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Introduction: The colonization of patients by carbapenemase-producing 
Enterobacterales (CPE) has been associated with heightened mortality, 
especially in vulnerable individuals within intensive care units (ICUs). Our study 
aimed to comprehensively assess CPE prevalence among ICU patients across 
the Mediterranean region pre-COVID-19, conducting a multicenter prevalence 
study in the first quarter of 2019.

Methods: We collected clinical data and rectal or fecal samples from 256 ICU 
patients for CPE testing. Additionally, we performed whole-genome sequencing 
on 40 representative CPE strains to document their molecular characteristics.

Results: Among the 256 patients, CPE was detected in 73 samples (28.5%), with 
prevalence varying from 3.3 to 69.0% across participating centers. We observed 
13 colistin-resistant CPE strains, affecting three ICUs. Genetic analysis 
revealed highly diverse E. coli and K. pneumoniae strains, predominantly from 
international high-risk clones. Notably, blaOXA-48 and blaNDM-1 were the most 
prevalent carbapenemase genes. Molecular typing uncovered potential patient 
clusters in six centers. Significantly, longer hospital stays were associated with 
increased CPE carriage (p  <  0.001). Nine centers across Morocco, Tunisia, Egypt, 
and Lebanon voluntarily participated.

Discussion: Our study provides CPE prevalence in Mediterranean ICUs and 
reaffirms established CPE presence in this setting but also provides updates on 
the molecular diversity of CPE strains. These findings highlight the imperative 
of reinforcing infection control measures in the participating ICUs to curtail 
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escalated mortality rates, and of strictly applying isolation measures around 
patients originating from the Mediterranean region when transferred to other 
healthcare institutions.

KEYWORDS

intensive care unit, carriage, carbapenem-resistant Enterobacterales, colistin-resistant 
Enterobacterales, Morocco, Tunisia, Lebanon, Egypt

1 Introduction

The colonization of patients with carbapenemase-producing 
Enterobacterales (CPE) has been associated with increased mortality 
among vulnerable individuals, particularly those admitted to intensive 
care units (ICUs) (Dautzenberg et al., 2015; Tischendorf et al., 2016). 
Preventing the spread of these multidrug-resistant bacteria in ICUs 
involves a multifaceted approach, including the promotion and strict 
adherence to hand hygiene rules, proper disinfection of reusable 
medical equipment, implementation of strict cleaning and disinfection 
protocols to reduce environmental contamination, the appropriate use 
of broad-spectrum antibiotics, education and training of healthcare 
professionals, implementation of surveillance to quickly detect 
CPE-associated nosocomial infections, and the quick identification 
and isolation of CPE carriers to prevent transmission to other patients. 
Complementing the survey of CPE-associated infections and aiding 
in the implementation of preventive measures to curb the spread of 
CPE within ICUs, the epidemiological monitoring of patients carrying 
CPE is a key-tool to document the epidemiology of these bacteria in 
ICUs. The ongoing epidemiological data facilitates early detection of 
potential outbreaks, and assists in the better selection of probabilistic 
treatments to manage locally acquired infections.

Comprehensive epidemiological data on patient CPE-colonization 
within ICUs in Mediterranean countries are rather limited, in 
particular prevalence studies. Prior studies predominantly focused on 
outbreaks associated with K. pneumoniae carrying the blaOXA-48 gene, 
notably the 2011 Casablanca study (Barguigua et al., 2015), and those 
in 2014 involving patients from Algeria and Tunisia (Cuzon et al., 
2015; Mathlouthi et al., 2016). Another significant source of clonal 
dissemination has been identified in K. pneumoniae carrying the 
blaNDM-1 gene, previously documented in Moroccan ICUs in 2011 
(Barguigua et al., 2015) and in ICUs in Cairo in 2013 and 2016 (Wassef 
et  al., 2016; Abdulall et  al., 2018). A study conducted in 2016 by 
Hammami and colleagues highlighted that 34.9% of ICU patients at 
the University Hospital of Tunis harbored CPE with the blaOXA-48 and/
or blaNDM-1 genes in their intestinal flora (Hammami et al., 2017). 
Additionally, to the best of our knowledge, the colonization of ICU 
patients in Mediterranean countries by colistin-resistant CPE has not 
been extensively reported, except for an outbreak of colistin-resistant 
blaOXA48 K. pneumoniae in 2015 among ICU patients at the University 
Hospital of Mahdia in Tunisia (Mansour et al., 2017). In this instance, 
the resistance to colistin was not attributed to the presence of mcr 
genes within the plasmids carried by this K. pneumoniae.

