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Acute coronary syndrome (ACS) is a predominant cause of mortality, and the 
prompt and precise identification of this condition is crucial to minimize its 
impact. Recent research indicates that gut microbiota is associated with the 
onset, progression, and treatment of ACS. To investigate its role, we sequenced 
the gut microbiota of 38 ACS patients before and after percutaneous coronary 
intervention and statin therapy at three time points, examining differential 
species and metabolic pathways. We  observed a decrease in the abundance 
of Parabacteroides, Escherichia, and Blautia in patients after treatment and 
an increase in the abundance of Gemalla, Klebsiella variicola, Klebsiella 
pneumoniae, and others. Two pathways related to sugar degradation were 
more abundant in patients before treatment, possibly correlated with 
disorders of sugar metabolism and risk factors, such as hyperglycemia, insulin 
resistance, and insufficient insulin secretion. Additionally, seven pathways 
related to the biosynthesis of vitamin K2 and its homolog were reduced after 
treatment, suggesting that ACS patients may gradually recover after therapy. 
The gut microbiota of patients treated with different statins exhibited notable 
differences after treatment. Rosuvastatin appeared to promote the growth of 
anti-inflammatory bacteria while reducing pro-inflammatory bacteria, whereas 
atorvastatin may have mixed effects on pro-inflammatory and anti-inflammatory 
bacteria while increasing the abundance of Bacteroides. Our research will 
provide valuable insights and enhance comprehension of ACS, leading to better 
patient diagnosis and therapy.
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Introduction

Acute Coronary Syndrome, a subcategory of coronary artery disease, is characterized by 
frequently presented syndromes, including angina, myocardial infarction, or sudden cardiac 
death (Sanchis-Gomar et al., 2016; Kimura et al., 2019; Ralapanawa and Sivakanesan, 2021). 
With global modernization, the prevalence of ACS has reached a pandemic level (Ruff and 
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Braunwald, 2011). According to the Report on Cardiovascular Health 
and Diseases in China (2021), the mortality rate of coronary artery 
disease and acute myocardial infarction has almost doubled in the past 
decade, with the total prevalence continuously growing nationwide 
(Hu, 2022). It is also the third leading cause of mortality worldwide 
and is associated with 17.8 million deaths every year (Brown et al., 
2020), constituting an increasing public health burden. Common 
approaches for treating ACS include surgery, antiplatelet and 
antianginal medications, as well as risk factor management (Braun 
et  al., 2018). The prognosis of ACS is considered dynamic and 
complicated to determine, as it is associated with heart function, blood 
biomarkers level, risk factors, etc. (Xu and Yang, 2020).

Recent studies have highlighted the involvement of gut 
microbiome in ACS development. Some evidence suggests that 
trimethylamine N-oxide (TMAO) in serum, a metabolite produced 
by gut microbiome from certain dietary nutrients, is linked to ACS 
onset and coronary atherosclerotic plaque burden (Li et al., 2017, 
2019a; Gao et al., 2020). ACS can also be accompanied by specific 
alterations in gut microbial composition, notably the increasing ratio 
of Firmicutes/Bacteroidetes and the increasing abundance of 
Firmicutes, Proteobacteria, Gammaproteobacteria, and Aerococcaceae 
(Alhmoud et al., 2019; Gao et al., 2020; Tascanov et al., 2020; Sawicka-
Smiarowska et  al., 2021). Another study shows that patients with 
symptomatic atherosclerosis had an increase in the abundance of 
genus Collinsella, while controls had an increase in Eubacterium and 
Roseburia (Ramírez-Macías et al., 2022). In addition, by modulating 
gut microbiome composition and metabolism, the Mediterranean diet 
has a potential effect in primary and secondary prevention of ACS 
because it contains more antioxidants, nitrate, and fibre as well as less 
saturated/trans fatty acids, sodium, and phosphate (Foscolou et al., 
2019; Fernández et al., 2021; Kouvari et al., 2022; Ramírez-Macías 
et al., 2022). However, most previous studies used 16S rRNA amplicon 
sequencing to profile the bacterial community, which can result in 
limited taxonomic resolution and unreliable functional potential 
inferences (Heidrich and Beule, 2022). Moreover, there is a lack of 
studies investigating how the gut microbiome alters after common 
ACS treatments.

