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The increasing prevalence of antibiotic resistance genes (ARGs) in the 
environment has garnered significant attention due to their health risk to 
human beings. Horizontal gene transfer (HGT) is considered as an important 
way for ARG dissemination. There are four general routes of HGT, including 
conjugation, transformation, transduction and vesiduction. Selection of 
appropriate examining methods is crucial for comprehensively understanding 
characteristics and mechanisms of different HGT ways. Moreover, combined 
with the results obtained from different experimental methods, mathematical 
models could be established and serve as a powerful tool for predicting ARG 
transfer dynamics and frequencies. However, current reviews of HGT for ARG 
spread mainly focus on its influencing factors and mechanisms, overlooking 
the important roles of examining methods and models. This review, therefore, 
delineated four pathways of HGT, summarized the strengths and limitations 
of current examining methods, and provided a comprehensive summing-up 
of mathematical models pertaining to three main HGT ways of conjugation, 
transformation and transduction. Finally, deficiencies in current studies were 
discussed, and proposed the future perspectives to better understand and 
assess the risks of ARG dissemination through HGT.
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1 Introduction

Antibiotics represent one of the most significant inventions of the 20th century, playing a 
crucial role in safeguarding human life (Mac Lean and San Millan, 2019). However, the 
escalating use of antibiotics has led to the emergence and widespread dissemination of 
antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Various high-
abundance ARGs have been detected in diverse environments such as soil, rivers, and feces, 
with ARB and ARGs even found in the environment devoid of antibiotic usage (Knapp et al., 
2010; Di Cesare et al., 2012; Chi et al., 2020; Jang et al., 2022). Currently, the global annual 
death toll due to antibiotic resistance is estimated at a staggering 700,000, with the World 
Health Organization projecting a surge to 10 million deaths by 2050 (Pruden et al., 2006; 
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Molnar, 2019). The emergence and dissemination of ARGs have 
introduced potential ecological and health risks.

The dissemination of antibiotic resistance involves two pathways, 
namely horizontal gene transfer (HGT) and vertical gene transfer 
(VGT). HGT is predominantly composed of plasmid-mediated 
conjugation, extracellular DNA-mediated transformation, phage-
mediated transduction, and recently discovered vesiduction. HGT 
exhibits greater potential for ARG transmission compared to VGT, 
facilitating ARG transfer not only between different bacterial strains 
but also across distinct species (Andam et al., 2011; Zarei-Baygi and 
Smith, 2021). Undoubtedly, antibiotics can facilitate HGT, while it is 
also influenced by various non-antibiotic factors, constituting a 
current research hotspot (Warinner et al., 2014; Zhang et al., 2018; Jin 
et  al., 2020). Presently, examining methods of ARG transfer 
predominantly encompass traditional culture method, microfluidics, 
and bioinformatics method, which the focus primarily centers on 
conjugative transfer. Each research methodology possesses its own 
merits and limitations. A systematic synthesis of these approaches is 
imperative at this juncture, fostering a comprehensive understanding 
that would enable subsequent researchers to judiciously select 
methodologies based on their specific research objectives.

The HGT dynamics is exceedingly intricate. In addition to 
examining methods, mathematical models furnish a simulated 
environment that can be  informed by real-life data, serving as 
powerful tools for studying the dynamics of ARG transfer (Leclerc 
et  al., 2019). However, the accuracy of mathematical models is 
contingent upon the quality and richness of the source data (Sorensen 
et al., 2005; Bakkeren et al., 2019). Consequently, the current trend 
involves combining experimental and simulation approaches. 
Mathematical models can be classified into “deterministic models” 
and “stochastic models,” with the former consistently producing the 
same results for a given set of parameter values, while the latter 
incorporates variability arising from random events in its outcomes 
(Tuljapurkar, 1991). Levin’s mass-action model, an early investigation 
into the dynamics of bacterial plasmids in homogeneous systems 
(Levin et al., 1979), provided insights into the conditions favoring the 
selection of mobile genetic elements (MGEs) in natural systems. 
Building upon this foundation, the introduction of spatially 
mathematical models addressed gaps in our understanding of plasmid 
dynamics in attached states (Fox et al., 2008; Connelly et al., 2011; 
Zhong et  al., 2012). Currently, mathematical model development 
primarily focuses on conjugation dynamics, but failing to provide a 
comprehensive overview of the current plasmid dynamics model. 
Furthermore, there is a growing recognition of the research into 
transformation dynamics and transduction dynamics, but a systematic 
synthesis of such studies is still lacking.