Our study aimed to assess the prevalence of CPE carriage among 
ICU patients in hospitals across diverse Mediterranean countries. This 
involved a multicenter prevalence study conducted just before the 
onset of the COVID-19 pandemic, in the first quarter of 2019 across 

a group of nine ICUs. Carbapenem-resistant strains, isolated from 
rectal or fecal samples, underwent molecular analyses to determine 
their susceptibility to antibiotics. Additionally, whole-genome 
sequencing was performed on 40 representative CPE strains to 
document the molecular characteristics of the predominant clones. 
Examination of the clinical data was also undertaken to investigate the 
risk factors associated with the intestinal carriage of CPE among 
patients in the participating ICUs.

2 Materials and methods

2.1 Study design

A one-day prevalence study was conducted from January 1, 2019, 
to March 30, 2019, spanning nine centers in hospitals located in 
Morocco (2 centers), Tunisia (2), Egypt (3), and Lebanon (2). These 
centers—labeled C1 to C9—participated voluntarily, aiming to enroll 
30 consecutive ICU patients in each. Prior consent from patients or 
their relatives was sought to access medical records and collect fecal 
or rectal samples for testing CPE.

2.2 Data collection

The data were collected by the attending physicians. Collected 
data encompassed demographic and clinical information, including 
physical disabilities, significant underlying health conditions, and 
established risk factors associated with CPE carriage. These risk 
factors covered the duration of pre-screening hospitalization, prior 
hospitalization history, and recent antibiotic usage (on the study day 
and within the preceding 6 months).

3 Microbiological study

3.1 Clinical samples

Fecal or rectal swabs were collected using swabs with Amies-type 
preservation medium (Copan Italia SPA, Italy).

3.2 CPE detection and characterization

Clinical swabs were promptly screened for third-generation 
cephalosporin- and carbapenem- resistant Enterobacterales using 
CHROMagar ESBL and mSuperCARBA chromogenic agar plates 
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(CHROMagar, Paris, France) at each participating center. After 
incubation of the chromogenic agar plates at 37°C for 24 h under 
aerobic conditions, each colony morphotype was taken into 
consideration. All Enterobacterales strains were then transferred to 
the central laboratory in Tours, France, following inoculation on a 
swab with Amies-type preservation medium. In Tours, 
we controlled the identification of each colony morphotype using 
Matrix-assisted laser desorption-ionization-time–of-flight mass 
spectrometry (microflex LT MALDI-TOF, MBT Compass software 
version 4.2.100.19; Bruker Daltonics, France). Subsequently, all 
Enterobacterales strains underwent antibiotic sensitivity testing 
using disc diffusion method (EUCAST, 2019), and determination 
of Ertapenem Minimum Inhibitory Concentration (MIC) (E-test 
strip; bioMérieux, Marcy-l’Étoile, France) and colistin MIC using a 
broth microdilution method as advised by EUCAST for 
Enterobacterales (EUCAST, 2019) (colistin UMIC plates; Bruker 
Daltonics, France). Carbapenemase production was investigated 
when Ertapenem MIC >0.5 mg/L using the immunochromatographic 
test RESIST-5 O.K.N.V.I (Coris BioConcept, Belgium) and 
confirmed using a PCR test for molecular detection of the genes 
encoding for the five carbapenemases of primary public health 
concern (blaOXA-48, blaNDM, blaKPC, blaVIM and blaIMP genes) (Doyle 
et al., 2012).

3.3 Strain selection and sequencing

Among all CPE strains, 40 were thoughtfully chosen after 
applying the RAPD technique for epidemiological typing, using 
three primers as previously described (van der Mee-Marquet et al., 
2010). To avoid redundancy, strains with similar RAPD profiles from 
the same center were excluded, retaining only one for sequencing. 
The chosen strains underwent whole-genome sequencing (WGS) via 
next-generation sequencers. Genomic DNA, purified using the 
DNeasy kit (Qiagen), was sequenced on the Illumina HiSeq, 
generating 100-base pairs (bp) paired-end reads with barcoding 
using the Nextera XT kit. Data Processing: Read quality assessment 
was performed using Trimmomatic v0.36, with specified parameters 
for paired-end reads. Genome assembly was conducted using the 
SPADES v3.12.0 assembler. Assembled genomes and plasmids1 were 
annotated using the RAST server.2 Multilocus sequence typing 
analysis (in silico) developed by Achtamn et al. 3was conducted using 
annotated genomes and submitted to the Center for Genomic 
Epidemiology database.4 The phylogenetic relationships of all 
isolates were investigated through genomic single-nucleotide 
polymorphism (SNP)–based analysis (CSIPhylogeny). Additional 
tools, available at the Center for Genomic Epidemiology,5 were used 
for detecting antibiotic resistance,6 mobile genetic elements, 7and 

