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The increasing demand for orthopedic surgeries, including joint replacements, 
is driven by an aging population and improved diagnosis of joint conditions. 
Orthopedic surgeries carry a risk of infection, especially in patients with 
comorbidities. The rise of antibiotic resistance exacerbates this issue, 
necessitating alternatives like in vitro bioengineered antimicrobial peptides 
(AMPs), offering broad-spectrum activity and multiple action mechanisms. This 
review aimed to assess the prevalence of antimicrobial potential and the yield 
after purification among recombinant AMP families. The antimicrobial potential 
was evaluated using the Minimum Inhibitory Concentration (MIC) values against 
the most common bacteria involved in clinical infections. This systematic review 
adhered to PRISMA guidelines, focusing on in vitro studies of recombinant 
AMPs. The search strategy was run on PubMed, Scopus and Embase up to 30th 
March 2023. The Population, Exposure and Outcome model was used to extract 
the data from studies and ToxRTool for the risk of bias analysis. This review 
included studies providing peptide production yield data and MIC values against 
pathogenic bacteria. Non-English texts, reviews, conference abstracts, books, 
studies focusing solely on chemical synthesis, those reporting incomplete 
data sets, using non-standard MIC assessment methods, or presenting MIC 
values as ranges rather than precise concentrations, were excluded. From 
370 publications, 34 studies on AMPs were analyzed. These covered 46 AMPs 
across 18 families, with Defensins and Hepcidins being most common. Yields 
varied from 0.5 to 2,700  mg/L. AMPs were tested against 23 bacterial genera, 
with MIC values ranging from 0.125 to >1,152  μg/mL. Arenicins showed the 
highest antimicrobial activity, particularly against common orthopedic infection 
pathogens. However, AMP production yields varied and some AMPs demonstrated 
limited effectiveness against certain bacterial strains. This systematic review 
emphasizes the critical role of bioengineered AMPs to cope infections and 
antibiotic resistance. It meticulously evaluates recombinant AMPs, focusing on 
their antimicrobial efficacy and production yields. The review highlights that, 
despite the variability in AMP yields and effectiveness, Arenicins and Defensins 
are promising candidates for future research and clinical applications in treating 
antibiotic-resistant orthopedic infections. This study contributes significantly 
to the understanding of AMPs in healthcare, underscoring their potential in 
addressing the growing challenge of antibiotic resistance.

Systematic review registration: https://osf.io/2uq4c/.
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1 Introduction

The demand for arthroplasty and orthopedic surgeries involving 
implants has shown a consistent upward trend in recent years, driven 
by various factors. These factors encompass an aging population and 
heightened awareness and diagnosis of joint-related ailments. 
According to data sourced from the American Joint Replacement 
Registry in 2019, roughly 1.8 million total joint replacement 
procedures were performed. Among these, total knee replacements 
accounted for approximately 1 million procedures, while total hip 
replacements constituted around 600.000 procedures (Levine et al., 
2020). This trajectory is expected to persist, given the aging 
demographic and the increasing need for joint replacement 
procedures (Shichman et al., 2023).

Beyond joint replacements, there exists a spectrum of orthopedic 
surgeries necessitating implants such as fracture fixation, spinal 
fusion, and arthroplasty of shoulder or elbow. Collectively, these 
surgeries carry the potential risk of orthopedic infections, particularly 
in patients with underlying comorbidities such as diabetes, 
cardiovascular issues, or compromised immune systems (Lai 
et al., 2007).

Orthopedic infections can lead to substantial morbidity and 
complications when not effectively treated. Furthermore, the rise of 
antibiotic resistance is becoming an increasingly pressing issue within 
the realm of orthopedic infections and healthcare at large, akin to a 
silent pandemic (Salam et al., 2023). The excessive and inappropriate 
utilization of antibiotics has played a pivotal role in fostering the 
emergence of antibiotic-resistant bacterial strains, presenting a 
formidable clinical challenge. As such, there is an immediate and 
imperative need for intervention to address this critical concern.

Antimicrobial peptides (AMPs) are naturally occurring molecules 
that play a crucial role in the innate immune system. AMPs have 
gained significant attention as potential alternatives to traditional 
antibiotics in the fight against antibiotic-resistant infections, since 
exhibit: (i) broad-spectrum antimicrobial activity against bacteria 
(Gram-positive and Gram-negative), viruses (enveloped and 
non-enveloped), yeasts, fungi, molds, and parasites (Zasloff, 2002; 
Radek and Gallo, 2007; Marxer et al., 2016); (ii) multiple mechanisms 
of action on different biological targets to traditional antibiotics and 
distinct pathways, thus decreasing the propensity for resistance to 
occur (Hancock and Chapple, 1999; Zasloff, 2002); (iii) regulation of 
key immunomodulatory mechanisms in the innate immune system 
(Al-Rayahi and Sanyi, 2015; Zhang and Gallo, 2016).

AMPs show significant chemical diversity in nature, at the same 
time exhibiting common structural properties. These peptides usually 
are less than 100 amino acids long, especially consisting of positively 
charged (i.e., lysine, arginine, and histidine) and hydrophobic residues, 
these latter accounting for more than 50% (Jenssen et al., 2006). AMPs 
are commonly classified based on their secondary structure into four 
different groups: α-helical, β-sheet, mixed, and cyclic structures. Their 
structural organization is crucial for the interaction with biological 

targets. The amphiphilic α-helix promotes the interaction with cell 
membranes, thus allowing membrane disruption; in particular, the 
interaction is facilitated by the presence of cationic and hydrophobic 
residues on the opposite faces of the helix motif (Wiradharma et al., 
2013). The β-sheet conformation shows amphipathic properties due 
to the presence of the spatially defined polar and non-polar domains 
in at least a pair of two β-strands linked by disulphide bridges 
conferring stabilization to the overall peptide structure (Lee et al., 
2016; Kumar et al., 2018). The supplemental head-to-tail cyclization 
further increases the stability of the secondary structure, without the 
need of additional conformational changes upon the interaction with 
cell membranes. Three or four disulphide bridges stabilize the α-helix/
β-sheet mixed structures, that consist of positively charged residues 
arranged in the helix and of hydrophobic amino acids in the β-sheet 
motif (Yang, 2012).