Shotgun metagenomic sequencing allows researchers to sequence 
thousands of organisms in parallel and detect very low abundance 
members of the microbial community (Durazzi et  al., 2021). To 
address the gap mentioned above, we  conducted metagenomic 
sequencing on the gut microbiome of 38 patients with acute coronary 
syndrome and an equal number of healthy controls who were family 
members. We analyzed the possible association between microbial 

composition and ACS prognosis stages before treatment, one and two 
months after treatment. We observed community-wide differences in 
metagenomic composition as treatment progressed and identified 
species-specific and functional pathways associations with 
these differences.

Results

ACS cohort characteristics and quality 
control of sequencing data

In this study, we enrolled 38 patients (age: 54.55 ± 0.9561 years) 
diagnosed with various types of ACS, including 8 with unstable 
angina, 19 with ST-elevation myocardial infarctions (STEMI), 9 with 
non-ST-elevation myocardial infarction (NSTEMI) and 2 without 
clear classification (Supplementary Table S1). Patients with left 
ventricular systolic dysfunction (ejection fraction <50%) were 
excluded (Table 1). We collected clinical information on the patients’ 
serum lipid profile and serum myocardial enzyme spectrum. 
We detected the cTnT index in 35 patients, with 23 patients having a 
result higher than 0.5, which indicates myocardial infarction 
(Supplementary Table S1). The levels of triglycerides, cholesterol 
(Chol; p < 0.0001), high-density lipoprotein (HDL; p < 0.0001), and 
low-density lipoprotein (LDL) in patients one month after treatment 
(ACS-post1) and two months after treatment (ACS-post2) were lower 
than before treatment (ACS-pre) (Table 1).

We collected a total of 147 stool samples, including 38 from 
ACS-pre, 38 from ACS-post1, 33 from ACS-post2, and 38 from healthy 
controls who were family members of patients with evenly distributed 
ages (50.05 ± 1.64 years; Supplementary Table S1). The healthy group 
consisted of the patients’ partners, ensuring that both cohorts shared 
similar living areas and diets. After performing quality control and host 
sequence decontamination, we retained 139 samples, filtering out 1 
from control and 7 from patients (1 from ACS-pre, 5 from ACS-post1, 
and 1 from ACS-post2). After filtering, the mean number of reads per 
sample was 77.53 million pairs (Supplementary Figure S1).

Alterations in gut microbiota among the 
four groups

We calculated α-diversity (Shannon index) and found no 
significant difference between the different groups (Figure  1A). 

TABLE 1 Clinical indicators at various time points during treatment.

Clinical indicators ACS patients (n  =  38) p-value

ACS-pre ACS-post1 ACS-post2

TG (0–1.7 mmol/L) 1.68 ± 0.91 1.37 ± 0.89 1.37 ± 0.65 0.2169

Chol (0–5.18 mmol/L) 5.09 ± 1.08 3.85 ± 1.18 3.60 ± 1.03 6.341 × 10−5

HDL (1.29–1.55 mmol/L) 1.09 ± 0.26 1.08 ± 0.26 1.08 ± 0.26 0.991

LDL (0–3.37 mmol/L) 3.32 ± 0.87 2.17 ± 0.80 1.90 ± 0.80 3.575 × 10−6

Values are presented as mean ± SD. All p-values are from the t-test.
M, male; F, female; TG, triglycerides; Chol, cholesterol; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ALB, albumin; Cr, Creatinine; cTnT, cardiac troponin T; BNP, B-type 
natriuretic peptides; EF, ejection fraction; HbA1c, hemoglobin A1c.
The normal value range of the indicator is in brackets (*p < 0.05, **p < 0.01, and ***p < 0.001).
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FIGURE 1