1 Identified using mlplasmid available at https://sarredondo.shinyapps.io/

mlplasmids/.

2 https://rast.nmpdr.org/rast.cgi

3 http://web.mpiib-berlin.mpg.de

4 Available at: https://cge.food.dtu.dk/services/MLST/.

5 https://www.genomicepidemiology.org/

6 https://cge.food.dtu.dk/services/ResFinder/

7 https://cge.food.dtu.dk/services/MobileElementFinder/

virulence factors.8 The investigation of phylogenetic relationships 
among isolates involved genomic single-nucleotide polymorphism 
(SNP)–based analysis (CSIPhylogeny).

3.4 Statistical analysis

Statistical analysis was performed using univariable methods, 
employing chi2 and Fisher’s exact test as appropriate. All tests were 
2-tailed, and a significant level of p < 0.05 was used.

3.5 Confidentiality and ethical aspects

The study was conducted in collaboration with hospital directors, 
attending physicians, and the infection control pilot team in Tours, 
France, in adherence to French Healthcare recommendations for 
infection prevention. Ethical approvals were obtained at eight hospital 
centers, ensuring anonymization of patient and sample data prior to 
analysis. Data from center 9 were not included in the study.

4 Results

A total of 256 ICU patients were included in the study. The clinical 
data were available for 226 patients (Table 1). For all but one of the 
participating centers, the number of patients per center was 
approximately 30. Due to patient refusals to participate, center C8 
enrolled only 16 patients. Out of the 256 patients, 100 were women 
(44.0%), and 126 were men (46.0%), with ages ranging from 6 days to 
102 years (mean age: 57 years). Various medical conditions were 
observed among the patients, with 15.5% having experienced trauma, 
31.4% having diabetes mellitus, and 26.1% having malignancies. 
Among the patient population, 44.5% had recent hospitalization 
history, and 48.0% had received antibiotic treatment in the last 
6 months. The most common antibiotics used included third-
generation cephalosporins (28.1%) and carbapenems (10.1%). On the 
day of the study, 74.2% of the patients were under antibiotic treatment, 
which primarily consisted of third-generation cephalosporins (37.2%), 
carbapenems (20.4%), amoxicillin-clavulanic acid (13.3%), or 
fluoroquinolones (7.5%).

4.1 Detection of the CPE strains

A total of 110 strains of carbapenem-resistant Enterobacterales 
were cultured on SuperCarba plates of which 103 (93.6%) were 
confirmed as CPE strains. The remaining seven strains that did not 
produce carbapenemase were obtained from four different centers, 
consisting of two Proteus mirabilis strains, one Morganella morgannii, 
one K. pneumoniae, and three E. coli.

Out of the 103 CPE strains, 61 were K. pneumoniae (59.2%), 
while there were two K. aerogenes, 31 E. coli (30.1%), seven 
C. freundii, and two E. cloacae (Table 2). Among the 31 E. coli strains, 

8 https://cge.food.dtu.dk/services/VirulenceFinder/
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20 were resistant to ciprofloxacin (64.5%), 21 to trimethoprim-
sulfamethoxazole (67.7%), 12 to gentamicin (38.7%), and 15 to 
tobramycin (48.4%). Two strains were resistant to all tested 
aminoglycosides and fluoroquinolones (6.4%) but remained 
susceptible to fosfomycin, tigecycline, and colistin. Multi-resistance 

to antibiotics was more prevalent among the 61  K. pneumoniae 
strains. Specifically, 59 were resistant to ciprofloxacin (93.8%), 56 to 
tobramycin (90.3%), 50 to fosfomycin (83.3%), 45 to gentamicin 
(75.0%), and 44 to trimethoprim-sulfamethoxazole (73.3%). Twenty-
seven strains were resistant to all tested aminoglycosides and 

TABLE 1 Population characteristics according to centers and patient carriage status.

