roqueta-Rivera et al., 2010; Hale et al., 2019) and increased spontaneous acrosome
reaction (Bunay et al., 2021).

Prevotella_9 and Enterococcus (Geng
et al., 2021), Bifidobacterium (Fu et al.,
2021)

DPA Converted into DHA for functioning (Moallem et al., 2015), maintain sperm quality (Shishikura
et al., 2019) and improve sperm structure and function (Moallem et al., 2015); negative
correlation with acrosome reaction (Lee et al., 2020).

Shigella.spp (Xiao and Kashyap, 2022),
Bifidobacterium (Fu et al., 2021)

EPA Improves insulin resistance (Zhuang et al., 2021), ameliorates the impaired testicular
microenvironment caused by HFD and DM in order to rescue spermatogenesis and semen
quality (Hao et al., 2022b; Yan et al., 2022).

Bifidobacterium (Fu et al., 2021)

Omega-6 PUFAs Omega-6 PUFAs in Leydig cells facilitate male sex hormone production (Ri et al., 2022). \

LA Ensures sperm membrane integrity and sperm motility (Mourvaki et al., 2010); activates
GPR120/ERK signaling pathway in Leydig cells and upregulates 3β-HSDH and StAR to promote
testosterone (Xu et al., 2020); confers host resistance to HFD-induced obesity and inflammation
(Miyamoto et al., 2019).

Bacillus proteus, Lactobacillus

plantarum converts LA to stearic acid
(Blanchard et al., 2013), HYA, and ARA
(Miyamoto et al., 2019).

ARA Acts as a lower substitute for DHA (Roqueta-Rivera et al., 2010); promotes intracellular [Ca2+]
increase in round sperm (Paillamanque et al., 2016).

OA, oleic acid; ROS, reactive oxygen species; PUFAs, polyunsaturated fatty acids; ALA, α-Linolenic acid; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid;

LA, linoleic acid; HFD, high fat diet; DM, diabetes mellitus; ERK, extracellular regulated protein kinases; GPR120, G Protein Coupled Receptor 120; HSDH, hydroxysteroid dehydrogenase;

StAR, steroidogenic acute regulatory protein; HYA, 10-hydroxy-cis-12-octadecenoic acid; ARA, arachidonic acid.

TLRs activation can inhibit MAPK, p38, ERK, and JNK
signaling, leading to autophagic dysfunction (Wang et al.,
2021). This disrupts the ability of testicular cells to resist
inflammation and oxidative stress, which leads to testicular injury
in orchitis.

3.2 Gut microbiota damage BTB

BTB is formed by the cellular junction of adjacent Sertoli cells
at the base of the seminiferous tubule. It is composed of capillary
endothelium, basement membrane, connective tissue, and multiple
types of cell junctions from Sertoli cells, mainly consisting of tight
junctions, basic electrophysiological specializations, gap junctions,
and cell-like junctions (Neto et al., 2016; Lustig et al., 2020).
Regulators of cell connections in the testis include hormones [such
as testosterone (Yan et al., 2008) and androgens (Xia et al., 2005)],
cell factors [IL-1a (Sarkar et al., 2008) and TNF-α (Li et al., 2006;
Xia et al., 2009)], growth factors [HGF (Catizone et al., 2012),
NO (Lee and Cheng, 2008) and TGF-β3 (Xia et al., 2009)], and
gut microbiota.

The detrimental impact of the gut microbiota on BTB can be
partially ascribed to inflammation and oxidation, mainly caused

by LPS. A study found that LPS treatment can lead to orchitis
and significantly decrease the expression of cell junctions, such
as testicular intercellular adhesion molecule 1, tight junction
protein 1, and gap junction α-1 protein (Shen et al., 2022).
Furthermore, IL-6, induced by gut microbiota, can damage the
tight junctions of Sertoli cells by disrupting the ERK-MAPK
signaling pathway and changing the localization and number of
BTB component proteins (Zhang et al., 2014). This change in BTB
permeability can be restored to the levels of cell adhesion proteins
by supplementation Clostridium butyricum, a high-level butyric
acid secretor (Al-Asmakh et al., 2014). In summary, elevated LPS
and systemic endotoxemia can damage the normal structure of the
BTB by causing inflammatory damage and disrupting cell junctions
(Figure 2).