The amphipathic nature of the overall AMPs is essential for 
their ability to interact with bacterial membranes. The 
antimicrobial activity is mainly exerted through two different 
mechanisms: (i) interaction with bacterial cell membrane to impair 
its structural integrity; (ii) interaction with intracellular targets to 
inhibit the synthesis of nucleic acids, key enzymes and functional 
proteins. The physicochemical properties of AMPs promote the 
initial interaction with the cell surface resulting in the disruption 
of membrane integrity: in detail, the first essential step of 
interaction is represented by the electrostatic binding of the 
positively charged residues of AMPs to the anionic lipids of 
bacterial cell membrane (Bahar and Ren, 2013; Kumar et al., 2018). 
The subsequent insertion into the hydrophobic core of the bilayer 
is mediated by the interaction of hydrophobic amino acids of 
AMPs with the fatty acyl chains of membrane lipids (Pirtskhalava 
et al., 2021). Once the AMPs critical aggregation concentration on 
the membrane is reached, the membrane disruption occurs mainly 
through three mechanisms. In the “barrel-stave model,” the AMPs 
laterally accumulated on the membrane, rotate perpendicularly to 
the plasma membrane, thus forming a channel (López-Meza et al., 
2011). AMPs are inserted perpendicularly in the hydrophobic 
region of the bilayer through a peptide-lipid complex in the 
“toroidal model,” thus promoting a local membrane curvature and 
forming a toroidal pore (Hazam et al., 2019). In the “carpet model,” 
at first AMPs are bound parallel to the cell surface thanks to the 
electrostatic interactions; once the critical concentration is 
reached, AMPs form micelles resulting in membrane disruption 
(Hazam et al., 2019).

Many AMPs exert their antimicrobial activity through a 
non-membrane targeting mechanism: the inhibition of protein 
synthesis by interacting with the ribosome, the interaction with 
nucleic acids, the binding with the precursor lipid II crucial for the 
peptidoglycan synthesis, the interaction with different chaperone 
proteins to block the protein folding pathway, resulting in bacterial 
death (Otvos et  al., 2000; Brogden, 2005; Essig et  al., 2014; 
Mardirossian et al., 2018).
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Lastly, AMPs have the potential to be used in combination with 
existing antibiotics, enhancing their efficacy and reducing the 
likelihood of resistance development.

In the context of orthopedic infections, AMPs show promise as 
potential therapeutic agents. They can be used as topical agents to 
prevent and/or treat surgical site infections, or they can 
be incorporated into biomaterials used with orthopedic implants to 
reduce the risk of infection (Li et al., 2023). While AMPs hold great 
potential, there are still challenges to overcome before they can 
be widely used in clinical practice: higher stability, reduced toxicity, 
and optimized production methods. The scale up of AMPs production 
is crucial for their application to serve market requirements. Three 
strategies can be  applied to obtain AMPs for clinical use: direct 
extraction from natural sources or bioengineering them through 
chemical synthesis and recombinant production. Up to now, few 
AMPs have been isolated from natural producers such as plants, 
insects, bacteria by applying a number of laborious and expensive 
extraction and purification steps (Moreira et al., 2011; Tang et al., 
2018). Chemical synthesis and recombinant production of AMPs 
represent two conventional optional methods.

Chemical synthesis of AMPs involves stepwise assembly of amino 
acids, enabling precise control over sequence design and offering 
customization. Recombinant AMP production, utilizing genetic 
engineering in microorganisms, offers scalability in large-scale 
manufacturing but may require additional purification steps. To 
be optimal, the production method should be industrially scalable, 
reproducible, biocompatible, following the good manufacturing 
practices and at low cost.

In chemical production, solid-phase-peptide synthesis is the most 
common method used, also at industrial scale (Merrifield, 1963). The 
N-terminal amino acid is bound to a polystyrene resin via the carboxyl 
end. Coupling compounds are used to bind amino acids to each other, 
chemically modified with protecting groups at their N-terminus or 
side chains. The process is repeated to obtain the desired final peptide. 
The two most used N-protecting groups are fluorenylmethoxycarbonyl 
(Fmoc) and tert-butoxycarbonyl (Boc) (Pedersen et al., 2012). These 
latter substances, coupled with the use of dimethylformamide and 
dichloromethane in the chemical method, are environmentally 
hazardous, thus rendering the overall process ecologically 
unsustainable (Lawrenson et  al., 2017). The automation and 
improvement in instrumentation allowed to produce peptides up to 
50 amino acids. The simplicity and the fast optimized protocol allowed 
to mass produce AMPs. However, the incorporation of residues such 
as cysteine, aspartic acid, and histidine, as well as the production of 
glycopeptides still remain a great challenge (Pedersen et al., 2012). 
Moreover, an important limitation is represented by the huge need for 
starting materials (Kaur, 2018). Noteworthy, the D-enantiomer of 
amino acids can be  incorporated during the chemical synthesis, 
resulting in peptides not recognized by proteases and the immune 
system, thus allowing to increase their in vivo stability (Bland et al., 
2001). At the same time, the incorporation of D-enantiomers could 
modify the secondary structure of AMPs, potentially resulting in a 
lower antibacterial activity (Lee et al., 2004). Despite the possibility to 
scale up the chemical production, the overall process is still costly 
when compared with the recombinant production in a bacterial host. 
In this latter case, to reduce toxicity and proteolytic degradation 
processes, recombinant AMPs are mainly produced as fusion proteins 
(Vassilevski et al., 2008; Li, 2009; Costa et al., 2014).

The choice of the host, expression plasmid, and fusion tags 
strongly influence the production yield. In this context, bacteria, 
yeasts, and plants represent the most common expression systems 
used. In particular, Escherichia coli is the most preferred 
recombinant system, mainly due to its rapid growth and well-
known genetic and biochemical properties (Ingham and Moore, 
2007): high expression levels and low fermentation cost resulted in 
high AMPs production yields (Meng et al., 2016; Ashcheulova et al., 
2018). In addition, Bacillus subtilis has been employed as host, 
mainly for the possibility to reach high cell density, the absence of 
endotoxins and the secretion of the produced AMPs in the culture 
medium, thus simplifying the downstream purification process. 
Noteworthy, several strategies can be  applied from a molecular 
point of view, as well as acting on protein expression conditions, to 
optimize AMPs production. In addition, protein engineering 
approaches such as site-directed and site-saturation mutagenesis, 
can be employed to modify specifically the amino acid sequence or 
to generate small peptide libraries to be screened for the required 
antimicrobial activity.