The review initially delineated the general mechanisms of HGT, 
encompassing conjugation, transformation, transduction and 
vesiduction. Subsequently, the current examining methods of HGT 
were reviewed, including traditional culture, CoMiniGut, 
microfluidics, and bioinformatics method. The advantages, limitations 
and obtainable information were summarized. Next, a summary of 
existing mathematical models concerning the HGT dynamics, with a 
specific focus on the developmental status of conjugation models and 
a concise summation of limited transformation and transduction 
models. Finally, a critical analysis was conducted on the limitations of 
existing research, culminating in a forward-looking perspective on 
future research directions.

2 General routes of horizontal gene 
transfer

2.1 Conjugation

Conjugation refers to the process wherein donor and recipient 
bacteria, upon physical contact, establish a stable bridge through pili 
or channels, facilitating the transfer of MGEs, typically plasmids or 
transposons, from the donor bacteria to the recipient bacteria 
(Figure 1A). Conjugative plasmids, equipped with tra gene encoding 
the complete transfer enzyme, can spontaneously move from one cell 
to another, as exemplified by the F plasmid in Escherichia coli (E. coli), 
in the coexistence of non-conjugative plasmids and conjugative 
plasmids, both can undergo conjugative transfer (Davison, 1999; Qiu 
et al., 2012). The host range of plasmids is extensive, as conjugative 
transfer has been observed not only between bacteria of the same 
genus but also across different genera, and even between different 
biological species (Li and Zhang, 2022). Compared to bacterial 
suspension state, biofilms provide bacteria with more stable physical 
contact conditions, potentially enhancing the occurrence of 
conjugation. It was found that the conjugative transfer frequency of 
Staphylococcus aureus in biofilms was 104 times higher than in 
suspended states (Sandberg et al., 2009). Among the various pathways 
of HGT, conjugation is considered the most significant and remains 
the most actively investigated route.

2.2 Transformation

Transformation refers to the process wherein bacteria directly 
uptake and integrate free DNA fragments from the extracellular 
environment, acquiring corresponding hereditary traits in the process 
(Magasanik, 1999) (Figure 1B). Unlike conjugation, transformation 
does not necessitate physical contact between donor and recipient 
bacteria; rather, it relies solely on the genetic encoding and regulation 
within the recipient bacterium (Johnsborg et al., 2007). The occurrence 
of transformation requires the simultaneous fulfillment of two 
conditions: the presence of free DNA fragments and competent cells, 
refer to those that have undergone alterations in cell membrane 
permeability under specific environmental pressures, with over 80 
such species identified to date (Johnston et al., 2014; Liu et al., 2017). 
Given the widespread occurrence of transformation, researchers 
speculate the presence of potentially undiscovered bacteria with 
transformative potential in the environment.

2.3 Transduction

Transduction refers to the process by which phages erroneously 
package a portion of the host bacterium’s genes (frequency: 10−5–10−7) 
into their heads and transfer these genes to another cell through 
infection, thereby endowing the recipient cell with the corresponding 
hereditary traits (Li and Zhang, 2022) (Figure 1C). Transduction is 
classified into generalized transduction and specialized transduction, 
with the latter exclusively packaging bacterial DNA near the 
attachment site of the phage. In contrast, generalized transduction can 
randomly package any gene from the host into the phage head 
(Huddleston, 2014). However, due to the specificity of phages, 
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transduction is not suitable for the horizontal transfer of widely 
distributed genes. Nevertheless, it is crucial to note that the 
contribution of transduction to HGT in natural environments should 
not be underestimated (Liu et al., 2020). Furthermore, phages carrying 
various ARGs have been detected in urban sewage, surface water, 
animals, and human samples, underscoring phages as potential 
reservoirs for ARGs (Colomer-Lluch et al., 2014; Quiros et al., 2014).