4 Gut microbiota regulate sex
hormones

There is cross-talk between the gut microbiota and endocrine
system. Researchers have found that gut bacteria are highly
correlated with sex hormones, especially testosterone, in various
subjects. For example, in pubertal subjects, the abundances
of Adlercreutzia, Ruminococcus, Dorea, Clostridium, and

Frontiers inMicrobiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1371667
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Lv et al. 10.3389/fmicb.2024.1371667

FIGURE 2

The entering of MAMPs to testis leads to testicular inflammation and BTB damage. MAMPs, such LPS, enter the blood circulation through intestinal

barrier and cause systemic endotoxin. When LPS arrive at the testes via the testicular artery, it activates toll-like receptor (TLR) cause orchitis and

damage to the BTB.

Parabacteroides were significantly correlated with testosterone
levels (Yuan et al., 2020). In men, the abundance of Acinetobacter,
Dorea, Ruminococcus, Megamonas, and Lactobacillus was also
notably related to testosterone levels (Shin et al., 2019; Akram
et al., 2022). In germ-free (GF) mice, serum interstitial cell
stimulating hormone (ICSH), follicle-stimulating hormone
(FSH), and testosterone levels in the testes were decreased (Al-
Asmakh et al., 2014). We attempted to explain this phenomenon
from three aspects: the gut microbiota can affect the HPT axis,
modify hydroxysteroid dehydrogenase (HSDH), and regulate the
enterohepatic circulation of sex hormones.

4.1 Gut microbiota a�ect HPT axis

The HPT axis means that the hypothalamus releases
gonadotrophin releasing hormone (GnRH) to promote pituitary
release ICSH and FSH, and the two can respectively regulate
the release of testosterone from Leydig cells and anti-Mullerian
(AMH) from Sertoli cells in the testis, also there exists a
corresponding negative feedback mechanism (Aleksic et al., 2022).
The gut microbiota can participate in the regulation of gonadal
development and affect each level of the HPT axis (Shen et al.,
2022). This includes both the supportive role of probiotics and
damaging role of pathogenic bacteria.

Probiotics can restore damage to the HPT axis. Gut microbiota
can improve insulin-like growth factor receptor type I (IGF1R),
possibly through SCFAs (Yan and Charles, 2018). Supplementation

with Bacillus amyloliquefaciens C-1 and Bacillus subtilis increased
the abundance of SCFA-producing bacteria and elevated serum
IGF-1 concentrations (Du et al., 2018). IGF-1 appears to be
involved in the proliferation and differentiation of Sertoli cells
by mediating the effects of FSH through the PI3K/AKT pathway
(Cannarella et al., 2018). Moreover, IGF-1 can participate in
mitochondriogenesis in Leydig cells and affect steroid hormone
synthesis (Radovic et al., 2019). In a mouse model lacking the
insulin receptor (InsR) and IGF1R, the adrenal cortex and testis
are significantly shrunk along with develop-inhibited Leydig cells,
leading to low corticosterone and testosterone (Neirijnck et al.,
2018).

However, the entry of LPS into circulation is hypothesized to be
a key factor in triggering male hypogonadism (Tremellen, 2016).
LPS, which is mainly produced by cytoderm lysis of gram-negative
bacteria, can act on all levels of the HPT axis independently
and eventually damages the male gonad. LPS treatment resulted
in the activation of the medial preoptic area (mPOA) of the
hypothalamus, increased FSH and ICSH release, and HPT axis
disorder (Shen et al., 2022). Studies have shown that elevated
LPS may directly result in compromised Leydig cells functionality
(Tremellen et al., 2018). Even low doses of LPS can drive the body’s
inflammatory response independently of FSH and ICSH, damage
Leydig cells, and lower serum testosterone (Tremellen et al., 2017,
2018). However, after 6 h of low-dose LPS injection, treatment with
RAPID (reduced temperature, acidification, protease inhibition,
isotope exogenous control, and dilution) effectively increased
corticotropin-releasing hormone (CRH) and adrenocorticotropic
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TABLE 2 The e�ects and mechanisms of Lactobaciillus on male reproductive function.

