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Endogenous trans-translation 
structure visualizes the decoding 
of the first tmRNA alanine codon
David Teran , Ying Zhang † and Andrei A. Korostelev *

RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, United States

Ribosomes stall on truncated or otherwise damaged mRNAs. Bacteria rely on 
ribosome rescue mechanisms to replenish the pool of ribosomes available 
for translation. Trans-translation, the main ribosome-rescue pathway, uses 
a circular hybrid transfer-messenger RNA (tmRNA) to restart translation and 
label the resulting peptide for degradation. Previous studies have visualized 
how tmRNA and its helper protein SmpB interact with the stalled ribosome to 
establish a new open reading frame. As tmRNA presents the first alanine codon 
via a non-canonical mRNA path in the ribosome, the incoming alanyl-tRNA 
must rearrange the tmRNA molecule to read the codon. Here, we  describe 
cryo-EM analyses of an endogenous Escherichia coli ribosome-tmRNA complex 
with tRNAAla accommodated in the A site. The flexible adenosine-rich tmRNA 
linker, which connects the mRNA-like domain with the codon, is stabilized by 
the minor groove of the canonically positioned anticodon stem of tRNAAla. This 
ribosome complex can also accommodate a tRNA near the E (exit) site, bringing 
insights into the translocation and dissociation of the tRNA that decoded the 
defective mRNA prior to tmRNA binding. Together, these structures uncover a 
key step of ribosome rescue, in which the ribosome starts translating the tmRNA 
reading frame.
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Introduction

Translation of messenger RNAs (mRNAs) into functional proteins is crucial for all living 
organisms. While the core translation mechanism is conserved across life kingdoms (Melnikov 
et al., 2012; Voorhees and Ramakrishnan, 2013; Korostelev, 2022), adaptation to different 
conditions has led to the evolution of distinct translational control strategies (Buskirk and 
Green, 2017). One challenge encountered by translating ribosomes is the truncation or other 
damage of mRNA molecules, resulting in ribosome stalling at the truncation or damage site. 
In growing E. coli, between 0.4% (Moore and Sauer, 2005) and 4% (Ito et al., 2011) of mRNAs 
are estimated to be damaged at a given time. Several strategies have evolved to “rescue” stalled 
ribosomes and replenish the pool of active ribosomes (Keiler, 2015; Korostelev, 2021; Muller 
et al., 2021; Kurita and Himeno, 2022). Trans-translation, the main strategy conserved among 
eubacteria, allows the ribosome to switch from the damaged mRNA to a different open reading 
frame, targeting the mRNA and incomplete peptide for degradation and completing 
translation on a conventional stop codon (Komine et al., 1994; Tu et al., 1995; Keiler et al., 
1996; Karzai et al., 1999; Yamamoto et al., 2003). Perturbation of trans-translation in most 
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eubacteria leads to the accumulation of stalled ribosome complexes 
and inability to recover from stress (Janssen and Hayes, 2012; 
Schopping et al., 2022).

Trans-translation is accomplished by a hybrid transfer-messenger 
RNA (tmRNA), comprising a tRNA-like domain (TLD), an mRNA-
like domain (MLD), and four pseudoknots (PK1 through PK4) that 
form a circularized structure (Figures 1A,B; Janssen and Hayes, 2012; 
Giudice and Gillet, 2013). The TLD, comprising a tRNA-like acceptor 
arm charged with alanine, associates with small protein B (SmpB), 
which functionally mimics the tRNA’s anticodon stem loop (Komine 
et al., 1994; Ushida et al., 1994; Karzai et al., 1999; Gutmann et al., 
2003; Weis et al., 2010). The MLD contains a short internal open 
reading frame, which connects with the TLD via PK1 and a single-
stranded linker (Figure 1C).