2.4 Vesiduction

Recently, a novel gene transfer mechanism mediated by outer 
membrane vesicles (OMVs) has been identified, termed vesiduction 
(Figure 1D). Rumbo et al. were the first to discover that OMVs can 
mediate the transfer of resistance genes, and the transfer occurs 
rapidly, within a three-hour timeframe (Rumbo et al., 2011). OMVs 
are double-membrane spherical nanostructures (50–500 nm) 
generated during bacterial growth (Toyofuku et al., 2019). Several 
studies have detected plasmids, chromosomal DNA fragments, and 
phage DNA fragments within OMVs, suggesting their role as carriers 
for gene transfer (Abe et al., 2020). OMVs can protect DNA from 
degradation by DNAases or other environmental factors, playing a 
crucial role in HGT (Liu et al., 2020). However, there are currently 
significant gaps in the understanding of the exact mechanisms and 
influencing factors of vesiduction, making it a focal point for future 
HGT research.

3 Examining methods of HGT and 
obtained information

In recent years, examining methodologies for HGT studies have 
been consistently innovated, from traditional culture method to 

bioinformatics method. These approaches provide robust supports for 
a comprehensive understanding of the influencing factors and transfer 
mechanisms of HGT. The methods for examining HGT and obtained 
information are summarized in Supplementary Table S1.

3.1 Traditional culture

3.1.1 Flask/well plate
Currently, our understanding of HGT is predominantly based on 

in vitro studies (Michaelis and Grohmann, 2023). The mating assay is 
commonly conducted using the flask/well plate culture method 
(Figure  2A), that involves mixing a set of donor cells (or gene 
fragments or phages) with recipient cells (or environmental samples), 
followed by culturing (McInnes et al., 2020). Therefore, it is applicable 
to investigations encompassing conjugation, transformation, 
transduction and vesiduction. Shaking flask or well plate cultivation 
is the most widely used in mating assays. In comparison with shaking 
flasks, well plate cultivation offers advantages such as small sample 
requirement, high-throughput analysis and parallelization, making it 
suitable for gradient concentration experiments.

Selective plate can be  utilized to enumerate donor bacteria, 
recipient bacteria, and recipient bacteria acquiring new resistance in 
order to calculate the transfer frequency following mating experiments 
(Yuan et  al., 2022; Zha et  al., 2022). When utilizing fluorescently 
modified bacteria, the plasmid transfer frequency can be quantified 
through flow cytometry (Lin et al., 2023). However, when cultivating 
environmental samples, native microorganisms were often employed 
as recipient bacteria. Yet, the cultivability of native microorganisms is 
low (less than 1%), with the majority being in a non-culturable state 
(VBNC) and unable to form colonies on agar plates (Schottroff et al., 
2018; Feng et al., 2021). This leads to biased results in cultivation-
based detection, making this method more suitable for pure bacterial 

FIGURE 1

General routes of horizontal gene transfer. (A) Conjugation; (B) Transformation; (C) Transduction; (D) Vesiduction.
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experiments. Additionally, selective agar plates can only calculate the 
transfer frequency at the endpoint of the experiment, unable to 
provide real-time information, and cultivation methods cannot 
distinguish between HGT and VGT (Li and Zhang, 2022).

3.1.2 Solid surface filter
The major distinction between the membrane filter and the flask/

well plate culture method lies in the solid nature of the culture 
medium, which is suitable for the study of conjugation. The donor and 
recipient bacteria were mixed on the membrane filter and cultured on 
the agar plate (Musovic et al., 2010; Klumper et al., 2017). Especially, 
in order to determining transfer frequency at the end of the assay, in 
situ visualization of transconjugants colonies are needed to emit 
fluorescence to calculated transfer frequency. In one previous study, 
the donor strain E. coli MG1655 utilized in their study chromosomally 
tagged with a gene cassette encoding constitutive red fluorescence 
protein (RFP) and carried a genetic tag encoding green fluorescent 
protein on the plasmid pKJK5 (Klumper et al., 2015). However, due 
to inhibitory effects, E. coli MG1655 exhibited only red fluorescence. 
The inhibitory effect disappears when this plasmid is transferred to 
non-fluorescent recipient bacteria, allowing for the expression of 
green fluorescent protein by the transconjugants.