Alterations in gut microbiota among the four groups. (A) α-diversity (Shannon index) among the four groups was analyzed at the phylum, genus and species 
levels. (B) Constrained Principal Coordinates Analysis (CPCoA) of Euclidean distance on all samples based on species level. PERMANOVA test was used to 
detect the independent effects of clinical features on microbial community (Euclidean distance). (C) Correlation of clinical indicators and gut microbiota. 
R-square statistics were presented on each cell. Clinical features included subject, age, sex, TG, triglycerides; Chol, cholesterol; HDL, high-density 
lipoprotein; LDL, low-density lipoprotein; ALB, albumin; Cr, Creatinine; cTnT, cardiac troponin T; BNP, B-type natriuretic peptides; HbA1c, hemoglobin A1c. 
(D) Relative abundance of gut microbiota on phylum, genus, and species levels in ACS patients at three time points. (E) Venn diagram on species level in 
individuals from various stages. (F) Biomarkers of ACS patients at different stages of treatment (LDA score threshold >2). (G) Differential species between 
healthy controls and ACS patients before treatment (*adjust p < 0.05, **adjust p < 0.01, and ***adjust p < 0.001, t-test, Benjamini–Hochberg FDR).
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We conducted Constrained Principal Coordinates Analysis (CPCoA) 
based on Euclidean distance and observed obvious separation between 
before and after treatment, as well as between controls and patients 
(Figure 1B). The cTnT index explained 5.6 and 8.0% of the variation 
in the relative abundance at species and genus levels, respectively 
(p < 0.05; Figure 1C).

To identify differences in gut microbiota between patients 
before and after treatment, we analyzed the microbiota composition 
and found that the dominant gut microbiota and their abundances 
were similar across the three stages of treatment (Figure 1D). The 
dominant phyla were Bacteroidetes, Firmicutes, and Proteobacteria, 
with the Firmicutes/Bacteroidetes ratio increasing after 
treatment (ACS-pre: 0.19, ACS-post1: 0.23, ACS-post2: 0.22; 
Supplementary Table S4). The most common bacterial genera were 
Bacteroides, Prevotella, and Alistipes, and the most common 
bacterial species were Bacteroides vulgatus, Prevotella copri, and 
Bacteroides stercoris in the gut of ACS patients before and after 
treatment (Figure  1D). The shared microbial species among 
patients in different stages of treatment accounted for 63.78% of 
the proportion, with 71.57, 73.67, and 76.32% of gut microbial 
species shared between ACS-pre and ACS-post1, ACS-pre and 
ACS-post2, and ACS-post1 and ACS-post2, respectively 
(Figure 1E).

When identifying biomarkers with the potential to distinguish 
therapy phases using LEFSe, we obtained 23 differential bacteria, 
including six genera and five species that were significantly more 
abundant in ACS-pre: Escherichia (p = 0.004), Blautia (p = 0.006), 
Klebsiella (p = 0.013), Campylobacter (p = 0.015), Atopobium 
(p = 0.027), Citrobacter (p = 0.021), Klebsiella quasipneumoniae 
(p = 0.003), Escherichia coli (p = 0.003), Citrobacter portucalensis 
(p = 0.011), Ruminococcus gnavus (p = 0.014), and Parabacteroides 
distasonis (p = 0.028). The genus Gemalla (p = 0.018), species 
Klebsiella variicola (p = 0.007), and Klebsiella pneumoniae 
(p = 0.018) were significantly more abundant in ACS-post2, while 
the class Epsilonproteobacteria (p = 0.016) was significantly more 
abundant in ACS-post1 (Figure  1F; Supplementary Table S5). 
Furthermore, we compared the three groups pairwise, revealing 
additional significant bacteria differences. The relative 
abundances of Parabacteroides (p = 0.036), Kluyvera (p = 0.030), 
Ruthenibacterium (p = 0.044), Coprobacillus (p = 0.041), 
Proteobacteria (p = 0.034), and Gammaproteobacteria (p = 0.004) 
were significantly lower one month after treatment than before 
treatment. The relative abundances of Sellimonas (p = 0.047) and 
Actinobacteria (p = 0.046) were significantly higher 2 months 
after treatment than before treatment (Figure  1F; 
Supplementary Table S5). Based on the results of species diversity 
and differential species, it can be  inferred that there was little 
change in the composition of gut microbiota between patients 
after one month of treatment and after two months of treatment.

The comparison between controls and patients revealed 
significant species changes that could be  driven by 
ACS. We observed a significant increase in the relative abundance 
of Anaerotruncus colihominis (p = 0.0163), Cloacibacillus evryensis 
(p = 0.021), and Fretibacterium fastidiosum (p = 0.033), while a 
decrease in Gordonibacter pamelaeae (p = 0.037), Eubacterium 
eligens (p = 0.027), Blautia hansenii (p = 0.032), and Romboutsia 
ilealis (p = 0.025) in ACS-pre patients (Figure  1G; 
Supplementary Table S5).