Trans-translation starts with the binding of the TLD•SmpB 
complex to the ribosomal A site followed by EF-G-catalyzed 
translocation of TLD•SmpB to the P site. These steps have been 
characterized by X-ray crystallography and cryo-EM of in vitro 
assembled tmRNA-bound ribosomes, bringing key insights into the 

recognition of the stalled ribosomes, formation of the TLD-peptide 
complex, and tmRNA rearrangements upon translocation (Weis et al., 
2010; Neubauer et al., 2012; Ramrath et al., 2012; Rae et al., 2019; 
Guyomar et al., 2021). The alanyl-TLD is delivered to the ribosome by 
EF-Tu, similarly to canonical amino-acylated tRNAs (Neubauer et al., 
2012; Miller and Buskirk, 2014). Upon accommodation of the TLD in 
the A site of the 50S subunit, the stalled peptide is transferred to the 
alanine residue on tmRNA. The C-terminal helix of SmpB initially 
binds in the vacant mRNA entry tunnel of the 30S subunit to recognize 
the ribosomes with truncated mRNAs. During translocation, SmpB 
moves along with the TLD to the P site, while its C-terminal helix 
“leaps” into the E site, thus freeing the A site (Rae et al., 2019; Guyomar 
et  al., 2021). This allows the MLD of tmRNA to present the first 
codon—GCA coding for alanine—for recognition by the canonical 
alanyl-tRNAAla. Cryo-EM studies demonstrated tRNA binding to the 
A site in the presence of tmRNA in E. coli and M. smegmatis (Fu et al., 
2010; Mishra et al., 2018), however low > 12 Å resolutions prevented 
detailed characterization of this trans-translation step. Recent higher-
resolution cryo-EM structures of the translocated tmRNA with a 

FIGURE 1

Cryo-EM structure of Escherichia coli 70S•tmRNA complex with tRNAAla in the A site. (A) 3.7-Å cryo-EM density segmented to show the ribosomal 
subunits (cyan and yellow), tmRNA (red), SmpB (purple) and A-site tRNA (green). (B) Front view of the 70S structure with tmRNA, SmpB and A-tRNA; 
(C) Relative positions of tmRNA, SmpB and A-tRNA, with tmRNA domains labeled. (D) Close-up view of tmRNA, SmpB and A-tRNA facing the CCA 
ends of the tRNA and TLD (in the A and P sites, respectively) and SmpB C-terminus in the E site, rendered as molecular surfaces.
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vacant A site showed that tmRNA linker traverses the A site, partially 
blocking the canonical tRNA binding location (Rae et  al., 2019; 
Guyomar et al., 2021). The tmRNA therefore must reorganize to allow 
the binding of tRNAAla and translation of the tmRNA coding sequence.

In this work, we  describe a tmRNA-bound complex that 
copurified with E. coli 70S ribosomes and features an endogenous 
tmRNA structure (Methods). The complex contains tRNAAla in the A 
site, stabilized by interactions with tmRNA and SmpB. A fraction of 
this complex also contains a deacyl tRNA near the E site, revealing a 
non-canonical tRNA binding site that may be sampled in a preceding 
step of tmRNA translocation.

Results and discussion

Cryo-EM structure of the 70S•tmRNA•SmpB 
complex with A-site tRNA

We performed maximum-likelihood classification of a large 
cryo-EM dataset (~1.5 million particles) collected from 70S ribosomes 
that were purified from E coli at the exponential growth phase and 
then incubated with defined mRNA, tRNAPhe, tRNAfMet and stringent 
factor RelA (Supplementary Figure S1; Methods). Remarkably, 
we  found that ~14,000 of the 1.15 million 70S ribosome particles 
contain tmRNA (~1.2%). Because neither tmRNA nor tRNAAla were 
added to the 70S sample, the tmRNA-bound ribosomes must represent 
endogenous E. coli trans-translation complexes. Since the tmRNA-
bound ribosomes formed prior to the addition of RelA (Methods), 
they likely represent a homeostatic trans-translation complex. Indeed, 
the 1.2% recovery of trans-translation ribosomes comports with the 
cellular estimates of rescue-complex abundance (Moore and Sauer, 
2005; Ito et al., 2011).