Number of patients according to

Centers Carriage status

C1 C2 C3 C4 C5 C6 C7 C8 C9 Carriers Non 
carriers

All 
patients

Total number of patients 29 31 28 32 29 31 30 16 30 73 183 256

Clinical data

Age (years) <1 4 8 21 1 18 16 34

1–15 4 4 6 1 6 9 15

16–65 7 19 16 19 1 20 14 5 33 68 101

66–85 20 4 4 8 1 7 14 8 14 52 66

>85 2 1 2 3 5

nk 3 2 30 9 26 35

Sex Females 11 15 8 12 14 16 17 7 nk 36 64 100

Males 18 16 20 20 15 15 13 9 nk 37 89 126

Duration of 

hopitalization 

before screening 

(days)

<2 5 3 5 6 26 17 15 2 26 53 79

2–3 13 5 5 5 2 4 10 2 7 39 46

4–7 5 7 7 8 1 2 4 3 8 29 37

>7 5 16 11 13 7 1 9 31 31 62

nk 1 1 30 10 22 32

Comorbidities 

before screening

Trauma 5 8 7 9 1 3 2 12 23 35

Medical 6 15 16 15 29 4 27 13 43 82 125

Surgical 23 16 12 17 27 3 3 30 71 101

Immunodepression 1 2 5 23 6 5 1 22 21 43

Diabetes 10 9 7 11 2 8 19 5 14 57 71

Cancer 4 3 2 7 4 2 4 18 22

Hemopathy 1 1 4 1 1 6 7

Solid tumor 6 4 2 4 11 1 2 8 22 30

Antibiotherapy since admission 15 27 17 30 5 30 30 13 47 119 167

3GC1 11 16 5 7 30 14 1 22 62 84

AClav2 1 2 5 16 6 6 24 30

carbapenem 1 14 3 8 3 9 8 16 30 46

vancomycin 1

fluoroquinolone 1 9 5 1 1 3 14 17

Antibiotherapy since 6 months** 4 3 3 6 3 30 26 6 22 59 81

3GC1 2 3 1 2 22 12 9 33 42

AClav2 1 1 1 5 2 3 7 10

carbapenem 1 1 2 10 1 3 12 15

vancomycin 0 0 0

fluoroquinolone 1 2 3 1 0 7 7

Hospitalization 

since 6 months

15 14 4 6 2 26 24 10 26 75 101

13GC third-generation cephalosporin, 2AClav amoxicillin-clavulanic acid; *C CPE carriers; **out of neonates.
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fluoroquinolones (43.5%) but remained susceptible to tigecycline 
(100.0%) and colistin (81.4%). The detected carbapenemase genes 
included blaOXA-48 (44.7%), blaOXA-181 (6.8%), blaOXA-244 (4.8%), blaNDM-1 
(19.4%), blaNDM-5 (12.6%), blaNDM-7 (2.9%), and blaNDM-4 (1.0%). Ten 

out of the 103 CPE strains (9.7%) co-carried both blaOXA-48 and blaNDM 
carbapenemase genes (Table  2). The blaOXA-244 gene was found to 
be associated with E. coli (p = 0.002), and the blaNDM-1 gene showed an 
association with K. pneumoniae (p = 0.011).

TABLE 2 Characteristics of the 103 CPE strains.

Carbapenemase genes and colistin-resistance according to species and centers All CPE

C1 C2 C3 C4 C5 C6 C7 C8 C9

All CPE 6 8 7 12 26 28 1 4 11 103

blaOXA-48 6 3 3 2 9 15 1 2 4 45

blaOXA-181 1 4 1 1 7

blaOXA-244 5 5

blaNDM-1 4 4 6 4 1 19

blaNDM-4 1 1

blaNDM-5 3 7 1 2 13

blaNDM-7 1 1 1 3

blaOXA-48 NDM-5 6 1 1 1 9

blaOXA-48 NDM-1 1 1

Colistin resistance (mcr1) 2 (0) 8 (0) 3 (3) 13 (3)

K. pneumoniae 4 3 7 11 16 11 1 8 61

blaOXA-48 4 1 3 1 6 6 1 4 26

blaOXA-181 4 4

blaNDM-1 2 4 6 4 1 17

blaNDM-4 1 1

blaNDM-5 2 1 1 4

blaOXA-48 NDM-5 6 1 1 8

blaOXA-48 NDM-1 1 1

Colistin resistance (mcr1) 2 (0) 8 (0) 10 (0)