Gut microbial functions vary with 
treatment phases

The gut microbiota of ACS patients participated in 556 metabolic 
pathways. The richness of functional pathways in ACS patients decreased 
after treatment but gradually restored thereafter (Figure 2A). The top 
abundant pathways (Supplementary Figure S2) included dTDP-β-L-
rhamnose biosynthesis (DTDPRHAMSYN-PWY), adenosine 
ribonucleotides biosynthesis (PWY-7219), conversion from glucose to 
pyruvate (PWY-1042), uridine monophosphate (UMP) biosynthesis 
(PWY-5686), adenine and adenosine salvage III (PWY-6609).

We identified 28 pathways with statistically significant differences 
(p < 0.05; Figure 2B; Supplementary Table S9). Amino acid metabolisms, 
such as valine (VALSYN-PWY), histidine (HISTSYN-PWY), and 
isoleucine (ILEUSYN-PWY) biosynthesis, had significantly increased 
relative abundances in ACS patients after treatment. Two pathways 
related to sugar degradation were more statistically abundant in patients 
before than after treatment, including glucose (GLYCOLYSIS-E-D) and 
xylitol degradation (PWY-6901). Pathways related to sugar molecule 
biosynthesis were impaired after treatment, namely GLUCONEO-PWY 
and PWY-6385. Seven pathways reduced after treatment 
were separately involved in the biosynthesis of menaquinol-8, 
menaquinol-9, menaquinol-11, menaquinol-12, menaquinol-13, 
demethylmenaquinol-8, and demethylmenaquinol-9, which are 
important for the biosynthesis of vitamin K2 and its homolog.

Alterations in gut microbiota affected by 
drugs

With different stages of treatment, there were more significant 
differences in gut microbial alpha (Shannon) diversity between 
patients using two different drugs, rosuvastatin (R) and atorvastatin 
(A) (Figure  3A). Principal Coordinates Analysis (PCoA) by Bray 
Curtis distance of patients’ intestinal microorganisms also showed the 
same trend (Figure 3B). After treatment with rosuvastatin, there were 
significant changes in the relative abundances of six genera and nine 
species between ACS-pre and ACS-post (Figure 3C). These changes 
included increases in the abundances of Gordonibacter, Coprococcus, 
Faecalibacterium, and Fusicatenibacter, and decreases in the 
abundance of Escherichia and Parabacteroides. The relative abundances 
of specific species also showed significant alterations: Gordonibacter 
pamelaeae, Prevotella bivia, Parabacteroides distasonis, Ruminococcus 
gnavus, Faecalibacterium prausnitzii, Megasphaera micronuciformis, 
Veillonella infantium, Veillonella parvula, and Fusicatenibacter 
saccharivorans. After treatment with atorvastatin, there were 
significant changes in the relative abundances of four genera and four 
species (Figure 4D). Furthermore, we also analyzed the differences 
between different microbiota at three treatment stages (Figure 4). 
Before treatment, there were 7 significantly different bacteria between 
groups A and R: Tannerellaceae (family); Parabacteroides (genus); 
Alistipes finegoldii, Parabacteroides distasonis, Eubacterium hallii, 
Coprococcus eutactus (species) (Figure  4A). After 1 month of 
treatment, there were 5 significantly different species between the two 
groups, namely: Actinomycetales (order); Actinomycetaceae (family); 
Actinomyces, Phascolarctobacterium (genus); Bacteroides dorei 
(species) (Figure  4B). After 2 months of treatment, there were 16 
significantly different species between the two groups: Bacteroidetes 
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FIGURE 2

Alterations of functional pathways in ACS patients before and after treatment. (A) Venn diagram of metabolic pathways in ACS samples from various 
stages. (B) Significantly differential pathways of ACS patients before and after treatment (*adjust p  <  0.05, **adjust p  <  0.01, and ***adjust p  <  0.001, 
Kruskal–Wallis test, Benjamini–Hochberg FDR). (C) Association between microbiome composition and metabolic pathways. Correlation values 
(Spearman) were presented on each cell by various colors and significance also emerged (*p  <  0.05, **p  <  0.01, and ***p  <  0.001, t-test).
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FIGURE 3