The predominant 3.7 Å cryo-EM reconstruction with circularized 
tmRNA density features a non-rotated ribosome with strong densities 
for TLD•SmpB in the P site and tRNA in the A site (Figure  1A; 
Supplementary Figure S1). Our extensive classification did not 
identify tmRNA in other ribosome sites, similarly to the recent study 
of M. smegmatis ribosomes (Mishra et al., 2018), suggesting that this 
complex represents an intermediate accumulating during trans-
translation. The ribosome and the endogenous tmRNA, wrapped 
around the head of the 30S subunit (Figure 1B), are overall similar to 
those in post-translocation 70S complexes assembled from in vitro 
transcribed tmRNA constructs (Rae et al., 2019; Guyomar et al., 2021). 
The ribosomal intersubunit rotation state during elongation correlates 
with stages of decoding and translocation (Cornish et  al., 2008; 
Ermolenko and Noller, 2011; Rodnina, 2018). The non-rotated 
ribosome with A-site tRNA corresponds to a post-decoding stage, 
preceding the translocation of the tRNA into the P site that requires 
intersubunit rotation. In addition, translocation involves a “swiveling” 
motion of the head domain of the 30S subunit (Ratje et al., 2010). 
Another mode of the head movement, known as “tilt,” normally 
occurs during initiation, when the free 30S subunit interacts with the 
initiator tRNA sampling the P site (Hussain et al., 2016; Jahagirdar 
et al., 2020). While mechanistically similar to the elongation ribosomes 
with P- and A-site tRNAs, the tmRNA-bound ribosome is reorganized 
via a head tilt to accommodate the bulky tmRNA. As tmRNA helix 2 
and pseudoknot 1 are placed between the 30S head and the 50S central 
protuberance (Figures 1B,C), the head is tilted 7° away from the large 

subunit placing uS19 ~ 15 Å farther than in canonical elongation 
complexes (measured at Gly25; Figures 2A,B). The A-site finger (ASF) 
of the large subunit, involved in tRNA accommodation (Sanbonmatsu 
et al., 2005; Loveland et al., 2020), is shifted by ~20 Å (measured at the 
U887 tip) to dock onto PK1 (Figure 2C).

The structure brings insight into tRNA positioning in the A site of 
the tmRNA-bound ribosome. On the 50S subunit, despite the large 
shift of the 50S ASF, the A-site tRNA elbow is stabilized by packing 
against the ASF (Figure 2B). Here, the C19-G56 pair likely stacks on 
the bulged A896 of the ASF (Supplementary Figure S2A), similarly to 
canonical tRNA-bound complexes. Accordingly, the position of the 
A-site tRNA relative to the 50S subunit is nearly identical to those in 
tRNA-bound structures, emphasizing the invariant mechanism of 
tRNA accommodation for peptidyl transfer. The acceptor arm with 
the 3′ terminal CCA is inserted into the A site next to the CCA end of 
the tmRNA (Figure 1D). In the polypeptide tunnel, scattered density 
suggests compositional and conformational heterogeneity of peptides 
in the endogenous rescue complexes on different mRNAs.

Decoding of the tmRNA alanine codon

Due to the 30S head tilt, interactions between the A-site tRNA and 
the 30S subunit slightly differ from those in canonical tRNA-bound 
complexes. Whereas helix 30 of 16S rRNA normally binds near the 
anticodon stem of tRNA (at nt 42), helix 30 is retracted by ~9 Å 
(measured at U956) to accommodate the tmRNA linker connecting 
PK1 and MLD. Universally conserved C1054, which bulges from h34, 
normally buttresses the anticodon by packing on the ribose of nt 34. 
But in the tmRNA-bound complex, the 30S head tilt shifts C1054 by 
~4 Å, detaching it from tRNAAla (Figure 2B).