Similar to flask cultivation, solid surface filter shares the 
characteristic of simplicity in operation. Nevertheless, filtration 
maximizes cell-to-cell contact, rendering it more suitable for 
simulating the conjugative transfer of ARGs on the surfaces of biofilms 
(Dechesne et al., 2005).

3.2 CoMiniGut

The gut has emerged as a focal point concerning the transfer of 
ARGs from exogenous bacterial species to indigenous microbiota. 
Accordingly, the in vitro gut model CoMiniGut has been developed 
for determining horizontal plasmid transfer under conditions that 
mimic the human colon environment, with a working volume of only 
5 mL (Anjum et al., 2018; Wiese et al., 2018) (Figure 2). It comprises 
several parallel reactors units connected to a data logger. pH is 
regulated using injectors containing NaOH, while temperature control 
is maintained through the water bath device, ensuring stability within 
the simulated environment. Mehreen et al. utilized this system to 
regularly sample, with techniques such as the selective plate and 
Fluorescence-Activated Cell Sorting (FACS) to investigate the 
conjugative transfer frequency of blaCMY-2 bearing plasmids in E. coli. 
Additionally, diversity analysis was conducted on the sorted 
transconjugants (Anjum et al., 2018, 2019).

Compared to other examining methods, CoMiniGut can 
simulate realistic intestinal environment, enabling the assessment 
of public health risks associated with the ARG transfer from 
exogenous E. coli (Anjum et al., 2018). Compared to animal models, 
CoMiniGut model exhibits high fidelity, offering more controlled 
experimental conditions such as temperature, pH, and oxygen 
concentration. Therefore, the establishment process of this system 
is relatively complex, necessitating extensive experimental 
validation to ensure its authenticity and accuracy, at a considerable 
cost as well.

FIGURE 2

Examining methods of HGT. (A) Traditional culture; (B) CoMiniGut; (C) Microfluidics; (D) Bioinformatics.
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3.3 Microfluidics

Building upon conventional cultivation methods, researchers 
have developed a method that combines cultivation and HGT 
detection simultaneously, utilizing a microfluidic chip. The 
microfluidic chip is a miniature experimental platform with 
microscale channels that can be used to control fluid flow. It can 
simulate both the physical and biological conditions relevant to 
microorganisms (Abe et al., 2020). Therefore, as an innovative tool, 
the microfluidic chip serves as a microreactor for microbial growth 
and mating assay, opening up new avenues for studying ARG transfer 
(Karimi et al., 2015; Li et al., 2018) (Figure 2C). Microfluidic chips 
equipped with delayed imaging, coupled with fluorescence 
technology, enable real-time observation of community changes and 
tracking of the transfer dynamics of ARGs, which is frequently 
employed in studies pertaining to conjugative transfer. In addition to 
the modified bacteria mentioned in Section 3.1.2, the process of 
infection and transduction caused by phages can be observed in real 
time by fluorescent labeling of phage (Doolittle et  al., 1996; 
Tzipilevich et al., 2017), thus microfluidic chips also possess potential 
applications in the transduction research.

Microscopy enables in situ observation and single-cell imaging of 
ARG transfer, facilitating the differentiation between HGT and 
VGT. A microfluidic chip comprising eight parallel shallow micro-
chambers was employed for distinguishing HGT and VGT. The chip 
was utilized for cultivating donor cells with plasmids encoding ARGs 
(RP4 and PKJK5) and recipient activated sludge bacteria. Plasmids 
were visualized in situ, and the transfer characteristics were analyzed 
(Li et al., 2019). In image analysis, the appearance of the first randomly 
occurring green fluorescence particle was considered as the initial sign 
of the first HGT. Based on this point, the extension of fluorescence 
particles due to cell growth and division was considered VGT, allowing 
for a clear distinction of the ratio between HGT and VGT during the 
diffusion of ARGs in biofilm structures. Additionally, another 
microfluidic chip containing a single channel was employed (Li et al., 
2018; Qiu et al., 2018). In this chip, nutrients within the flow diffuse 
through the agarose membrane into the bacterial layer, concomitantly 
allowing the diffusion of metabolic waste out of the membrane, which 
is subsequently carried away by the flow. This chip facilitates the 
determination of dynamic features of the transfer process, 
encompassing cell growth rate, and kinetic variations in transfer 
frequency. This on-chip culture enables rapid exchange of substances 
and allows high density growth, and thus provides a close-to-in vivo 
model to study real-world biofilms. In a recent study, a microfluidic 
chip was employed featuring four identical cavities in lieu of channels, 
ensuring ample nutrient supply, evaluating the effect of heavy metal 
on ARG transfer between attached bacteria (Lin et  al., 2019; Liu 
et al., 2022).