E. coli 5 1 10 10 3 2 31

blaOXA-48 2 1 3 4 2 12

blaOXA-181 1 1 1 3

blaOXA-244 5 5

blaNDM-1 2 2

blaNDM-5 1 4 1 1 7

blaNDM-7 1 1

blaOXA-48 NDM-5 1 1

Colistin resistance (mcr1) 3 (3) 3 (3)

Other species

K. aerogenes 1 1 2

blaNDM-7 1 1 2

Colistin resistance 0

E. cloacae 2 2

blaOXA-48 2 2

Colistin resistance 0

blaOXA-48 5 5

blaNDM-5 2 2

Colistin resistance 0

https://doi.org/10.3389/fmicb.2024.1370553
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4.2 Prevalence of CPE strains

CPE strains were detected in 73 out of the 256 clinical samples, 
accounting for 28.5% of the total (Supplementary Table  1). The 
number of CPE strains varied among carriers, with the majority of 
carriers exhibiting a single CPE strain (50 cases, 68.5%). The 
prevalence of CPE carriage ranged from 3.3 to 69.0% across the 
participating centers (Figure 1).

CPE carriers experienced a prolonged duration of hospitalization 
before CPE screening. Specifically, 42.5% of CPE carriers had a 
hospitalization period exceeding 7 days, in contrast to 16.5% of 
non-carriers (p < 0.001). However, antibiotic therapy or hospitalization, 
both prevalent in the studied population (31.6 and 39.4%, respectively), 
did not show significant differences based on CPE carriage status.

4.3 Detection of colistin-resistant CPE 
strains

Among the 110 Enterobacterales strains cultured on SuperCarba 
plates, 14 showed resistance to colistin, comprising four E. coli and ten 
K. pneumoniae. These 14 strains consisted of 13 CPE strains and one 
ESBL-producing E. coli. Notably, one individual from center C5 was 
found to carry two of these strains. This resulted in a colistin-resistant 
CPE carriage rate of 4.7%, affecting three of the eight ICUs (centers 
C3, C5, and C6). Among the 14 colistin-resistant strains identified, the 
four E. coli strains carried the mcr1 gene (28.6%)—three of which were 
CPE strains, alongside the ESBL-producing strain (Table 2). The three 
CPE strains carrying mcr1 were isolated from patients in center C6, 
co-harboring blaOXA-48, and remained susceptible to amikacin, 
fosfomycin, and tigecycline. Additionally, the ten colistin-resistant 
K. pneumoniae strains were isolated from eight patients in center C5 
and two in center C3. These strains predominantly carried blaOXA-48 or 
blaNDM-5 and exhibited susceptibility solely to tigecycline (100.0%) and 
amikacin (30.0%).

4.4 Strain selection

Epidemiological typing of all strains was performed to select 
meticulously a representative set of CPE strains. RAPD typing 
revealed 15 clusters of strains, exhibiting similar RAPD-types in six 
of the nine centers (Supplementary Table 2). The number of clusters 
varied from zero (centers C2, C7, and C8) to six (center C6), with a 
median of one cluster. The clusters consisted of two to six strains 
each, predominantly represented by K. pneumoniae strains. There 
were ten K. pneumoniae clusters, encompassing strains belonging to 
eight different sequence-types (STs). Notably, the three E. coli strains 
carrying mcr1, isolated from patients in center C6, exhibited identical 
RAPD-types. There was no discernible correlation between a high 
prevalence of CPE carriers and the number of clusters. For instance, 
in center C6, where 35.5% of the patients were identified as CPE 
carriers, six clusters of strains with similar RAPD-types were 
identified. In contrast, in center C5, which had the highest rate of 
CPE carriage (69.0% of ICU patients), RAPD-typing revealed only 
two strains sharing the same RAPD-types among 26 CPE strains.