The loss of interactions between tRNAAla and the 30S head is 
partially compensated by interactions with tmRNA and SmpB (see 
below), firmly positioning tRNAAla in the 30S decoding center. Local 
density confirms tRNAAla-specific nucleotides and Watson-Crick base 
pairing of the tRNA UGC anticodon with the corresponding GCA 
codon of tmRNA (Figure 3C; Supplementary Figures S2B,C). The 
codon-anticodon helix is stabilized by interactions with ribosomal 
decoding-center nucleotides G530, A1492, and A1493 (Figure 3D). 
The G530 loop of the shoulder domain is disengaged from the h34 of 
the shifted head, unlike in canonical tRNA-bound ribosomes where 
A532 packs on G1207. Despite this difference, G530 stabilizes the 
tRNA anticodon by hydrogen bonding with the ribose of G35, and 
both nucleotides are placed nearly identical to those in canonical 
tRNA-ribosome complexes. The adenosines A1492 and A1493 of the 
body domain stabilize the opposite side of the codon-anticodon helix 
by hydrogen-bonding with the riboses of tmRNA codon nucleotides 
G90 and C91. Thus, the ribosome recognizes and stabilizes the 
tmRNA-tRNAAla codon-anticodon helix via the universally conserved 
G530 and A-minor interactions, as in canonical elongation complexes 
(Ogle et al., 2001; Demeshkina et al., 2012; Loveland et al., 2017).

To accommodate tRNAAla in the A site, the adenosine-rich linker 
of tmRNA (80AAAAAU85) shifts away from its position in 
pre-decoding structures (Rae et al., 2019; Guyomar et al., 2021), where 
the linker traverses the A site (Figures 3A,B). Adenosines A82 and 
A83 support the minor groove of the tRNAAla anticodon stem at 
nucleotides C40 and A41 (Figures 3E,G). This interaction appears 
similar to the A-minor-like interaction in the 30S P site, where 
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conserved 16S nucleotides G1338 and A1339 pack at the minor 
groove of initiator tRNAfMet (Figure 3F) to assist translation initiation 
and perhaps other translation stages (Lancaster and Noller, 2005; 
Korostelev et al., 2006; Hussain et al., 2016). A-minor-like interactions 
are a unique tertiary structure that plays critical roles in RNA 
stabilization, including tetraloop-receptor recognition (Cate et al., 
1996; Doherty et al., 2001; Nissen et al., 2001; Battle and Doudna, 
2002) and mRNA decoding described above. Furthermore, their 
modest interaction surface and thermodynamic stability (Doherty 
et al., 2001) allow for local structural rearrangements, such as tRNA 
dynamics during mRNA decoding and translocation (Ogle et  al., 
2001; Demeshkina et al., 2012; Loveland et al., 2017; Carbone et al., 
2021). Thus, the tmRNA linker not only replaces the tRNA interactions 
with the 30S head during decoding but may also transiently stabilize 
tRNAAla and/or disengage from the tRNAAla in the subsequent—highly 
dynamic—translocation step. The functional role of this A-minor 
interaction is supported by the conservation of adenosines positioned 
6–10 nucleotides upstream of the first codon of tmRNA in most 
bacterial species (Zwieb et al., 1999). In species without consecutive 
adenosines in this position (e.g., Thermus thermophilus tmRNA), 
however, it remains to be seen how tmRNA interacts with tRNAAla 
(Op De Bekke et al., 1998; Kaur et al., 2006).

SmpB adopts the same overall conformation as in the structures 
without A-site tRNA (Rae et al., 2019; Guyomar et al., 2021). Here, the 
protein’s globular domain binds the 30S P site, with the His79 loop 
sandwiched between TLD and the elbow of tRNAAla. To accommodate 
the tRNA, the loop is slightly rearranged, bringing His79 into contact 
with the tRNAAla backbone at nucleotide 17. The C-terminal helix 
occupies the mRNA binding pocket in the E site (Figure 1D).

tRNA in the remodeled E site

In our tmRNA-containing cryo-EM reconstructions, low-density 
features in the E site suggested sub-stoichiometric tRNA. To better 
resolve this density, we subclassified the cryo-EM maps, using a mask 
covering the E site, yielding a 3.9-Å resolution class with tRNA near 
the canonical E site (Figure 4A; Supplementary Figures S1, S2D). 
Other complex constituents, including the A-site tRNA, are similar to 
the complex described above.