Furthermore, fluorescence combined with FACS enables high-
throughput counting and screening of donors, recipients, and 
transconjugants, further 16S rRNA gene sequencing of the 
transconjugants can determine which host the plasmid has spread to 
(Klumper et  al., 2015; Feng et  al., 2021). However, this method 
requires artificial modification or labeling of bacteria, making it not 
only operationally complex but also prone to false positives or 
negatives. Additionally, fluorescence can only detect one plasmid in 
each experiment, and current research is mainly focused on E. coli, 
with other model strains yet to be developed.

3.4 Bioinformatics

Due to the natural environment is complex, the information 
obtained from laboratory settings are hardly to reflect the real 
conditions in the natural environment. Thanks to the evolving 
bioinformatics methods, we are gradually gaining insights into the 
HGT within natural microbial communities, allowing for a better 
characterization of the mechanisms underlying interactions between 
bacterial hosts and their genomes (Figure  2D). Moreover, the 
bioinformatics method is suitable for studying most HGT pathways.

3.4.1 qPCR
Real-Time Quantitative PCR (RTQ-PCR), developed on this basis, 

utilizes fluorescence signal detection of PCR products. The intensity of 
the emitted fluorescence is proportional to the amount of amplified 
product, allowing for precise quantification of abundance and diversity 
of ARGs and MGEs (including plasmids, phages, insertion), assessing 
the occurrence and extent of HGT (Bartkova et al., 2021; Zheng et al., 
2023). Wang et al. obtained relative gene copy numbers of 10 ARGs and 
MEGs through qPCR to predict the behavior of microbial communities 
(Wang et al., 2020). Keyes et al. ascertain the presence of resistance to 
Florfenicol in avian E. coli, an antibiotic not typically utilized in poultry 
(Keyes et al., 2000). qPCR is characterized by its sensitivity, accuracy, 
and independence from culture and expression. However, primer 
design for qPCR can be intricate.

3.4.2 Sequencing technique
Metagenomics contributes to predicting HGT within microbial 

communities (Abe et al., 2020). It enables obtaining the distribution 
and occurrence of ARGs, bacteria, and MGEs in the environments 
without the need for cultivation, investigating the HGT processes 
through the distribution patterns and similarities of ARGs within 
microbial communities. Moreover, concurrent analysis of functional 
genes aids in elucidating the potential impact of the hosts carried 
ARGs on HGT (Wang et  al., 2020). However, the data volume of 
metagenomics is substantial, usually provides relatively quantitative 
information with relatively low precision. Recent years, long-read 
sequencing technologies have been developed to obtain full-length 
MGEs such as plasmids and phages, facilitating the integration of host 
and microbial community genomic information, which contributes to 
a more comprehensive ecological perspective on HGT (Suzuki et al., 
2019; Zeevi et al., 2019).

3.4.3 Other novel methods
CRISPR-Cas spacer acquisition is a state-of-the-art method for 

real-time monitoring of HGT events at the nucleotide level (Munck 
et al., 2020). This process involves incorporating small foreign DNA 
fragments, or spacers, into CRISPR loci. Using an engineered 
“recording” strain with a plasmid housing the cas1-cas2 operon, 
mobile DNA entering the cell is captured and integrated into the 
CRISPR array (McGinn and Marraffini, 2019). This approach allows 
the study of transient HGT events, especially those with low 
transfer frequencies.

Comparative genomics allows for the prediction of MGEs based 
on contrasting the distribution of bacterial genomes closely associated 
with HGT (Smillie et  al., 2011; Zhao et  al., 2019). It can more 
accurately identify genes with similar sequences and functions; 
however, its sensitivity is contingent upon the reference genome 
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employed. Proximity ligation techniques, such as Hi-C, facilitate the 
accurate linkage between MGEs and their hosts (Lieberman-Aiden 
et al., 2009). Consequently, tracking the host range of MGEs in situ 
and the origin of ARGs within environmental microbial communities 
is achievable, albeit with lower sensitivity and higher costs.