Based on all these assumptions, the authors included in the 
current systematic review only the AMPs recombinantly expressed, 
considering the low amounts of peptides obtained by extraction from 
natural sources and the high costs, technical limitations and 
environmental issues that may arise from the chemical synthesis. 
Based on advancements in protein expression platforms and fusion 
proteins approaches, the recombinant production represents now a 
solid option to make AMPs accessible at low cost and high yield for 
clinical applications.

This review aims to assess the prevalence of antimicrobial 
potential and the production yield (after purification) among 
recombinant AMP families. The antimicrobial potential was evaluated 
using the Minimum Inhibitory Concentration (MIC) values against 
the most common bacteria involved in clinical infections.

2 Materials and methods

2.1 Study design

This systematic review follows Preferred Reporting Items for 
Systematic Reviews and Meta Analysis (PRISMA) framework 
guidelines. The study protocol is registered in OSF repository, available 
at the following link: https://osf.io/2uq4c/.

2.2 Question

This review aims to assess the prevalence of antimicrobial 
potential and the production yield (after purification) among 
recombinant AMP families. The antimicrobial potential was evaluated 
using the MIC values against the most common bacteria involved in 
clinical infections.

2.3 Eligibility criteria

A Population, Exposure and Outcome (PEO) model was 
developed to extract information from the studies. Table 1 summarizes 
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the data extracted from the studies included in the analysis. The 
inclusion criteria were:

 ‐ In vitro studies;
 ‐ Production of recombinant AMPs;
 ‐ Availability of the yield of the purified peptide;
 ‐ MIC values of the AMPs against pathogenic bacteria.

Exclusion criteria for the PEO model were:

 ‐ Full text not available;
 ‐ Studies not in English language;
 ‐ Reviews and conference abstracts;
 ‐ Books and book chapters;
 ‐ Studies of chemical synthesis of the AMPs that report only one 

of the two data sets (yield and MIC);
 ‐ The utilization of AMPs that are not purified;
 ‐ MIC values assessed using a protocol different from the ISO 

20776-1 standard (broth microdilution method) or the Disk 
diffusion method according to CLSI or EUCAST guidelines 
(EUCAST, 2024);

 ‐ MIC values reported as ranges, not as precise concentration.

2.4 Search strategy

A search strategy was run on PubMed, Scopus and Embase up to 
30th March 2023. The keywords searched and combined with AND 
were “antimicrobial peptide” and “recombinant expression.” No 
restriction was applied. On Scopus, the string used was TITLE-
ABS-KEY (“antimicrobial peptide” AND “recombinant expression”). 
Additionally, the EMBASE database was also screened with keywords: 
(“antimicrobial peptide”/exp. OR “antimicrobial peptide”) AND 
“recombinant expression”.

2.5 Data collection and analysis

2.5.1 Selection of studies
Two investigators (VP and ABL) independently performed a 

literature search and screened the references based on title and 
abstract. The eligible papers were selected based on the full text and 
only the studies matching the inclusion criteria were finally included. 
Any disagreement was discussed and solved. All the references 
obtained from the three databases were placed in a single Excel file 
and ordered by Title. The first step of selection was to manually 
remove duplicate entries. Subsequently, the review papers, conference 
abstracts, papers in a language different from English, and papers with 
full text not available were removed. For a more in-depth analysis of 
the PEO model, the remaining full-text manuscripts were screened.

2.5.2 Data collection and management
Two investigators (VP and ABL) independently performed the 

data extraction phase. Any disagreement was solved by consensus. The 
following general characteristics of the included studies were 
extracted: authors, title and year of publication. Then, outcome data 
about the antimicrobial activity (MIC value) and the production yield 
were collected using a pre-defined data collection form in an Excel 
sheet. We piloted the data extraction form on a sample of ten studies 
to capture all important features. Thus, using the final collection form 
containing raw data, the AMP yields were recorded in mg/L. If the 
unit of measurement was different, a conversion was made to report 
the yield as mg/L. The MIC values (μg/mL) were intended to be the 
minimal concentration that inhibited the growth of the tested 
microorganism. If the MIC values were reported as μM, the following 
conversion was used: μg/mL = μM*kDa. Other information was added 
to the table including the raw data: expression system, AMP family, 
AMP structure, microorganism genus and MIC category. To easily 
distinguish between yeast and prokaryotic plasmids, the expression 
system host was introduced. The AMP family was either found in the 
paper or searched online (Protein Data Bank PDB, Antimicrobial 
Peptide Database APD, PubMed, last accessed on October 5th 2023). 
The AMP structure was either obtained by PDB or estimated with 
AlphaFold2 Colaboratory (last accessed on October 5th 2023). The 
microorganism genus was added to categorize all the different species 
and strains of the same genus. Since the MIC value was not always 
reported as continuous numbers, but also as “<” or “>” values, a 
statistical comparison was not possible. However we introduced the 
MIC category, intended to categorize the MIC values of each AMP 
family by arbitrarily dividing MIC values into two groups based on the 
75th percentiles of each AMP family. Specifically, one group had MIC 
values that were less than or equal to the 75th percentile, and the other 
group had MIC values that were greater than the 75th percentile.

2.5.3 Assessment of risk of bias (ROB) in included 
studies

The in vitro section of the Toxicological data Reliability assessment 
Tool (ToxRTool, Schneider et  al., 2009) was used for the ROB 
assessment. The tool included 18 criteria, divided into 5 groups: “Test 
substance identification,” “Test system characterization,” “Study design 
description,” “Study results documentation,” and “Plausibility of study 
design and results.” All criteria were answered assigning a score of “0” 
for unmet criteria or “1” for met criteria. By answering all 18 criteria, 
the tool calculated the total score and assigned a data reliability of 
“reliable without restriction” (15–18 points), “reliable with restrictions” 
(11–14 points) or “not reliable” (<11 points). Additionally, the tool 
considered 6 of the 18 criteria, called “red criteria”, as minimum 
elements for a study to be considered reliable. Only if all red criteria 
were met, i.e., rated as ‘1’, the tool assigned a data reliability of “reliable 
without restriction” or “reliable with restrictions.” If one or more red 
criteria were not met, i.e., rated as ‘0’, the tool assigned a data reliability 
of “not reliable.” The tool provided freedom to the evaluator to deviate 
from the categorization, if a justification was provided.