Interactions of the tRNA with the 30S E site differ from canonical 
ribosome structures with an untilted head domain. In canonical 
complexes, E-site tRNA binds in the cleft between the head (near 
ribosomal protein uS7) and body (near G693 of h23 of 16S rRNA). In 
the tmRNA-containing complexes, however, the tRNA is shifted ~8 Å 
away from this binding pocket, despite ample space near the 
C-terminal helix of SmpB (Figures 4B–D). Furthermore, the tRNA is 
partially retracted from the E site of the head, formed by h29 of 16S 
rRNA and uS7. Here, the anticodon is shifted ~9 Å away from the tip 
of the β-hairpin of uS7 (at Gly80), where the tRNA anticodon resides 
in elongation complexes (Figures  4C,D). In this position, the 
anticodon stem loop is loosely held near h29 (at A1339) and the 
β-sheet (at Arg78) and C-terminal α-helix (near Arg142) of uS7. On 
the 50S subunit, the tRNA interacts with the L1 stalk (elbow) and H88 
of 23S rRNA, where the terminal nucleotide A76 is inserted into. 
These contacts are nearly identical to those observed in numerous 
structural studies of tRNA-bound complexes (Figure 4B).

Previous structural studies of the P-site bound tmRNA did not 
report E-site tRNA, suggesting that tRNA bound to the preceding 
truncated mRNA readily dissociates upon tmRNA translocation. The 

FIGURE 2

Comparison of the 70S•tmRNA•tRNAAla complex with the canonical Escherichia coli 70S elongation complex bound with mRNA and three tRNAs (PDB 
6WDE). (A) Superposition of the 70S•tmRNA•tRNAAla structure (colored) with the 70S•mRNA•tRNA3 structure (gray) shows overall similar ribosome 
conformations except for the 7° tilt of the 30S head domain. Structures were superposed by aligning 23S rRNA (here and in other figures). (B) Close-up 
view of the similarly positioned tRNA in the A site of the tmRNA-bound (colored) and canonical elongation-state (gray) ribosomes. (C) Close-up view 
showing different positions of the A-site finger (ASF; H38 of 23S rRNA) in the tmRNA-bound (colored) and canonical elongation-state (gray) ribosomes.
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tRNA in our map likely results from the addition of tRNAPhe and 
tRNAfMet to the ribosome sample (Methods). Nevertheless, this 
observation may report a transient tRNA binding state sampled 
during or immediately after tmRNA translocation. The structure 
underlines that unlike the A and P site, where the tRNA interacts 
closely with both the 30S and 50S subunits, E-site positioning is driven 
primarily by interactions with the 50S subunit. Indeed, these 
interactions are established during the initial stages of translocation, 
in which the acceptor arm of deacyl-tRNA is spontaneously 
transferred from the P site to the E site on the 50S subunit, while the 
anticodon stem loop remains bound to the 30S subunit (Agirrezabala 
et al., 2008; Fei et al., 2008; Julian et al., 2008; Cornish et al., 2009). In 
addition, non-canonical E-like tRNAs were found in other studies of 
bacterial ribosomes (E-out; Zhang et  al., 2018) and eukaryotic 
ribosomes (Z-site; Brown et al., 2018). While retaining the invariant 
interactions with the large-subunit L1 stalk and the CCA-binging 
pocket, these structures feature different tRNA interactions with the 
small subunit. Distinct binding modes allow for increased tRNA 

dynamics in the E site, underlying the tRNA-dissociation function of 
the E site (Brown et al., 2018; Zhang et al., 2018). Our findings expand 
the repertoire of possible tRNA rearrangements during tRNA 
departure from the ribosome.