4 Mathematical models for HGT 
dynamics and frequency prediction

With the development of research methods for studying HGT in 
recent years, mathematical models serve as appropriate tools for 
further understanding HGT processes (Leclerc et  al., 2019). The 
mathematical model primarily achieves two objectives. Firstly, 
mathematical models can be applied in the context of public health 
environments, that set against the backdrop of clinical medical 
environments are significant for designing effective antibiotic dosing 
regimens or developing drugs related to clinical infections (Roberts 
et al., 2021; Ali et al., 2022). Secondly, mathematical models set against 
real-world environments can assess and predict transfer dynamics 
under various influencing factors. For example, how the proportion 
of ARB population changed over time or under varying environmental 
conditions (Qu et  al., 2016; Gothwal and Thatikonda, 2018). The 
fundamental characteristics and predictive content of mathematical 
models were summarized in Supplementary Table S2.

4.1 Conjugation models

The current research on HGT dynamics is predominantly focused 
on simulating conjugation process, encompassing two categories of 
model: deterministic models and stochastic models.

4.1.1 Deterministic model
Models can be classified into deterministic models and stochastic 

models based on their types. Deterministic models yield fixed results 
for given parameter values and formulated as ordinary differential 
equations (ODE). The mass-action model proposed by Levin serves 
as the basis for many deterministic models and is applicable for 
estimating the ARG transfer frequency constant in fully mixed 
solutions (Levin et al., 1979). James et al. suggested that this model is 
equally applicable to studying plasmid transfer dynamics between 
donor and recipient bacteria in soil microcosms (Hall et al., 2016). The 
endpoint method proposed by Simonsen et  al., based on Levin’s 
model, is commonly used to estimate plasmid transfer frequency 
constants on surfaces and in liquid-based cultures (Huisman et al., 
2022). For instance, Laura et al. employed this method to investigate 
the plasmid dynamics of E. faecalis on biofilms, exploring the guiding 
role of quorum sensing systems in the conjugation process (Cook 
et al., 2011). However, many assumptions and simplifications in this 
classic method, such as ignoring the cost of plasmid carriage and 
assuming uniform growth rates for all strains, may lead to biases in 
estimating parameter consistency (Mishra et al., 2021). Therefore, 
researchers have examined the applicability of this model to 
conjugation dynamics in homogeneous liquid and biofilm 
environments, discovering that the model was effective for fully mixed 
planktonic environments, but maybe not suitable for predicting 
average behavior in biofilms (Shu et al., 2013).

The models applicable to simulating the conjugation dynamics of 
planktonic bacteria appear to be  unsuitable for attached bacteria in 
nutrient-rich habitats, such as sewage plant fillers, plant rhizosphere 
surfaces, and soil treated with feces and so on (Fox et al., 2008). Therefore, 
there is a need to propose new models to complement the dynamics of 
bacterial plasmids in attached states. From this perspective, some studies 
have captured the fundamental characteristics of plasmid population 
dynamics in attached-state bacteria and proposed a spatially explicit 
mathematical model. Randal et  al. substantiate the aforementioned 
perspective, demonstrating that, under nutrient-rich conditions, the 
density of E. coli carrying plasmid PB10 can increase from 10−7 to 13% 
(Fox et  al., 2008). The model can also be  applied to understand the 
conditions sustaining stable HGT behavior (Connelly et al., 2011).

Considering that some assumptions and simplifications in 
classical methods may lead to biased simulations, many researchers 
not only refer to the parameters of the original models but also 
combine simulations with experiments. The essential parameters were 
modified based on experiment conditions. For instance, Sulagna et al. 
considered plasmid carriage costs and external dependencies on the 
Levin mathematical model, making the conjugation model adaptable 
to variable conditions (Mishra et al., 2021). Additionally, microfluidic 
chip methods allow observations at the single-cell level, enabling in 
situ tracking of cell growth and plasmid transfer characteristics. This 
method provides significant assistance for future simulations of 
conjugation dynamics on biofilms (Li et al., 2014; Qiu et al., 2018).