2.5.4 Synthesis methods
General characteristics of the included studies were descriptively 

tabulated based on the PEO model. The outcome was described as 
association between the AMP families and the target bacterial genera 
represented in an alluvial chart using the online tool www.rawgraphs.

TABLE 1 PEO model.

Population Bacterial pathogens

Exposure Recombinant AMPs

Outcome Antimicrobial activity (MIC) and 

production yield
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io (Mauri et  al., 2017). Subsequently, the most represented AMP 
families underwent further investigation using the ggplot2 package in 
R-Studio (version: 2023.06.1 + 524), and their yields and MICs against 
the targeted bacterial genera were visualized with alluvial charts. 
Eventually, between the targeted bacteria, the bacterial genera more 
involved in orthopedic infections (E. coli, Pseudomonas, and 
Staphylococcus) were analyzed to assess the AMP family more effective 
against them, based on the literature considered for this study.

3 Results

3.1 Summary of results

A schematic flow chart of the systematic review is represented in 
Figure 1. A total of 370 publications was recovered from the three 
different databases, as shown in the PRISMA flow chart in Figure 2. 
After removing 168 duplicates, 202 publications were included for the 
screening phase. Full text articles were analyzed, and 168 more articles 
were excluded since not compliant with the PEO model. Ultimately, 
34 papers were analyzed in this study.

3.2 Characteristics of included studies

The characteristics of the AMPs described in the 34 papers 
considered in this analysis are summarized in Table  2, while the 
complete dataset is stored on OSF at the following link: https://osf.
io/2uq4c/.

The 34 articles described 46 AMPs, which were divided into 18 
different AMP families. Among these, the most abundant families 
were Defensins and Hepcidins, which had 10 and 7 different AMPs, 
respectively. The overall yields ranged between 0.5 mg/L and 
2,700 mg/L.

Twenty-three different bacterial genera were used in the analyzed 
studies, and the most used were Escherichia, Staphylococcus, Bacillus, 
Salmonella and Pseudomonas. Regarding the MIC values, the 

distribution of data was very wide, depending on the AMP and the 
microorganism used for the determination, ranging between 0.125 μg/
mL and > 1,152 μg/mL.

3.3 Risk of bias

The results of the ToxRTool are included in Supplementary Table S1. 
Five studies were ranked as “reliable without restrictions” as most of 
the required information was provided. The remaining 29 studies were 
lacking at least one of the red criteria”. In this situation, ToxRTool 
categorized these studies as “not reliable”, however, the final judgment 
was given by the evaluators and in some cases our judgment was 
discordant with the tool. Eventually, 19 studies were considered 
“reliable with restrictions” and 10 “not reliable”. In particular, those 
reliable with restrictions were including studies lacking explicit 
information about the use of positive and negative controls in the MIC 
protocol. However, since these controls are required by default in the 
application of standard MIC protocols (ISO 20776-1 or Disk diffusion 
according to EUCAST or CLSI), it was assumed that if only this 
information was missing, most certainly it was just omitted from the 
manuscript. In fact, not many studies reported the use of positive or 
negative controls (8 and 15, respectively). The remaining 10 studies 
were confirmed “not reliable” because of a combination of missing 
information or inconsistent parameters with the standard MIC 
protocols, such as inoculum size, controls, incubation time 
and temperature.

3.4 AMP families and targeted bacterial 
genera and relative frequency of MIC 
tested

Overall, Figure  3 shows the alluvial chart reporting the 
correspondence between the AMP families and the targeted bacterial 
genera. In this review analysis, the four most abundant AMP families 
were Hepcidins (66 MIC values available, in 4 studies), Arenicins (40 

FIGURE 1

Schematic flow chart of the systematic review. The figure presents a detailed flow chart outlining the methodology from the data search to extraction. 
Outcomes include the selected studies highlighting the range values of yield and MIC. The figure also depicts the results, quantified by the number of 
selected studies, of the predominant AMP families against the three primary bacteria genera responsible for orthopedic infections. Created with 
BioRender.com.
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MICs in 3 studies), Defensins (35 MICs in 7 studies) and Anti−
lipopolysaccharide factors (ALFs, 33 MICs in 3 studies). The most 
tested bacterial genera were Staphylococcus, Escherichia, Bacillus and 
Pseudomonas, with 61, 50, 48 and 23 MIC values, respectively.

3.5 Yield (mg/L), targeted bacterial genus 
and MIC range (μg/mL) of the most 
reported AMP families

From Figures 4–7, we reported the aforementioned four most 
analyzed AMP families with their single AMP production yield and 
antimicrobial activities (MIC values) plotted against different target 
bacteria. Between the selected AMP families, Arenicins showed the 
highest antimicrobial activity in terms of lowest MICs, with a 75th 
percentile of 10 μg/mL, followed by Defensins (65.6 μg/mL), ALFs 
(318 μg/mL) and Hepcidins (436.5 μg/mL).

The results showed a high heterogeneity in terms of yield, as 
shown in Figures 4–7. Specifically, Figure 4 shows that Hepcidins were 

produced with yields between 0.2 (Sal2a and Sal2b) and 32.4 mg/L 
(ECproHep3). MIC values ranged between <18 μg/mL for 
Pseudomonas stutzeri (ECproHep3) and > 1,152 μg/mL for various 
specific bacteria (ECproHep3). In Figure  5, the Arenicins were 
produced between 4.1 and 8.5 mg/L. The lowest MIC value was 
0.125 μg/mL against Salmonella enteritidis CVCC3377 (rN2), while 
the highest MIC values were > 16 μg/mL against L. ivanovii and S. suis 
(NZ17074). On two strains of K. pneumoniae and one strain of 
P. aeruginosa (15 N-labeled Ar-1[V8R]), Arecinins resulted in a MIC 
value of 20.25 μg/mL. The yield of Defensins (Figure 6) was between 
0.4 (BmTXKS2) and 421 mg/L (CeHS-1). The MIC values for B. subtilis 
(rMdde) and P. aeruginosa 27,853 (CeHS-1) ranged from 4.14 μg/mL 
to >128 μg/mL.