4.5 Whole-genome sequencing

WGS was performed on a set of 40 CPE strains, along with the 
ESBL-producing E. coli carrying mcr1. The phylogenetic relationships 
among the 41 studied strains are depicted in Figure 2. Genetic diversity 
was notably observed among the eight studied E. coli strains, 
encompassing eight distinct sequence types (STs). Of these, the three 
CPE strains carrying mcr1 belonged to ST1196, distinct from the ESBL-
producing strain carrying mcr1, which was identified as ST359. The 
29 K. pneumoniae strains exhibited slightly less diversity, comprising 15 
different sequence types (STs). The CPE strains identified in the nine 
ICUs predominantly belonged to various clones. Specifically, only four 
K. pneumoniae clones were found in more than one center: the ST101 
clone, detected in centers C4, C5, C6, and C9; the ST383 clone, identified 

FIGURE 1

Prevalence of CPE carriage and distribution of the 103 CPE strains, stratified across participating centers.
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in centers C4, C5, and C9; and the ST147 and ST231 clones, each 
detected in two centers (centers C4 and C6, and centers C3 and C7, 
respectively). The five colistin-resistant K. pneumoniae strains that 
underwent WGS were associated with STs 383, 307, and 1626. A 
detailed analysis of amino acid sequences in these strains revealed a 
663-bp sequence in the K. pneumoniae Sample_25 genome, replacing 
the mgrB gene with an insertion sequence from the IS1 family. 
Moreover, multiple mutations were identified in PmrA and PmrB 
proteins, including a common mutation (T246A) in PmrB shared 
among all isolates when compared to the colistin-susceptible 
MGH57578 isolate (Supplementary Table 3). Importantly, no mutations 
were found in PhoP and PhoQ proteins, and no significant hits to 
MCR-1 to MCR-10 were detected in the genomes of these colistin-
resistant strains.

The resistome study confirmed that most isolates carried genes 
associated with resistance to fluoroquinolones (92.5%), 
aminoglycosides (97.5%), sulfonamides (90.0%), macrolides (50.0%), 
tetracyclines (70.0%), phenicoles (72.5%), and trimethoprim (90.0%) 
(Supplementary Tables 4, 5). In addition to the numerous genes 
associated with antimicrobials used in the human clinics, WGS 
analysis revealed the frequent carriage of genes associated with 
multidrug resistance, as well as resistance to bicyclomycin — an 
antimicrobial agent used in livestock environments —, to the 
antimalarial agent Fosmidomycin, and to numerous heavy metals 
(Supplementary Table 6).

The virulome study revealed that the majority of E. coli and 
K. pneumoniae CPE strains carried genes encoding adhesins, 
hemolysins, and siderophores (Supplementary Table 7). Additionnaly, 
E. coli strains exhibited the coiled surface structure curlin, which is 
involved in inert surface colonization and biofilm formation (csgA), 
along with numerous distinct toxin-antitoxin systems that are well-
known for genetic element maintenance, virulence, stress resistance 
and phage inhibition (Qiu et al., 2022).

The plasmid study identified 219 plasmids within the genomes 
of the 40 CPE strains. The number of plasmid sequences per 
bacterial genome ranged from zero to 10, with a median value of six. 
Plasmid sequences were less prevalent among E. coli isolates, 
Citrobacter and E. cloacae (median value of one plasmid per genome) 
compared to the K. pneumoniae species (median value of seven 
plasmids per genome) (p = 0.005). Genomic comparison of the 
plasmidic sequences revealed eight plasmid groups (1–8), with 
plasmids belonging to groups 4, 6 and 7 carried by 65.5, 65.5 and 
75.9% of the K. pneumoniae strains, respectively 
(Supplementary Figure 1).

5 Discussion

Our comprehensive multicenter point-prevalence survey 
investigated CPE carriage among 226 ICU patients in nine hospitals 

FIGURE 2

Genetic diversity of the 41 strains studied.
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across Morocco, Tunisia, Egypt, and Lebanon, conducted 
pre-COVID-19 pandemic. To our knowledge, this study is unique in 
providing comprehensive prevalence data on patient colonization in 
Mediterranean ICUs, distinguishing it as the most recent investigation 
of its kind.

Firstly, the study unveiled a noteworthy prevalence of CPE strains 
in eight of the participating ICU centers, demonstrating CPE carriage 
rates ranging from 16.1 to 69.0% among ICU patients. Additionally, 
we observed intestinal colonization by colistin-resistant CPE strains 
in patients from centers 3, 5, and 6. The heightened prevalence of CPE 
colonization across nearly all ICUs, with the exception of one, 
increases the risk of subsequent infections in these vulnerable patients 
harboring highly resistant isolates. This poses inherent challenges in 
treatment. While it’s highly probable that the prevalence of CPE and 
colistin-resistant CPE strains has increased during the pandemic 
(Pascale et al., 2021), our findings are particularly concerning due to 
the high mortality associated with the identified clones within 
intensive care settings. Strengthening or set up infection control 
measures in these ICUs is essential to mitigate the heightened 
mortality risk among patients. These findings also emphasize the 
importance of strictly implementing isolation measures for patients 
originating from the Mediterranean region when transferred to other 
healthcare institutions.