Alterations in gut microbiota affected by drugs. (A) α-diversity (Shannon index) of ACS patients treated by different drugs at three stages of therapy. 
(B) Principal Coordinates Analysis (PCoA) of patients used different medications at three stages of therapy (Bray–Curtis distance). (C) Microbiota that 
changed significantly after treatment with rosuvastatin. (D) Microbiota that changed significantly after treatment with atorvastatin (*adjust p  <  0.05, 
**adjust p  <  0.01, and ***adjust p  <  0.001, Kruskal–Wallis test, Benjamini–Hochberg FDR).
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(phylum); Bacteroidia (class); Bacteroidales (order); Oxalobacteraceae 
(family); Gordonibacter, Lactonifactor, Oxalobacter (genus); 
Actinomyces odontolyticus, Gordonibacter pamelaeae, Bacteroides 

dorei, Alistipes finegoldii, Lactonifactor longoviformis, Coprococcus 
catus, Coprococcus comes, Clostridium scindens, Oxalobacter 
formigenes (species) (Figure 4C).

FIGURE 4

Alterations in gut microbiota affected by drugs. (A) Differential species in groups atorvastatin and rosuvastatin before treatment. (B) Differential species 
in groups atorvastatin and rosuvastatin one month after treatment. (C) Differential species in groups atorvastatin and rosuvastatin 2  month after 
treatment (t-test, Benjamini–Hochberg FDR).
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Methods

ACS patient recruitment and specimen 
collection

Faecal samples from 38 ACS patients and family members with 
an equal number were collected at the Zhuhai People’s Hospital 
(Zhuhai Clinical Medical College of Jinan University) between 
January and June 2023. All patients were Han Chinese with no known 
consanguinity, newly diagnosed with ACS. All the family members 
of ACS patients used as healthy controls were free of clinically 
obvious ACS symptoms. Ethical clearance was obtained from the IRB 
of Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan 
University) (approved no. 24, 2020). Informed consent was obtained 
from the patients. On the morning of hospital admission, one month 
after percutaneous coronary intervention and during the second 
month post-treatment, sterile swabs were utilized to collect 
mid-section fresh faecal samples from patients. All samples were 
rapidly frozen on dry ice within 30 min and preserved in −80°C 
freezers before DNA extraction. Blood samples of patients were 
collected in the morning after an overnight fast. Plasma was collected 
by centrifugation and stored in −80°C freezers.

Pathological plasma biochemical analysis

Biochemical parameters, renal function parameters, lipids, 
coagulation factors, and blood cell counts were measured by AU2700 
fully automatic blood biochemical analyzer. A total of 9 indicators 
were analyzed, including triglycerides (TG), cholesterol (Chol), high-
density lipoprotein (HDL), low-density lipoprotein (LDL), albumin 
(ALB), Creatinine (Cr), cardiac troponin T (cTnT), B-type natriuretic 
peptides (BNP), hemoglobin A1c (HbA1c). Ejection fraction (EF) was 
measured by echocardiography.

Genomics DNA extraction

The microbial community DNA was extracted using MagPure 
Stool DNA KF kit B (Magen, China) following the manufacturer’s 
instructions. DNA was quantified with a Qubit Fluorometer by using 
a Qubit dsDNA BR Assay kit (Invitrogen, United States), and the 
quality was checked by running an aliquot on 1% agarose gel. The 
quality of the DNA from all samples was quality controlled.

Library construction and sequencing

DNA was randomly fragmented by Covaris. The fragmented 
DNA was selected by Magnetic beads to an average size of 
200–400 bp. The selected fragments were processed through 
end-repair, 3′ adenylated, adapters-ligation, and PCR Amplifying, 
and the products were purified using magnetic beads. The double-
stranded PCR products were heat-denatured and circularized by 
the splint oligo sequence. The single-strand circle DNA (ssCir 
DNA) was formatted as the final library and qualified by QC. The 
qualified libraries were sequenced on the BGISEQ-500 platform 
(BGI-Shenzhen, China).

Metagenomic data analysis

Taxonomic and functional profiling of microbial communities 
was generated with tools from the biobakery meta-omics analysis 
environment1 (McIver et al., 2018). Reads mapping to the human 
genome were first subjected to initial quality control via KneadData 
v0.10.0. Taxonomic profiling of metagenome detection was 
conducted using MetaPhlAn3 v3.0.14 with the default parameters. 
Microbiome relative abundance was assessed using Metaphlan3. The 
v3.0.14 CHOCOPhlAn database was used to generate the microbial 
relative abundances for each sample. The relative abundance profiles 
of gene presence and abundance were determined by mapping reads 
to the UniRef90 protein reference database (Suzek et  al., 2015). 
Functional profiling was performed by HUMAnN3 v3.0.1 with the 
default parameters.