Lactic acid bacteria Studied
model

Mechanism E�ects Related gut
microbiota

Lactic acid bacteria Rat Promote SCFAs production; avert gut
dysbiosis; antioxidant.

Helps rat testis combat with some toxic
substances

(Chen et al., 2022a)

Lactobacillus reuteri Mice Up-regulate the level of anti-inflammatory
factor il-10 and reduce the level of
pro-inflammatory factor il-17; have nutrient
effect for leydig cell; modulate
gastrointestinal immunity and thus exert
systemic effects on the immune system,
thereby activating metabolic pathways and
restoring tissue homeostasis and overall
health.

Improve testicular weight and size,
leydig cell count, serum testosterone,
spermatogenesis, sperm concentration
and motility

(Poutahidis et al., 2007, 2014).

Lactobacillus rhamnosus Mice Antioxidant; lower blood lipids for protecting
leydig and sertoli cells

Lose weight; improve testicular weight
and size, leydig cell count, sperm
motility, and spermatogenesis; repair
the hpt axis by enhancing the serum
levels of lh, fsh, and testosterone.

(Ooi and Liong, 2010;
Pinto-Fochi et al., 2016;
Dardmeh et al., 2017)

Lactobacillus plantarum Mice Improve da activity and prevent da loss Improve sexual behavior (Edem et al., 2021).

Lactobacillus paracasei Human Ameliorate the gut microbiota, improve the
prostatic microenvironment, optimize the
free radical concentration in the seminal
fluid.

Improve the quality and quantity of
spermatozoa: volume of the ejaculate,
sperm count, sperm concentration,
progressive motility, the percentage of
typical forms, and their fsh, lh, and
testosterone levels.

(Maretti and Cavallini, 2017)

SCFA, short-chain fatty acids; HPT, hypothalamic-pituitary-testis; LH, luteinizing hormone; FSH, follicle-stimulating hormone; DA, dopamine.

hormone (ACTH) levels (Goebel et al., 2011). This provides a
methodological basis and valuable opportunity for us to deal with
acute endotoxemia and save male reproductive function.

4.2 Gut microbiota regulate sex hormones
by HSDH

Ever since the first evidence of cortisol synthesis by microbiota
was found (Nabarro et al., 1957), the human gut microbiome
(HGM) has gradually been recognized to play a more important
role in steroid modification than the host, which is critical for
estrous cycles, testosterone levels, and reproductive function (Cross
et al., 2018).

Most bacteria located in the intestinal and urogenital tracts
encode cortisol-inducible operons. These include steroid-
17,20-desmolase, synthesized by HGM, which can inactivate
cortisol by cutting the side chain (Devendran et al., 2018).
Typical representatives, such as Clostridium scindens and
Propionimicrobium lymphophilum, have extremely high activities
against glucocorticoids (Ly et al., 2020).

Numerous studies have shown that the gut microbiota can
produce HSDH and impact male reproductive health. Here,
we list some common examples: Mycobacterium neoaurum can
degrade serum testosterone with the help of 3β-HSDH (Li
et al., 2022a). Compared to wild-type Comamonas testosterone,
the 7α-HSDH knockout mutant showed reduced degradation of
testosterone, estradiol, and cholesterol (Ji et al., 2014). As an
important glucocorticoidmetabolizing enzyme in Leydig cells, 11β-
HSDH is involved in regulating steroidogenic gene expression
and testosterone production in Leydig cells (Wang et al., 2019).

Butyricicoccus desmolans andClostridium cadaveris have previously
been reported to demonstrate steroid-17,20-desmolase and 20β-
HSD activities, which are responsible for the formation of
androstanes from cortisol (Devendran et al., 2017).