As shown in Figure  7, the yield of ALFs ranged from 1.2 to 
2,700 mg/L and the AMP with the highest yield (rFcALF5) also 
resulted in high MICs against the bacterial strains tested. The lowest 
MIC value of ALFs was 30 μg/mL against B. subtilis (rMnALF4) and 
the highest values were > 516 μg/mL against E. coli and S. epidermidis 
(rFcALF5).

FIGURE 2

This figure illustrates the meticulous process undertaken to select studies for inclusion in our review, emphasizing our commitment to transparency 
and rigor. The PRISMA flow began with a comprehensive search and meticulous screening of a vast literature. After removing non-compliant studies, 
the data from 34 publications were extracted for the further steps of this review.
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TABLE 2 Characteristics of the AMPs considered in this study, grouped per AMP families, in alphabetical order.

AMP Family AMPs AMP Structure Microorganism Ratio of 
hydrophilic 
residues / total 
number of 
residues (%)

Net charge at 
pH  =  7.0

Number of 
Residues

Reference

Anti-

lipopolysaccharide 

factors (ALFs)

rMnALF4

rFcALF5

mFcALF2

Mixed1 Aeromonas, Agrobacterium, Bacillus, 

Burkholderia, Enterobacter, Escherichia, 

Kluyvera, Microbacterium, Micrococcus, 

Proteus, Pseudomonas, Salmonella, Serratia, 

Sporosarcina, Staphylococcus, Vibrio

rMnALF4: 37

rFcALF5: 37

mFcALF2: 37

rMnALF4:4.10

rFcALF5:1.90

mFcALF2:8.01

rMnALF4: 99

rFcALF5: 99

mFcALF2: 98

Yang et al. (2015), Yang H. 

et al. (2016), and Tang et al. 

(2020)

Apidaecins Apidaecins (Aps) 

2

Random coil1 Escherichia, Pseudomonas, Salmonella 33 5,09 18 Mo et al. (2018)

Arenicins rN2

15N-labeled 

Ar-1[V8R]

15N-labeled Ar-1

NZ17074

rN2: β-sheet. PDB code: 5Y0J2

Arenicin-1: β-sheet. PDB code: 2JSB2

Arenicin-1 V8R: β-sheet. PDB code: 

5M9U2

NZ17074: β-sheet1

Bacillus, Escherichia, Klebsiella, Listeria, 

Pseudomonas, Salmonella, Staphylococcus, 

Streptococcus

rN2: 33

Arenicin-1:29

Arenicin-1 V8R: 33

NZ17074: 32

rN2: 3.91

Arenicin-1:5.91

Arenicin-1 V8R: 6.91

NZ17074: 3.91

rN2: 21

Arenicin-1: 21

Arenicin-1 V8R: 21

NZ17074: 22

Wang et al. (2014), Yang N. 

et al. (2016), Panteleev et al. 

(2017)

ASABF-like HKABF Mixed1 Morganella, Staphylococcus, Vibrio 31 6.64 49 Wang et al. (2008)

Bacteriocins Beta Casein-E 

50–52 (BCN-E 

50–52)

Lacticin Q

Beta Casein-E 50–52 (BCN-E 50–52): 

Mixed1

Lacticin Q: α-helix. PDB code: 7P5R2

Enterococcus, Escherichia, Listeria, Salmonella, 

Staphylococcus

BCN-E 50–52: 28

Lacticin Q: 34

BCN-E 50–52: 1.73

Lacticin Q: 6.00

BCN-E 50–52: 39

Lacticin Q: 53

Yu et al. (2013) and 

Fahimirad et al. (2017)

Cathelicidins Fowlicidin-2

Indolicidin

Fowlicidin-2: α-helix. PDB code: 

2GDL2

Indolicidin: Random coil. PDB code: 

1G892

Bacillus, Escherichia, Listeria, Pseudomonas, 

Salmonella, Staphylococcus

Fowlicidin-2: 42

Indolicidin: 23

Fowlicidin-2: 10.00

Indolicidin: 3.00

Fowlicidin-2: 31

Indolicidin: 13

Morin et al. (2006), Feng 

et al. (2015), and Xing et al. 

(2016)

Crustins rCshFc

rCruFc

AlphaFold2 Colaboratory was not 

able to predict a structure

Aeromonas, Bacillus, Escherichia, Klebsiella, 

Micrococcus, Staphylococcus, Vibrio

rCshFc: 22

rCruFc: 25

rCshFc: 1.27

rCruFc: 0.56

rCshFc: 87

rCruFc: 117

Zhang et al. (2007)

Defensins Plectasin

CeHS-1

CeHS-1 GP

Cryptdin-2

MutantE18C-

Cryptdin-2

Aurelin

BmTXKS2

rMdde

rCgDef

Plectasin: Mixed. PDB code: 3E7U2

CeHS-1: α-helix1

CeHS-1 GP: α-helix1

Cryptdin-2: β-sheet1

MutantE18C-Cryptdin-2: β-sheet1

Aurelin: α-helix. PDB code: 2LG42

BmTXKS2: Mixed1

rMdde: Mixed1

rCgDef: mixed. PDB code: 2B682

Bacillus, Enterococcus, Escherichia, Klebsiella, 

Listeria, Micrococcus, Staphylococcus

Plectasin: 34

CeHS-1: 45

CeHS-1 GP:38

Cryptdin-2: 36

MutantE18C-

Cryptdin-2: 33

Aurelin: 43

BmTXKS2: 49

rMdde: 25

rCgDef: 35

Plectasin: 1.91

CeHS-1: 2.09

CeHS-1 GP: 5.09

Cryptdin-2:7.82

MutantE18C-

Cryptdin-2:8.77

Aurelin: 4.91

BmTXKS2:2.08

rMdde: 2.91

rCgDef: 3.73

Plectasin: 41

CeHS-1: 38

CeHS-1 GP:37

Cryptdin-2: 36

MutantE18C-

Cryptdin-2: 36

Aurelin: 40

BmTXKS2: 39

rMdde: 40

rCgDef: 43

Wang et al. (2006), 

Shenkarev et al. (2012), 

Chen et al. (2015), Kaur 

et al. (2020), Erdem 

Büyükkiraz and Kesmen 

(2022), Erviana et al. 