Statistical methods and visualization

Diversity was analyzed and visualized with GutMeta online tools2. 
Differential pathways were identified using humann2_associate in 
HUMAnN2 (Franzosa et al., 2018), and the species composition of 
differential pathways was plotted using humann2_barplot. Differential 
species were calculated using the LEFSe method (Segata et al., 2011). 
The potential biomarkers of functional pathways were assessed using 
STAMP (Parks et al., 2014) v2.1.3. PermANOVA was performed using 
adonis2, and the mantel test was computed with 9,999 permutations, 
both using R package vegan (Oksanen et  al., 2019). Spearman 
correlations were calculated using R. The statistical test was performed 
using the t-test (for two groups) and Kruskal–Wallis test (for three 
groups and more). Benjamini–Hochberg correction for multiple 
comparisons was applied (Wang, 2022). Adjust p < 0.05 was considered 
statistically significant.

Discussion

The study investigated the changes in gut microbiota composition 
in patients with ACS before and after treatment. The study found 16 
significant species changes driven by ACS and identified 39 
differential bacteria before and after treatment. The gut microbiota of 
patients returned to a relatively stable state 1 month after treatment. 
The relative abundances of seven pathways related to the biosynthesis 
of vitamin K2 and its homolog were reduced. Additionally, two 
pathways related to sugar degradation were more abundant in 
patients before treatment. The research also found that the gut 
microbiota of ACS patients treated with atorvastatin and rosuvastatin 
exhibit unique states. Following treatment with rosuvastatin, there 
was an increase in the richness of gut microbiota among patients, 
while patients treated with atorvastatin showed contrasting outcomes. 
These findings provide insight into specific bacteria and metabolic 
pathways that may be associated with cardiovascular disease risk and 
offer opportunities for treatment.

1 http://huttenhower.sph.harvard.edu/biobakery

2 https://gutmeta.deepomics.org/
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Our findings revealed no significant effect of ACS and its 
treatment on microbial diversity, which is consistent with some 
previous studies but contradicts others (Liu et al., 2019; Yoshida et al., 
2019; Liu et al., 2020; Toya et al., 2020; Ma et al., 2021). Regarding the 
factors responsible for the differences in gut microbes, we found that 
inter-individual differences accounted for a relatively large 
proportion, although other physiological and pathological factors 
only explained a small proportion of the variance, which aligned with 
previous findings. Among these factors, cTnT is an essential 
biomarker for diagnosing ACS, particularly myocardial infarction, 
and can also be used to predict prognosis and mortality (Árnadóttir 
et al., 2018; Desai et al., 2020). BNP is frequently used to assess the 
short- and intermediate-term prognosis in ACS patients (Bassan 
et al., 2016). Therefore, we hypothesized that cTnT and BNP may also 
be involved in the development of ACS by affecting the percentages 
of metabolites and microbial species.

Alterations in the gut microbiome (dysbiosis) have been shown 
to cause chronic inflammation3 (Buttó and Haller, 2016; Li et al., 
2019b; Moludi et  al., 2021)—a key factor in ACS. It has been 
suggested that Firmicutes and Bacteroidetes play a role in 
inflammation due to their short-chain fatty acids (SCFAs) 
production (Tang and Hazen, 2014; Kim, 2018). Firmicutes mainly 
produce butyrate, while Bacteroidetes produce acetate and 
propionate (Magne et al., 2020). Butyrate favours cardiovascular 
disease-related disorders, as it induces AMPK activation and 
GLUT4 expression in adipose tissue, suppresses atherosclerotic 
plaque formation, and reduces reactive oxygen species (Gao et al., 
2019; Mamic et al., 2021). However, acetate is considered a risk 
factor for obesity, as it induces lipid accumulation in the liver and 
stimulates appetite (Lecomte et al., 2015; Magne et al., 2020). Some 
Bacteroidetes spp., such as B. thetaiotaomicron, can contribute to 
diet-induced obesity and hypertension (Tan et al., 2019; Calderón-
Pérez et  al., 2020; Cho et  al., 2022). Therefore, the 
Firmicutes/Bacteroidetes ratio was higher in healthy individuals 
than in patients with coronary heart disease, which could explain 
our result. Our study found that the Firmicutes/Bacteroidetes ratio 
was lower in ACS patients compared to healthy subjects, but this 
ratio increased after therapy. Moreover, Parabacteroides, 
Escherichia, and Blautia were significantly abundant in patients 
before treatment in our study. A higher abundance of Blautia has 
been associated with an increased risk of developing coronary 
artery disease in the Chinese population and may contribute to 
diseases through the production of pro-inflammatory metabolites 
and depletion of beneficial gut bacteria (Liu et  al., 2019). In 
addition, Blautia can produce butyric acid, which is involved in 
forming short-chain fatty acids (SCFAs) (Liu et al., 2019). We also 
found that A. colihominis, C. evryensis, and F. fastidiosum 
significantly increased in ACS patients. F. fastidiosum is a typical 
oral bacterium which is often present in patients with periodontal 
disease (Deng et  al., 2017; Krishnan et  al., 2017). Periodontal 
disease is a risk factor for cardiovascular disease (Khalighinejad 
et al., 2016; Deng et al., 2017), generally manifested by increased 
inflammation and potential changes in hypercoagulability and 
insulin resistance (Mathews et  al., 2016). The increase in the 