Notably, the conversion of dehydroepiandrosterone,
androstenedione, and testosterone to dihydrotestosterone
(DHT) is an essential function of 17β-HSDH enzymes (Bélanger
et al., 2003). Some attempts have been made to introduce gene
fragments of 17β-HSDH producing bacteria into Mycobacterium

smegmatis by genetic engineering technology, and natural sterols
have been bioconverted to produce testosterone successfully
(Fernández-Cabezón et al., 2017). In human patients, 17β-HSDH
deficiency caused by related gene mutations also results in low
serum testosterone (Ben Rhouma et al., 2017; Yang et al., 2017).
Perhaps the usage of the bacterial-derived HSDH production
pathway will become a new dawn for patients with HSDH-related
diseases, but whether it has the same effects as endogenous HSDH
remains to be studied. Although the role of microbial HSDH has
not been fully elucidated, it has therapeutic potential as a steroid
pool modulator or drug targets in the future (Doden and Ridlon,
2021).

Overall, the expression of HSDH by gut microbiota forms
the physiological basis for intestinal bacteria to affect the host’s
sex hormones.

4.3 Gut microbiota are involved in the
enterohepatic recirculation of sex
hormones

In general, active hormones bind to glucuronides in the liver
to produce the main metabolites of testosterone (T), such as
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testosterone glucuronide (TG), androsterone glucuronide (AG),
etiocholanolone glucuronide (EtioG), and dihydrotestosterone
glucuronide (DHTG). These metabolites are transported via the
bile duct, with one part entering the blood and the other part
excreted through urine and feces (Auer et al., 2020). Notably,
intestinal microorganisms can mediate the deglucuronidation of
DHT and T during this process, releasing inactive free androgens
for host re-absorption (Colldén et al., 2019). This may be related
to Clostridia, which codes for β-glucuronidase and participates in
the deglucuronidation of DHT and T (Gloux et al., 2011; Flores
et al., 2012; Colldén et al., 2019). However, there is a lack of
adequate research to prove that sex hormones deglucuronidated
by gut microbiota can affect male reproductive function or sexual
behavior, and further research efforts still need to be invested in
order to explore this promising issue in greater depth.

5 Gut microbiota influence sexual
behavior

Neural networks play a crucial role in mediating various
aspects of male sexual behavior. The regions of the brain
responsible for regulating male sexual arousal and performance
comprise the amygdala, bed nucleus of the stria terminalis (BNST),
medial preoptic area (mPOA), paraventricular nucleus (PVN), and
mesolimbic dopamine (DA) system (Hull and Dominguez, 2019).

The gut microbiota also has a regulatory effect on the central
nervous system to change sexual behavior. LPS produced by
gut microbiota can lead to abnormal activation of mPOA (Shen
et al., 2022), which affects sexual arousal and ejaculation and is

crucial for the completion of sexual behavior (Everitt, 1990). Gut

microbiota can promote glucagon-like peptide 1 (GLP-1) secretion
(Koopen et al., 2022), and the activation of GLP-1R, particularly

within the nucleus of the solitary tract, has been shown to inhibit

sexual behavior in sexually immature male mice (Vestlund and
Jerlhag, 2020). Moreover, the gut microbiota is also an important
factor in maintaining proopiomelanocortin levels (Vagnerová et al.,
2019), the precursor of ACTH, which increases the production of
endothelin in the adrenal fascicular zone and is associated with
male erectile activity (Hadley and Haskell-Luevano, 1999).

Moreover, the dopaminergic system is crucial in the initial
phases of sexual behavior, including sexual arousal, motivation, and

reward (Melis et al., 2022). Recent studies have shown that gut
microbiota, such as Bacillus spp., Escherichia coli, Proteus vulgaris,
Serratia marcescens, Staphylococcus aureus, Hafnia alvei, Klebsiella
pneumoniae, and Morganella morganii (Strandwitz, 2018), are
involved in both the synthesis and degradation of intestinal
phenylalanine and DA. Especially Bifidobacterium can increase
intestinal phenylalanine, a DA precursor, via cyclohexadienyl
dehydratase (Aarts et al., 2017). A study has found that
Lactobacillus plantarum have been shown to improve sexual
behavior via improving DA activity and preventing DA loss (Edem
et al., 2021).