In conclusion, our cryo-EM analyses visualize how the first 
tmRNA codon is decoded and how tmRNA rearranges to 
accommodate tRNAAla. Interactions with tmRNA stabilize 
tRNAAla, which binds nearly identically to canonical A-site tRNA 
despite a substantial tilt of the 30S head. Future work will detail 
whether A-minor-like interactions of tmRNA with the tRNA 
anticodon stem occur in bacterial species, whose tmRNA linker 
does not contain continuous adenosines. Further, rearrangements 
of these and other interactions of tmRNA•SmpB with tRNAAla and 
the ribosome during translocation of tRNAAla to the P site remain 
to be  visualized. Such structural studies may inform the 
development of new drugs that target trans-translation, a 
promising target for antibacterial therapeutics (Campos-Silva 
et al., 2021; Marathe et al., 2023).

FIGURE 3

Interactions between A-tRNA and tmRNA. (A) Positions of A-tRNA and tmRNA domains. (B) The tmRNA linker (red) shifts to accommodate the A-site 
tRNA, relative to its position in the tmRNA-bound complex with a vacant A site (gray backbone and molecular surface) in PDB 7ACJ. (C,D) Cryo-EM 
density in the decoding center, showing codon-anticodon interactions (C) and interactions with 30S and 50S nucleotides (D). (E) Interactions of the 
tmRNA linker with the anticodon stem of A-tRNA resemble A-minor interactions (E) and are similar to those between 16S rRNA and tRNAfMet in the P 
site (F) of initiation and elongation ribosome structures (PDB 6WDE is shown). (G) Close-up view of the A-minor-like interactions between tmRNA 
nucleotides and A-site tRNA.

https://doi.org/10.3389/fmicb.2024.1369760
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Teran et al. 10.3389/fmicb.2024.1369760

Frontiers in Microbiology 06 frontiersin.org

Materials and methods

70S ribosome preparation

70S ribosomes were prepared from MRE600 E. coli essentially as 
described (Moazed and Noller, 1986, 1989) and stored in the 
ribosome-storage buffer A (20 mM HEPES (pH 7.5), 100 mM KCl, 
10.5 mM MgCl2, 0.5 mM EDTA, 5 mM β-mercaptoethanol) at 
−80°C. In short, MRE600 E. coli stock was grown on LB agar plates at 
37°C. Then, one colony from the plate was inoculated in 100 mL LB 
media and grown at 37°C overnight in an incubated shaker at 
~220 rpm. Forty eight milliliters of overnight culture was inoculated 
into 6 L LB media and the culture was incubated at 37°C to mid-log 
phase (OD600 0.5–1.0).

Escherichia coli cells obtained from a 6 L culture were suspended in 
50 mL cold buffer A and lysed using a microfluidizer (Microfluidics, 
United States) at 18 k psi. The lysate was clarified using a JA-20 rotor at 
39,200 × g, 4°C, for 20 min. The clarified supernatant was layered onto 
35 mL (per tube) of 37.7% sucrose in buffer A. Ribosomes were 
sedimented onto the sucrose cushion by ultracentrifugation in a 45 Ti 
rotor at 185,677 × g (40,000 rpm), 4°C, for 20 h. The ribosome pellet was 
dissolved in 2 mL of buffer A. The ribosome solution was transferred to 
1 mL microcentrifuge tubes and spun at 13 K rpm at 4°C for 10 min. 
Supernatant was transferred to a 50 mL tube, the volume was adjusted to 
40 mL using cold buffer B (70 mM Tris–HCl (pH 7.0), 500 mM NH4Cl, 
15 mM MgCl2, 0.5 mM EDTA, 5 mM β-mercaptoethanol), and 
ribosomes were sedimented in 70 Ti tubes at 310,801 × g (55,000 rpm), 
4°C, for 2 h. The ribosome pellet was resuspended in 1 mL buffer A, 
aliquoted and stored at −80°C.