3 参考文献: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170788/

abundance of pro-inflammatory bacteria may be associated with 
ACS disease.

Also, gut bacteria produce several metabolites that may 
influence heart health. We  found that the abundance of 
G. pamelaeae, E. eligens, B. hansenii, and R. ilealis decreased. The 
reduction of these species and metabolites may lead to elevated 
substances associated with cardiovascular disease in humans, such 
as cholesterol, visceral fat area, visceral fat mass, and plasma high-
density lipoprotein. G. pamelaeae can produce urolithin (Selma 
et al., 2014), which can be anti-atherosclerotic (Stromsnes et al., 
2020) and prevent cardiometabolic risk (Furlanetto et  al., 2012; 
Giménez-Bastida et al., 2012; Selma et al., 2018). E. eligens produces 
butyric acid, which inhibits obesity and prevents coronary heart 
disease (Jie et al., 2017). Other studies also found that ACS patients 
had fewer E. eligens in the gut (Liu et al., 2020; Nakai et al., 2021). 
There is a decrease in the abundance of beneficial bacterial strains 
in ACS patients.

Otherwise, we have identified certain intestinal flora metabolic 
pathways that can potentially impact the development and 
treatment of ACS. Sugar metabolism, particularly glucose 
metabolism, plays a significant role in the development and 
progression of ACS (Mao et  al., 2019). Our study found that 
pathways related to sugar degradation were less abundant after 
treatment, while pathways related to sugar molecule biosynthesis 
were more abundant. This suggests that the glucose metabolism 
disorder in the patient’s body improved after treatment. Our study 
revealed the importance of vitamin K2, specifically menaquinone-7, 
in regulating calcium deposition in the arterial wall and preventing 
arterial calcification, a key risk factor for atherosclerosis and 
subsequent acute coronary events (Mandatori et al., 2021). Higher 
dietary intake or supplementation of vitamin K2 has been associated 
with a lower risk of cardiovascular disease, including ACS 
(Schurgers and Vermeer, 2000; Beulens et al., 2009; Vissers et al., 
2013; Knapen et al., 2015). Our study revealed that seven pathways 
related to the biosynthesis of vitamin K2 and its homolog were 
reduced after treatment. This may indicate that the patient’s 
symptoms related to atherosclerosis were relieved, and there was no 
need to produce more vitamin K2.