4.1.2 Stochastic model
Most stochastic conjugation models were agent-based, and the 

spatial distribution of populations was represented by discrete or 
continuous three-dimensional positions. In comparison to 
deterministic models, stochastic conjugation models can predict the 
dynamic behaviors of individuals (bacteria) or groups (population of 
microorganisms) and provide a new perspective for exploring the 
impact of spatial factors (Leclerc et  al., 2019). As 
Supplementary Table S2 showed, Brian et al. used this approach to 
simulate a more realistic spatial environment to quantify conjugation 
frequency among ARB (Connelly et al., 2011). Zhong et al. developed 
a spatially explicit mathematical model that simulates the changing 
abundances of donors, recipients, and transconjugants over time, 
thereby calculating the conjugation frequency (Zhong et al., 2012). 
Artem et al. conducted a sensitivity analysis on steady-state changes 
induced by parameter variations (Novozhilov et al., 2005). Currently, 
the primary objective of stochastic models is to predict plasmid 
dynamics. For instance, Artem et al. investigated the evolution of 
horizontally transferred genes in microbial populations (Novozhilov 
et al., 2005), while Zhong et al. assessed the effectiveness of various 
plasmid transfer efficiency measures when they were applied to 
surface-associated populations (Zhong et  al., 2012). However, 
development of stochastic models is relatively limited and needs 
further exploration and advancement.

4.2 Transformation models

Transformation models are gradually developed referring to the 
establishment process of conjugation models. Lu et al. adapted from 
the mass action law, allowing the transformation frequency by the 
proposed model to be influenced by varied DNA or cell concentrations 
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(Lu et al., 2015). This was the first transformation dynamics model, 
successfully predicting the natural transformation frequencies of 
tetracycline resistance genes in both motile and non-motile strains of 
Azotobacter vinelandii. Asgher et al. extended the aforementioned 
model by incorporating additional process pathways, such as 
variations in nutrient concentration, alterations in the density of 
susceptible bacterial population and changes in the extracellular DNA 
density in response to the population of antibiotic resistant and 
susceptible bacteria, thereby enhancing the capacity to better capture 
the underlying dynamics (Ali et al., 2022).

Acinetobacter baylyi (A. baylyi) has become a commonly selected 
model bacterium in the transformation model-building process. Yue 
et  al. based on the dynamics of A. baylyi ADP1, transformant 
populations, and the free plasmid pool, proposed and calibrated an 
ODE model to predict the transformation dynamics exposed to 
non-antibiotic drugs (Wang et al., 2022). Similarly, Yu et al. used the 
same model to predict the long-term effects of artificial sweeteners on 
transformation dynamics (Yu et al., 2022). Additionally, Robert et al. 
discovered that A. baylyi has a lytic effect on nearby E. coli, acquiring 
ARGs from neighboring bacteria considered as another way of 
transformation, based on this process, a population dynamic model 
with spatially structured microbial communities was established, 
quantifying transformation frequency on solid surfaces (Cooper 
et al., 2017).

4.3 Transduction models

There are two main types of transduction. Specialized transduction 
refers to the process in which the prophage erroneously excises DNA 
adjacent to the integration site (Chen et  al., 2018). Generalized 
transduction involves the “erroneous packaging” of random bacterial 
DNA fragments, leading to the formation of transducing particles 
probably containing ARGs (Penades et  al., 2015). Therefore, the 
limited objects of simulation regarding transduction currently focus 
on generalized transduction.

Volkova et al. initially proposed a mathematical model regarding the 
risk of antimicrobial resistance (AMR) spread through temperate phage 
transduction (Volkova et al., 2014). This study assumed a well-mixed and 
high-density cellular environment in the bovine intestinal tract, 
estimating the upper limit of transduction in E. coli due to generalized 
transduction (which is 10−3 times the same environmental conjugation 
rate). Moura et al. used individual-based models suggesting generalized 
transduction is a powerful mechanism of DNA transfer between strains, 
allowing the emergence of single and even double resistant variants 
(Fillol-Salom et  al., 2019). The study proposed that the “erroneous 
packaging” of transduction is not accidental but an evolutionary 
characteristic of temperate phages in changing environments. Taking 
into account the no well-mixed host phage systems, Sankalp et  al. 
developed a model with a small volume compartment to consider local 
effects (Arya et al., 2020). Through sensitivity analysis, it was discovered 
that transduction frequency was decreased in a more toxic environment, 
or with higher fitness costs of resistance or phage immunity.