The ribosome complex for cryo-EM analyses was prepared as 
described (Loveland et al., 2016) with some modifications. 70S ribosomes 
at a final concentration of 0.4 μM were activated in 20 mM HEPES-KOH 
(pH 7.5), 120 mM KCl, 15 mM MgCl2, 2 mM spermidine, and 0.05 mM 
spermine at 42°C for 15 min. Activated ribosomes were incubated with 
0.8 μM mRNA (5′ GGCAAGGAGGUAAAAAUGUUCAAAAAA 3′), 

0.8 μM tRNAfMet, and 1 μM tRNAPhe (all final concentrations) at 37°C for 
30 min. The sample was then incubated with 4 μM RelA, 15 μM 
Adenosine-5′-[(α,β)-methyleno] triphosphate APCPP; Thermo scientific 
and 15 μM Guanosine triphosphate (GTP; Thermo scientific) to assemble 
a stringent-response 70S complex, for 15 min at room temperature. The 
final volume of the sample was 30 μL.

Cryo-EM grid preparation and data 
collection

Carbon-coated EM grids (Ultrathin Carbon on Quantifoil®, 2 μm 
Diameter Holes, 1 μm Separation, mounted on a 200 M Cu grid coated 
with a 2-nm thin layer of carbon; TedPella) were glow discharged at 
20 mA with a negative polarity setting for 30 s in a PELCO easiGlow glow 
discharge unit. 3 μL of the 70S sample was applied to the grid. Grids were 
blotted for 4 s with a blotting force of 7 and plunged into liquid ethane 
using a Vitrobot Mark IV (ThermoFisher Scientific), whose chamber was 
pre-equilibrated to 4°C and 95% humidity.

Two data sets were collected on a UMass Chan Cryo-EM Facility 
Talos Arctica electron microscope (ThermoFisher Scientific) operating 
at 200 kV and equipped with a K3 direct electron detector (Gatan Inc.) 
targeting 0.55–1.1-μm underfocus. Data were collected using SerialEM 
(Mastronarde, 2005), with beam tilts to record several movies at each 
stage position. The datasets contain 4,016 movies (total dose of 29.9 e−/
Å2 on the sample), yielding 474,262 particles and 8,021 movies (30.4 e−/
Å2 on the sample), yielding 1,039,487 particles. Movies were aligned 
during data collection using IMOD (Kremer et al., 1996) to decompress 
frames, apply the gain reference, and to correct for image drift and 
particle damage and bin the super-resolution pixel by 2.

Cryo-EM data processing

CTF parameter determination, reference-free particle picking, and 
stack creation were carried out in cisTEM (v1.0-beta; Grant et al., 2018). 

FIGURE 4

Cryo-EM structure of E. coli 70S•tmRNA complex with tRNAs in the A (green) and E (orange) sites. (A) Front view of the 70S structure with tmRNA, 
SmpB, A-tRNA and E-tRNA rendered as molecular surfaces. (B) Position of the tRNA in the E site of the 70S•tmRNA•tRNAAla complex (colored) differs 
from that in the canonical 70S•mRNA•tRNA3 structure (gray ribosome and E-tRNA, magenta mRNA and blue P-tRNA). (C,D) Positions of the anticodon 
stem loops of E-site tRNAs relative to 16S and SmpB (in the 70S•tmRNA•tRNAAla complex) or mRNA (in the 70S•mRNA•tRNA3 complex).
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Particle alignment and refinement were carried out in FREALIGNX 
(Lyumkis et  al., 2013). Data processing was initially performed 
independently for each dataset (Supplementary Figure S1A). To speed 
up the processing, 2×− and 4×−image stacks were prepared using 
resample.exe, which is part of the FREALIGN distribution (Lyumkis 
et al., 2013). The initial model for particle alignment of 70S maps was the 
11.5 Å resolution EMDB-1003 (Gabashvili et  al., 2000), sampled to 
match 4×−binned image stack using resample.exe. Three rounds of 
mode 3 search alignment to 25 Å were run using the 4×−binned stack. 
Next, 25–30 rounds of mode 1 refinement were run with the 4×−binned, 
2×−binned, and eventually unbinned stacks until the resolutions stopped 
improving, to the final resolutions of 2.8 Å and 2.7 Å of the overall maps. 
3D maximum-likelihood classification into 20 classes was performed in 
FREALIGN v9.11 to separate 70S conformations, 50S subunits, and junk 
(poorly aligned or damaged) particles. An unexpected class emerged in 
each stack, featuring density near the 30S head, which connects the 
mRNA tunnel with the A-site finger and P site. The 70S classes with 
different tRNA occupancies and ribosome conformations (including the 
tmRNA class) were extracted into a stack per data set, using merge_
classes.exe from FREALIGN distribution. Two 70S stacks were merged 
using IMOD 4.7 (Kremer et al., 1996).