(2022), and Taghizadeh 

et al. (2022)

(Continued)
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TABLE 2 (Continued)

AMP Family AMPs AMP Structure Microorganism Ratio of 
hydrophilic 
residues / total 
number of 
residues (%)

Net charge at 
pH  =  7.0

Number of 
Residues

Reference

GASA/GAST SN2 α-helix1 Agrobacterium, Escherichia, Micrococcus, 

Staphylococcus

33 7.64 66 Herbel et al. (2015)

Hepcidins Sal1

Sal2a

Sal2b

Hepc25

ECproHep3

6x His-Factor 

Xa-NG-hepcidin

6x His-TEV-

hepcidin

Sal1: β-sheet1

Sal2: β-sheet1

Hepc25: β-sheet. PDB code: 1M4F2

ECproHep3: Mixed1

6x His-Factor Xa-NG-hepcidin – 6x 

His-TEV-hepcidin: β-sheet1

Aeromonas, Bacillus, Corynebacterium, 

Escherichia, Micrococcus, Pseudomonas, 

Shigella, Staphylococcus, Vibrio

Sal1: 20

Sal2: 32

Hepc25: 20

ECproHep3:37

hepcidin: 27

Sal1: 0.82

Sal2: 2.82

Hepc25: 1.82

ECproHep3: 3.08

hepcidin: 3.82

Sal1: 25

Sal2: 25

Hepc25: 25

ECproHep3:65

hepcidin: 26

Greenshields et al. (2008), 

Srinivasulu et al. (2008), Qu 

et al. (2013), and 

Janakiraman et al. (2015)

Hybrid peptides LF15-CA8

Hybrid Magainin–

Thanatin

rCgPrp-CgDef

Sericincecropin B

LF15-CA8: α-helix1

Hybrid Magainin–Thanatin: β-sheet1

rCgPrp-CgDef: Mixed1

Sericincecropin B: AlphaFold2 

Colaboratory was not able to predict 

a structure.

Bacillus, Escherichia, Listeria, Pseudomonas, 

Salmonella, Staphylococcus

LF15-CA8: 47

Hybrid Magainin–Thanatin: 

34

rCgPrp-CgDef: 41

Sericincecropin B: 49

LF15-CA8:7.95

Hybrid Magainin–

Thanatin: 7.00

rCgPrp-CgDef: 5.74

Sericincecropin B: 0.01

LF15-CA8: 30

Hybrid Magainin–

Thanatin: 29

rCgPrp-CgDef: 81

Sericincecropin B: 136

Feng et al. (2014), Tian 

et al. (2019), Thomas et al. 

(2020), and Erdem 

Büyükkiraz and Kesmen 

(2022)

Lactoferrins LF-6 α-helix1 Escherichia, Staphylococcus 55 7 20 Jiang et al. (2016)

Penaeidins rCHP α-helix1 Bacillus, Escherichia, Klebsiella, Micrococcus, 

Staphylococcus

30 6.82 56 Li et al. (2005)

Scygonadins CKS-Scygonadin

Scygonadin (pET)

Mixed1 Aeromonas, Bacillus, Corynebacterium, 

Escherichia, Micrococcus, Staphylococcus, 

Vibrio

36 0.9 102 Peng et al. (2010)

Sericins Sericin AlphaFold2 Colaboratory was not 

able to predict a structure

Escherichia, Staphylococcus 53 7 96 Thomas et al. (2020)

Trp-analogs recTritrp α-helix1 Escherichia 27 4 15 Arias et al. (2016)

Vasoactive 

intestinal peptide 

(VIP)

Thioredoxin 

(Trx)-VIP8

α-helix1 Escherichia, Staphylococcus 36 7 25 Xu et al. (2017)

Proline-rich 

peptide

rCgPrp α-helix1 Bacillus, Listeria, Staphylococcus 47 2.01 38 Erdem Büyükkiraz and 

Kesmen (2022)

1AMP structure predicted by AlphaFold2 Colaboratory; 2AMP structure deposited in the Protein Data Bank (PDB). Ratio of hydrophilic residues/total number of residues, net charge and N of residues were calculated using the online tool: https://www.bachem.com/
knowledge-center/peptide-calculator/.
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Moreover, the antimicrobial activity of the four selected AMP families 
against the most common pathogens involved in orthopedic infections 
(E. coli, Pseudomonas, and Staphylococcus) was visually analyzed. Figure 8 
confirms that Arenicins have the highest antimicrobial activity and the 
lowest MICs compared to the other three AMP families. In particular, 
almost all of the AMPs of the Arenicins family included in this study 
showed MIC values below 10 μg/mL against E. coli, Pseudomonas, and 
Staphylococcal strains. The only exceptions were 15 N-labeled Ar-1 
against Pseudomonas_aeruginosa_XDR_CI_1049_ESBL+_MBL+, 
and Pseudomonas_aeruginosa_XDR_CI_236_ESBL+_MBL+ (MIC of 
20.12 μg/mL), 15 N-labeled Ar-1 [V8R] against Pseudomonas_
aeruginosa_XDR_CI_236_ESBL+_MBL+ (MIC of 20.25 μg/mL) and rN2 
against MRSA_ATCC_43300 (MIC of 32 μg/mL).

On the other hand, Arenicins were produced on average at lower 
levels than the other three AMP families (4.1 to 8.5 mg/L), although 
there were no statistically significant differences between the four 
AMP families’ yields (p > 0.05). Defensins family included three 
AMPs produced in high yields (rMdde, 70 mg/L; CeHS-1 GP, 
306 mg/L and CeHS-1, 421 mg/L), which showed an antimicrobial 
activity with MIC values higher than the ones produced by the 
Arenicins, but lower than Hepcidins and ALFs. In particular, rMdde 
showed a MIC of 23 μg/mL against E. coli and S. aureus, CeHS-1 GP 
displayed a MIC of 64 μg/mL against E. coli ATCC 25922, 
P. aeruginosa 27853 and S. aureus ATCC 25293 and CeHS-1 
exhibited a MIC of 64 μg/mL against S. aureus ATCC 25293 and a 
MIC of 128 μg/mL against E. coli ATCC 25922.