Quentin et al. argued that the parameters of the three models 
mentioned above mainly rely on assumptions and previous studies, 
lacking reliable experimental data as evidence, which may limit the 
reliability of their results. Therefore, an interdisciplinary approach, 
combining experiments and simulations, was adopted to predict how 

phage-bacteria dynamics lead to the evolution of multidrug-resistant 
bacteria. The estimated transduction frequency was approximately 
10−8 (Leclerc et  al., 2023). Based on this, the model was further 
extended to simulate the impact of antibiotics on the phage-bacteria 
system under the same environmental conditions (Leclerc et al., 2022). 
The results indicated that the synergistic effect of phages and 
antibiotics rapidly killed bacteria but also led to faster ARG spread, 
depending on the interaction duration and antibiotics concentration. 
This simulation provides important guidance for future experimental 
and clinical work on the impact of phages on AMR evolution.

5 Future perspectives

The risks posed by the dissemination of ARGs to the environment 
and public health are non-negligible. Despite the ongoing expansion 
and refinement of studies for HGT, the examining methods, models 
and associated health risk assessment of HGT still need to be further 
explored. Future researches are proposed to address the following gaps:

 (1) Current research primarily focuses on conjugation and 
transformation, with a notable lack of investigation into 
transduction and vesiduction processes (Luo et  al., 2023). 
Therefore, there is a necessity for a more comprehensive 
examination of the contributions of phages and OMVs to the 
dissemination of ARB in the environment, as well as the 
impacts of exogenous compounds (e.g., non-antibiotic drugs) 
on the induction of transduction and vesiduction, in order to 
better understand the contribution of HGT to ARG 
dissemination in the environment (Liu et al., 2020). Meanwhile, 
future researchers are urged to develop novel examining 
methods tailored to the objectives, such as in situ tracking and 
quantification of transduction and vesiduction and next-
generation sequencing technologies with improved accuracy 
(Abe et al., 2020; Xiao et al., 2023).

 (2) Experimental and simulation approaches complement each 
other. Experiments can refine simulation parameters to 
establish more reliable models, while simulations can easily 
predict long-term trends that are challenging to obtain through 
experiments (Fox et al., 2008). Given the distinct mechanisms 
of different HGT pathways, there is a need for creative 
modeling studies on transformation, transduction and 
vesiduction of rather than simply extending existing 
conjugation models. Therefore, acquiring more experimental 
data is urgently needed to provide stronger support for the 
development of mathematical models (Abe et  al., 2020). 
Additionally, incorporating environmental variables into 
existing models or utilizing experimental data from simulated 
real environmental systems, enabling simulated results to have 
higher practical significance (Leclerc et al., 2019).

 (3) Assessing public health risks associated with the dissemination 
of ARGs through HGT is of paramount importance 
(Sanganyado and Gwenzi, 2019). However, the majority of 
current research on HGT risk models primarily focus on 
foodborne infections, thereby overlooking the health risk HGT 
in the environment (Verraes et al., 2013). Hence, there is a need 
to integrate mathematical models with commonly used risk 
assessment models such as human exposure assessment model, 
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causal model and dose–response model, etc. (Williams-Nguyen 
et al., 2016; Sanganyado and Gwenzi, 2019; Morgado-Gamero 
et  al., 2021; Goh et  al., 2022). The output of mathematical 
models will serve as inputs for risk assessment models, 
facilitating ongoing risk ranking and source tracking, thereby 
establishing an HGT risk assessment framework (Luo 
et al., 2023).

6 Conclusion

This review primarily delineates four general ways of HGT and 
then subsequently summarizes the advantages, limitations and 
obtainable information of current HGT examining methods. 
Following, combined with the experimental data, the development of 
existing HGT models was outlined. In the future, researches are 
proposed to focus more on transduction and vesiduction processes, 
efficiently utilize tools for examining HGT and develop mathematical 
models. Furthermore, combining HGT models with risk assessment 
models is also important direction for evaluation health risks of HGT 
in the environment.
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