It is noteworthy that studies to date have only proved the
increase of DA precursor and then a higher DA level in the
brain rather than in the testis. Therefore, studies on the sexual
behavior effect of DA by the gut microbiota mainly focus on

the microbiota-gut-brain axis rather than the microbiota-gut-testis
axis. In the future, further studies are warranted to explore whether
DA produced by the gut microbiota can act directly in the testis.
However, it is certain that DA in the gastrointestinal tract is
produced by phenylalanine from food digestion (Franco et al.,
2021) and gut microbiota can participate in the regulation of sexual
behavior by the gut-brain axis or gut-hypothalamic axis.

6 Gut microbiota are used for the
treatment of male infertility

Therapies targeting the gut microbiome typically include
probiotics, prebiotics, and microbiota restoration therapies.
Probiotics are agents of microorganisms to improve gut microbial
balance (Gibson and Roberfroid, 1995), while prebiotics are
non-digestible compounds (e.g., fructooligosaccharides, galacto-
oligosaccharides, and xylooligosaccharides) that benefit the host
by modulating gut microbiome (Valcheva and Dieleman, 2016).
Microbiota therapy includes FMT, symbiotic microbial consortia,
or engineered symbiotic microbes (Sorbara and Pamer, 2022), and
reconstructs dysregulated microbiota with a healthy microbiota
(Alli et al., 2022). Through intervening with the host metabolome
in methods above, gut microbiota are linked to the regulation of
testicular function and have potential value for the treatment of
male infertility (Zhang et al., 2022).

6.1 Probiotics

Probiotics are live bacteria that offer a range of potential
health benefits to the human body. Oral supplementary probiotics,
Lactobacillus, Bifidobacterium, Enterococcus, Collinsella, and
Blautia, can enhance sperm quality by alleviating sperm
inflammatory response and oxidative stress (Helli et al., 2022;
Cao et al., 2023; Zhang et al., 2023). These may be linked to
probiotics can regulate the Nrf2-Keap1-ARE signaling pathway
to increase antioxidant activity and enhance neutralization
of reactive oxygen species, ultimately resulting in improved
sperm concentration and motility in infertile men (Helli et al.,
2022).

Above all, it is Lactobacillus that are widely believed to
have potential benefit for male infertility (Doroftei et al., 2022).
We have drawn Table 2 to give a superficial description of
recent studies on the effects and mechanisms of lactic acid
bacteria on the male reproductive system. Especially L. rhamnosus

strain NCDC 610 and L. fermentum strain NCDC 400 are
suggested as alternative options to pharmaceuticals because of
their positive impact on weight reduction and their ability to
enhance endogenous testosterone levels (Akram et al., 2022). The
studies have demonstrated the efficacy of probiotics in addressing
male infertility, and their considerable therapeutic potential
and extensive development space should not be overlooked.
Therefore, we anticipate additional research efforts to delve
more deeply.
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FIGURE 3

Gut microbiota a�ects male reproductive function in four dimensions. (1) Gut microbiota a�ects male fertility via four facets. And probiotics

supplementation is proved to have pharmaceuticals value for male infertility. (2) Substances from dashed oval box in blue represent those that can be

secreted or indirectly elevated by the gut microbiota, and red are reduced. (3) Abbreviations: SCFAs: short chain fatty acids; PUFAs: polyunsaturated

fatty acids; BCAAs: branched chain amino acids; 5-HT: 5-hydroxytryptamine; IGF-1: insulin-like growth factor-1; LPS: lipopolysaccharide; GLP-1:

glucagon-like peptide-1; ACTH: adrenocorticotropic hormone. (3) Within the dashed boxes are aspects of the impact of the gut microbiota on male

reproductive function. HPT axis: hypothalamic-pituitary-testis axis; HSDH: hydroxysteroid dehydrogenase; BTB: the blood-testes barrier.