FIGURE 3

A classification of the AMP families described in the selected literature is represented, which serves as a demonstration of the diversity and complexity 
of these molecules. AMP families are ranked based on the total number of MIC values reported. The corresponding genus of the bacteria tested is also 
represented and the alluvial chart shows the connection between AMP families and microbe genus. This general categorization was used to select the 
most represented AMP families and targeted microorganisms.
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4 Discussion

Orthopedic infections are highlighted as a major concern, 
emphasizing the need for effective treatment. The antibiotic resistance 
as a “silent pandemic” draws attention to the gravity of the issue in the 
context of orthopedic infections (Mendelson et al., 2022). This paves 
the way for the main focus of the study, which is the role of AMPs in 
addressing these challenges.

The findings of this comprehensive review shed light on the 
antimicrobial potential and production yield of recombinant AMPs, 

offering valuable insights into their applicability as potential therapeutic 
agents against common bacterial pathogens involved in clinical infections. 
To date, this is the first systematic literature review focusing specifically 
on recombinantly produced AMPs. The primary goal of this study was to 
identify which AMP families exhibited the highest antimicrobial efficacy 
and production yields after purification, and the results provide a nuanced 
understanding of the relationships between these factors.

The PEO model allowed for the systematic extraction of data 
from a wide array of studies, ensuring a comprehensive 
assessment of recombinant AMPs performance. The stringent 
exclusion criteria, which eliminated studies reporting only one of 

FIGURE 4

The alluvial chart visually describes the Hepcidins family by tracing their journey from production yield to their microbial targets and effectiveness. 
Starting from the left, the chart records the yield of each Hepcidin in mg/L, illustrating the diversity in production efficiency among the family 
members. This flows into the central section, which outlines the various bacterial genera targeted by these peptides, highlighting the broad spectrum 
of their antimicrobial activity. On the right, the minimum inhibitory concentration (MIC) range in μg/mL is reported, describing the antimicrobial activity 
of Hepcidins against these bacterial targets. A unique color is assigned to each AMP, thereby enabling readers to follow the story of each peptide 
across the chart. This figure provides a comprehensive overview of the Hepcidins’ antimicrobial capabilities and emphasizes the potential of these 
peptides in developing new antibacterial therapies.
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the two essential data sets (yield and MIC), those utilizing 
non-purified AMPs, and studies deviating from the CLSI 
guidelines for MIC assessment, enhanced the overall reliability of 
the analyzed data.

The 34 selected studies collectively described 46 distinct 
recombinant AMPs, which were classified into 18 unique AMP 
families, and targeting 23 bacterial genera. Among AMPs, Defensins 
and Hepcidins stood out as the most abundant families, collectively 
contributing 18 different AMPs.

The use of the ToxRTool to assess the risk of bias in the 
included studies provided an additional layer of scrutiny. While 
only five studies achieved a “reliable without restrictions” 
classification, the majority of the studies were categorized as 
“reliable with restrictions” due to gaps in reporting, particularly 
concerning positive and negative controls in MIC protocols. It 
would be a good practice, however, to always mention the use of 
positive and negative controls in all experiments, even when 
referring to a previous publication in the Methods section. Other 
issues raised in the risk of bias analysis regarding heterogeneity 
in the inoculum size, incubation temperature and time. It is well 
known that changes in the inoculum size determine variations in 

the MICs (Loffredo et al., 2021), and it would be good practice to 
always follow the CLSI guidelines regarding time and temperature 
of incubation, if the bacterial species used in the experiment are 
listed in the guidelines, to keep the protocol as much standardized 
as possible, for the sake of providing data comparable with the 
rest of literature. Unfortunately, a poor reporting prevents the 
interpretation of many studies even if they are well conducted. 
We call for a better planning of protocols, because all necessary 
information for implementation needs to be reported.

The analysis of AMP families’ antimicrobial activity and 
production yields against various target bacteria elucidated several key 
insights. The alluvial charts demonstrated the relationship between 
AMP families and bacterial targets is an effective way to visualize 
complex data and highlighted the most frequently tested AMP 
families. Hepcidins, Arenicins, Defensins, and Anti-lipopolysaccharide 
factors (ALFs) result as the most prominent candidates. This 
information is valuable for researchers and clinicians seeking to 
prioritize AMP families for further investigation or 
therapeutic development.

The observed heterogeneity in yield (as illustrated in Figures 4–7) 
emphasizes the need for optimization in the expression and purification 

FIGURE 5

The alluvial chart visually describes the Arenicins family by tracing their journey from production yield through to their microbial targets and 
effectiveness. Starting from the left, the chart records the yield of each Arenicin in mg/L, illustrating the diversity in production efficiency among the 
family members. This flows into the central section, which outlines the various bacterial genera targeted by these peptides, highlighting the broad 
spectrum of their antimicrobial activity. On the right, the minimum inhibitory concentration (MIC) range in μg/mL is reported, describing the 
antimicrobial activity of Arenicins against these bacterial targets. A unique color is assessed to each AMP, thereby enabling readers to follow the story of 
each peptide across the chart. This figure provides a comprehensive overview of the Arenicins’ antimicrobial capabilities and emphasizes the potential 
of these peptides in developing new antibacterial therapies.
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FIGURE 6

The alluvial chart visually describes the Defensins family by tracing their journey from production yield through to their microbial targets and 
effectiveness. Starting from the left, the chart records the yield of each Defensin in mg/L, illustrating the diversity in production efficiency among the 
family members. This flows into the central section, which outlines the various bacterial genera targeted by these peptides, highlighting the broad 
spectrum of their antimicrobial activity. On the right, the minimum inhibitory concentration (MIC) range in μg/mL is reported, describing the 
antimicrobial activity of Defensins against these bacterial targets. A unique color is assessed to each AMP, thereby enabling readers to follow the story 
of each peptide across the chart. This figure provides a comprehensive overview of the Defensins’ antimicrobial capabilities and emphasizes the 
potential of these peptides in developing new antibacterial therapies.