Our findings suggest that rosuvastatin and atorvastatin have 
distinct effects on the gut microbiota composition in acute coronary 
syndrome patients. After two months of treatment, the intestinal 
microbial diversity of ACS patients taking rosuvastatin showed an 
increasing trend, while the intestinal microbial diversity of ACS 
patients taking atorvastatin showed the opposite decreasing trend. 
Rosuvastatin was associated with increased gut microbiota richness, 
consistent with previous research (Liu et al., 2018; Kummen et al., 
2020). It is speculated that atorvastatin treatment of 
hypercholesterolemia can selectively restore the relative abundance 
of several dominant and functionally important taxa that are 
disrupted after illness, but further studies are needed to verify this 
(Khan et al., 2018). Specifically, rosuvastatin promoted the growth 
of anti-inflammatory bacteria, such as F. prausnitzii (Sokol et al., 
2008; Khan et  al., 2018; Saber et  al., 2021), while reducing the 
abundance of pro-inflammatory bacteria, including Escherichia 
(Nolan et  al., 2017), R. gnavus (Henke et  al., 2021), P. bivia 
(Strömbeck et al., 2007; Hou et al., 2022), and V. parvula (Zhan 
et al., 2022). F. prausnitzii is known for its anti-inflammatory effects, 
including the inhibition of NF-κB activation and IL-8 production 
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(Breyner et al., 2017; Lopez-Siles et al., 2017; Lenoir et al., 2020). It 
also produces butyrate, which has anti-inflammatory properties. 
Conversely, certain strains of R. gnavus have been associated with 
inflammatory bowel disease and other inflammatory conditions 
(Hall et al., 2017). Veillonella has been found to induce inflammation 
in clinical conditions (Zhan et  al., 2022; Zeng et  al., 2023). 
Atorvastatin decreased the levels of pro-inflammatory bacteria such 
as Enterobacteriaceae (Zeng et al., 2017; Baldelli et al., 2021), as well 
as anti-inflammatory bacteria like Blautia and Lactococcus (Ma 
et  al., 2023). Lactococcus, particularly Lactococcus lactis, has 
demonstrated potential as a probiotic strain with anti-inflammatory 
properties, particularly in treating colitis and mucositis (Luerce 
et  al., 2014; Liu et  al., 2019). It has been shown to have 
immunomodulatory activity, enhancing Th1-type immune 
responses, which can contribute to anti-inflammatory effects. 
Additionally, atorvastatin was associated with increased abundance 
of the Bacteroides genus. Studies have shown that atorvastatin 
treatment increased the relative abundance of Bacteroides genera in 
high-fat diet-induced hypercholesterolemic rats (Khan et al., 2018). 
Rosuvastatin and atorvastatin both affect the gut microbiota 
through variability in FXR receptor signalling. Rosuvastatin alters 
the host gene expression of bile acid metabolism pathways, while 
atorvastatin leads to decreased secondary bile acids (Tuteja and 
Ferguson, 2019). These results contribute to our understanding of 
the potential microbiota-related mechanisms underlying the 
therapeutic effects of these statins.

This study has several limitations expected to be improved in 
future research. Firstly, we included a relatively small cohort primarily 
due to losing many patients during follow-up. Inter-individual 
variation accounted for 69.6% of the variance in our study’s relative 
abundance of species’ levels, a common issue in metagenomic 
research. To address the sample size limitation, we employed stringent 
inclusion criteria to reduce individual differences. We  utilized 
metagenomic sequencing to maximize the information extracted 
from each sample. Secondly, the cross-sectional nature of this study 
involved sampling patients from only one hospital in Zhuhai, which 
may not fully capture the diversity of the broader population, thus 
constraining the generalizability of the findings. Thirdly, the intricate 
interplay among medication use, gut microbiota, and confounding 
factors presents several limitations in our study. Medication 
administration signifies alterations in the host’s health status, which 
may be accompanied by changes in lifestyle factors (such as smoking, 
alcohol consumption, and physical activity) known to impact gut 
microbiota composition. While we controlled for dietary patterns 
(within the same regional population) and age (within a specific age 
range), we could not regulate the influence of comorbidities (such as 
diabetes or obesity), medications (particularly antibiotics, as well as 
proton pump inhibitors, nonsteroidal anti-inflammatory drugs, and 
metformin), and genetics (inter-individual genetic variability). 
Fourthly, this study solely relies on empirical analysis using genome 
sequencing data and lacks animal experiments to delve deeper into 
the mechanisms underpinning these observations. Considering the 
limitations above, we intend to gather a larger sample size to monitor 
taxonomic and functional changes in gut microbiota to validate the 
existing findings. Furthermore, we  aim to incorporate animal 
experiments to validate the underlying mechanisms.

In summary, we identified risk biomarkers between ACS patients 
and healthy individuals and detected significant alterations in the gut 

microbiota of ACS patients before and after treatment. We  also 
analyzed the differences in gut microbiomes in patients after using 
two different statins. These may mediate the development and 
treatment of ACS by translating into metabolisms. Further research 
utilizing advanced multi-omic detection and joint analysis techniques 
in prospective studies is necessary to better understand the role of gut 
microbiota in the pathogenesis of coronary heart disease and identify 
potential therapeutic targets.
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