6.2 FMT

FMT is a valuable tool for demonstrating the vital role of
gut microbiota in regulating host physiology (Antushevich, 2020),
and conducts a potential to improve infertility. It is common to
see to increase beneficial bacteria by drugs and transplant them
through FMT to improve male infertility (Figure 3). For example,
by transplanting fecal microbiota from AOS users (AOS-FMT),
Zhang et al. showed that the gut microbiota can be used to improve
spermatogenesis and treat busulfan-induced male infertility for the
first time (Zhang et al., 2021a,b). And AOS-FMT are also used
to treating male infertility induced by HFD (Hao et al., 2022a),
T2DM (Yan et al., 2022) and T1DM (Hao et al., 2022b). What’s
more, FMT, from healthy microbiota benefitted by traditional
Chinese medicine such as Guijiajiao (Sheng et al., 2023), Radix
Rehmanniae and Cornus Officinalis (Chen et al., 2022b) to male
patients with impaired fertility, can improve testicular damage and
restore spermatogenesis. Even FMT from ordinary healthy mice
was able to exert a lesser degree of beneficial effect on the alleviation
of testicular damage (Hao et al., 2022b).

These mechanisms are mostly related to restoring the diversity
of gut microbiota, changing the blood metabolome of the host
(Yan et al., 2022), inhabiting epididymal inflammation (Sheng
et al., 2023), and restoring testicular microenvironment (Yan

et al., 2022) to improve spermatogenesis and male infertility.
For example, AOS-FMT increased beneficial bacteria such as
Bacteroidales, Lactobacillaceae, Bifidobacteria, Sphingomonadales

and Campylobacterales, to improve spermatogenesis and semen
quality by increasing DHA and EPA in blood metabolome and
testis metabolome (Zhang et al., 2021a; Hao et al., 2022b).
Parabacteroides distasonis transplantation increased polyamine
levels in the testis and cecum, and improved testicular histology,
testicular index, testicular testosterone levels, expression of genes
involved in spermatogenic events, inflammatory factors, and
oxidative stress (Zhao et al., 2021).

All in all, FMT may serve as a novel and promising therapeutic
approach to improve semen quality and male fertility via the gut
microbiota-testis axis.

7 Conclusion and perspective

As the eighth emerging organ, the gut microbiota has a far
greater influence on the human body than expected. Current
evidence suggests that the gut microbiota may influence male
reproductive function and behavior, mainly through metabolites.
Nonetheless, our understanding of the mechanisms involved
in microbiota-mediated male infertility remains limited. Many
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key questions remain and some of these questions include
the following.

• How deeply do gut metabolites influence male reproduction
and its mechanism.

• The pharmacokinetics of gut microbiota metabolites and
whether they are able to reach the testes at effective
concentrations remain unclear.

• More specific mechanisms for the influence of the gut
microbiota on the HPT axis are still needed.

• Whether sex hormones modified by intestinal microbiota can
play the same role as endogenous sex hormones after being
recycled by the host.

• Does the gut microbiota-produced dopamine come into play
directly in the sperm rather than through the gut-brain axis?

• More probiotics for male infertility and their pharmacological
value are expected to be found.

The methods we currently have for studying the gut microbiota
include but not limited to using gnotobiotic animal models, FMT,
antibiotic interference, and other approaches, in combination with
multi-omics analysis. Among these, manipulating gut microbiota,
such as scientific diet, supplementation of probiotics or prebiotics,
FMT, and avoidance of antibiotic abuse, is regarded as a more
“natural” therapy for working harmoniously with our own natural
regulatory systems, which is more widely accepted by patients.
Therefore, another research orientation we suggest scholars to
study is to develop a more rational and efficient strategy for
manipulating the gut microbiota, or develop a more detailed,
refined and mature treatment regimen for male infertility.
These studies will enhance our understanding of the intensify
and mechanisms of the influence of gut microbiota on male
reproductive function, and potentially mitigate the disease and
improve human health.

All in all, although the pertinence and possibility of gut
microbiota treatment for male infertility exists, more specific
treatments are still under investigation. We expect that research
on the influence of gut microbiota on male infertility will continue
to deepen, to reveal more interactions between gut microbiota
and male reproductive function and provide more promising
protection for human reproductive health.
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