Secondly, molecular typing of the identified CPE strains unveiled 
distinct scenarios across centers. In the two ICUs with more than one 
CPE carrier and no identified clusters (centers C2 and C8), the 
predominant CPE strains were mostly E. coli strains (8/12; 66.6%). 
WGS analysis revealed carbapenemase-producing E. coli belonging to 
three international high-risk clones [ST410 (Roer et al., 2018), ST167 
(Roer et al., 2018; Garcia-Fernandez et al., 2020), and ST69 (Shawa 
et  al., 2022)], known for causing life-threatening infections, 
particularly affecting critically ill patients with severe underlying 
diseases and comorbidities, and five globally recognized clones, 
previously reported in livestock and food products (Stolle et al., 2013; 
Aizawa et al., 2014; Guo et al., 2015; Wang et al., 2018; Vasconcelos 
et  al., 2020). It appears plausible that the acquisition of these 
genetically diverse and unrelated E. coli strains occurred in the 
community setting before patients’ hospitalization. In contrast, in the 
six remaining centers where clusters were identified, CPE strains were 
predominantly K. pneumoniae strains (32/49; 65.3%). The one-day 
prevalence study did not afford an investigation into the mechanisms 
of patient acquisition of CPE strains from these clusters. Longitudinal 
data tracking CPE colonization over time would offer insights into 
trends, persistence, and factors influencing acquisition and clearance 
of CPE strains. However, the WGS analysis showed that the identified 
K. pneumoniae strains were predominantly associated with 
international high-risk clones known for their propensity to thrive in 
the ICU bedside environment and initiate outbreaks (Weterings et al., 
2015; Gordon et al., 2017; Liu et al., 2018; Naha et al., 2021; da Silva 
et al., 2022; De Koster et al., 2022; Edward et al., 2022; Shi et al., 2022). 
Thus, our data tentatively suggest nosocomial acquisition of CPE 
K. pneumoniae by patients in the ICUs where clusters were identified. 
Further evidence is needed for conclusive confirmation.

Concerning the genetic determinants responsible for carbapenem 
and colistin resistance, our study corroborates previous findings. In 
alignment with recent global epidemiology of carbapenemase genes 
(van Duin and Doi, 2017; Pitout et al., 2019), blaOXA-48 and blaNDM-1 
were the most frequently detected genes among the identified CPE 

strains. Additionally, consistent with observations in Tunisian patients, 
the studied colistin-resistant K. pneumoniae strains did not show the 
presence of mcr-1 to mcr-10 genes (Jaidane et al., 2018).

When comparing carriers and non-carriers, our study did not 
identify prior hospitalization or antibiotic treatment as significant 
risk factors for CPE colonization. The limited number of ICU 
patients and the high rate of hospitalization and antibiotic treatment 
in our sample may have influenced these results. However, our 
findings confirmed that ICU stays of 7 days or more significantly 
increased the risk of CPE colonization [1;2]. Once again, the 
identification of this risk factor reinforces the hypothesis of a major 
acquisition of CPE strains in the ICU setting during patient care, 
potentially exacerbated by the failure to identify and isolate CPE 
carriers within the participating centers

6 Conclusion

Our research conclusively establishes the presence and 
widespread distribution of CPE strains within Mediterranean 
hosipitals. Significantly, our study adds value by furnishing data on 
the prevalence of patient colonization and the genetic characteristics 
of the detected CPE strains—information notoriously challenging to 
procure. However, the study including a relatively small sample size 
of ICU patients, with variable enrollment rates across centers, the 
generalizability of the findings to broader populations may 
be limited, and the variability in enrollment rates could introduce 
biases. Prioritizing the awareness of healthcare professionals 
regarding the escalating threat of antibiotic resistance is crucial, 
particularly within ICUs. Replicating this study in additional 
Mediterranean hospitals would promote the implementation of 
preventive measures and the adjustment of empirical antibiotic 
treatments for infected ICU patients, if necessary. Finally, our 
findings highlight the importance of vigilance concerning patients 
previously hospitalized in Mediterranean facilities and undergoing 
medical repatriations, to prevent the introduction of CPE into 
downstream healthcare facilities.
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