The merged 70S stack was refined as described above, yielding a 
final average 70S reconstruction at 2.8 Å resolution. The refined 
parameters were used to run a 3D maximum-likelihood classification 
into 32 classes without a mask, with an ASF-covering mask, or with 
the A-site-covering mask. All masks were “spherical,” also known as 
“2D” masks on micrographs (Grigorieff, 2016), as opposed to 
specifically shaped “3D” masks (Supplementary Figure S1A). The 
tmRNA class was found in the no-mask and ASF-mask classifications. 
Particles with tmRNA density resulting from the ASF-mask 
classification were extracted into a substack. The tmRNA substack 
was classified at 4× with a P- and A-site covering mask or the E-site 
mask to further purify the tmRNA-containing density (P-A mask) or 
the E-tRNA-containing density (E mask). The unbinned stack was 
used to yield the resulting cryo-EM reconstructions with tmRNA 
(with A-tRNA and partial E-tRNA) and with tmRNA (with full-
occupancy A-tRNA and E-tRNA) at resolutions of 3.7 Å and 3.9 Å, 
respectively (Supplementary Figure S1A).

Fourier Shell Correlation (FSC) curves were calculated by FREALIGNX 
for even and odd particle half-sets (Supplementary Figure S1B). The maps 
used for structure refinements was B-factor sharpened using the B factor of 
−100 Å2 up to 3.4 Å (tmRNA with A-tRNA) and −50 Å2 to 3.8 Å (tmRNA 
with A-tRNA and E-tRNA), using bfactor.exe (included with the 
FREALIGN distribution; Lyumkis et al., 2013).

Structural model building and refinement

Structure of the non-rotated 70S•tRNA3 complex (V-B; PDB 
6WDE; Loveland et al., 2020) and structures of 70S•tmRNA complexes 
(PDB: 6Q98 and 7ACJ; Rae et al., 2019; D’Urso et al., 2023) were used 
as starting models for 70S ribosome and tmRNA fitting, respectively. 
The model of tRNAAla (GGC anticodon) from PDB:6OF6 (Nguyen 
et  al., 2020) was modified to fit the cryo-EM map and match the 
nucleotide sequence of tRNAAla (UGC). The 50S, 30S and tmRNA 
domains were fitted using UCSF Chimera 1.6 (Goddard et al., 2018; 
Pettersen et al., 2021) and locally modeled in Pymol1.2r1 (DeLano, 
2002). The fitted structures were refined conservatively, using 

secondary-structure restraints and low simulated-annealing 
temperatures (100 K, 300 K or 500 K), against cryo-EM maps using 
phenix.real_space_refine v1.19.2 (Adams et  al., 2010). Refinement 
parameters, such as the relative weighting of stereochemical restraints 
and experimental energy term, were optimized to produce the optimal 
structure stereochemistry and real-space correlation coefficients 
(Supplementary Table S1). B-factors of the models were refined at the 
final stages using phenix.real_space_refine. Structure stereochemistry 
validation was performed using phenix.molprobity.

Structure superpositions and distance calculations were 
performed in PyMOL. To calculate the angles of the 30S rotation and 
head tilt, 23S rRNAs of corresponding structures were aligned using 
PyMOL, and the angle between 16S domains were measured in 
Chimera. Figures were prepared in PyMOL and Chimera.
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