FIGURE 7

The alluvial chart visually describes the ALFs family by tracing their journey from production yield through to their microbial targets and effectiveness. 
Starting from the left, the chart records the yield of each ALF in mg/L, illustrating the diversity in production efficiency among the family members. This 
flows into the central section, which outlines the various bacterial genera targeted by these peptides, highlighting the broad spectrum of their antimicrobial 
activity. On the right, the minimum inhibitory concentration (MIC) range in μg/mL is reported, describing the antimicrobial activity of ALFs against these 
bacterial targets. A unique color is assessed to each AMP, thereby enabling readers to follow the story of each peptide across the chart. This figure provides 
a comprehensive overview of the ALFs’ antimicrobial capabilities and emphasizes the potential of these peptides in developing new antibacterial therapies.
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processes. The variability in peptides production across different studies 
and AMP families, spanning from 0.5 mg/L to 2,700 mg/L, highlighted 
that, despite the multiple approaches used for AMPs production, no 
standardized methods exist today to reliably provide the high required 
yield. Further optimization of production methods to ensure cost-
effectiveness for clinical applications and commercialization, is required. 
While certain AMPs within a family may exhibit promising 
antimicrobial activity, achieving consistent high yields remains a 
challenge. Cell free synthesis could represent a promising strategy in 
AMPs production, not requiring plasmids and thus avoiding limitations 
in molecular design; moreover, recent advancements in the protein 
purification methods from these cell free system platforms, could 

provide scalable protein synthesis (Gregorio et al., 2019; Khambhati 
et al., 2019). Noteworthy, an improvement in activity and stability of 
AMPs, could allow lower AMPs concentrations and dosage during 
treatment: the conjugation of AMPs with other peptides or proteins 
could improve the resistance to pH and temperature, and the 
antimicrobial activity (Toyohara et al., 2019), thus making cheaper the 
AMPs utilization. Protein engineering studies based on computational 
methods are being employed for the rational design of new AMPs with 
improved activity and easier production. Moreover, advances in 
machine learning methods allowed to screen and design candidate 
AMPs with different 3D-structure and function for experimental 
evaluation (Hiss et al., 2010; Boone et al., 2021). In a similar way, genetic 

FIGURE 8

In orthopedic infections, three bacteria genera are the most represented (Staphylococcus, Pseudomonas and Escherichia). The alluvial chart illustrates 
the efficacy of various AMP families (on the left side: Arenicins, Defensins, ALFs, and Hepcidins) in inhibiting these bacteria genera. On the right side of 
the chart, minimum inhibitory concentration (MIC) values are categorized as either greater than (>) or less than or equal to (≤) the 75th percentile, with 
the following thresholds: Arenicins at 10  μg/mL, Defensins at 65.6  μg/mL, ALFs at 318  μg/mL, and Hepcidins at 436.5  μg/mL. The legend at the bottom 
shows each AMP considered in the chart.
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algorithms and predictive methods can be  used to predict the 
antimicrobial activity (Kliger, 2010; Fjell et al., 2011). In silico tools allow 
to assign to each peptide an antimicrobial score linearly correlated to 
the antimicrobial potency of the AMP on the basis of their amino acid 
composition. In detail, the value is correlated to the product CmHnL, 
where C is the net charge of the AMP, H is a measure of its 
hydrophobicity, L its length, and the exponents “m” and “n” are two 
strain dependent variables which determine the relative contribution of 
charge and hydrophobicity (Pane et al., 2017). In fact, even if a net 
negative charge is present on both sides of the bacterial membrane, each 
strain shows peculiar lipid composition: for example negatively charged 
phospholipids such as cardiolipin and phosphatidylglycerol can vary 
from 20% in E. coli to almost 100% in Staphylococcal strains (Epand and 
Epand, 2011). Accordingly, it is unlikely that a single AMP could 
interact in a similar way with such different bilayers. As a result, the 
combination effects of AMPs could improve the efficacy of the 
treatment, thus allowing to save costs of production and, at the same 
time, reduce the side effects. Different studies on AMPs interaction 
suggest synergism as a common phenomenon mainly due to the 
heterogeneity in the targeted bacteria genus, as illustrated in Figures 4–7 
(Yu et al., 2016). The emphasis on MIC values and the categorization of 
AMP families based on antimicrobial activity provide insights to 
identify the most effective AMPs against specific bacteria. Similarly to 
the yield, the wide range of reported MIC values (from 0.125 μg/mL to 
>1,152 μg/mL) reflects the diversity in AMPs efficacy. In general, despite 
lower yields, the high efficacy of Arenicins, as indicated by their lower 
MIC values, is an important finding, suggesting their potential as 
effective antimicrobial agents. On the other hand, Defensins were 
produced with higher yields, and their MIC values were slightly higher 
than the Arenicins, making them still good antimicrobial candidates.

The specific focus on pathogens commonly involved in 
orthopedic infections is highly relevant, given the increasing 
concern about antibiotic-resistant bacteria in such settings. The 
most prevalent efficacy of Arenicins against E. coli, Pseudomonas, 
and Staphylococcus aureus is particularly noteworthy, aligning with 
the need for more effective treatments in clinical settings. Defensins 
also were particularly relevant in this study. In their case, higher 
yields were observed, with MIC values, against orthopedic 
infections relevant pathogens, slightly higher than the Arenicins. 
Based on the data collected and explored in this review, both 
Arenicins and Defensins would require more attention in future 
studies. Staphylococcus aureus, E. coli and Pseudomonas, the most 
common pathogens found in orthopedic infections, were inhibited 
by low concentrations of both AMP families, however, no data were 
found in the selected papers about S. epidermidis, another important 
Staphylococcal species involved in orthopedic infections. The 
biofilm formed by S. epidermidis is a subtle threat because it can 
contribute to the development of antimicrobial resistance in the 
infected areas, affecting the quality of life in patients, with lower 
possibilities of a positive outcome (Hischebeth et  al., 2019; 
Bottagisio et al., 2023). It is important, for such reasons, to assess 
the efficacy of these AMPs also against additional microorganisms 
that are responsible of orthopedic infections. Furthermore, the 
production of Arenicins needs optimization, to increase their yields 
without compromising their antimicrobial potential. For both AMP 
families, more data are required to confirm their antimicrobial 
potential, also against different clinical isolates. Eventually, their 
stability, cytotoxicity and hemolytic activity need to be assessed, 

with standardized protocols, to create a larger dataset that proves 
their usability in the further steps, such as in vivo models.

In summary, this systematic review provides a comprehensive 
assessment of recombinant AMPs antimicrobial potential and 
production yields, offering a valuable resource for researchers and 
clinicians engaged in coping antibiotic-resistant infections. While 
challenges and variations exist, the study highlights the promise of 
AMPs as a potential avenue for addressing the urgent issue of 
antimicrobial resistance in clinical settings. Further research and 
development in this field hold the potential to unlock novel 
treatments for a wide range of infections, including those related to 
orthopedic procedures.
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