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Introduction: Systemic dimorphic fungi pose a significant public health

challenge, causing over one million new infections annually. The dimorphic

transition between saprophytic mycelia and pathogenic yeasts is strongly

associated with the pathogenesis of dimorphic fungi. However, despite the

dynamic nature of dimorphic transition, the current omics studies focused on

dimorphic transition primarily employ static strategies, partly due to the lack of

suitable dynamic analytical methods.

Methods: We conducted time-course transcriptional profiling during the

dimorphic transition of Talaromyces marne�ei, a model organism for thermally

dimorphic fungi. To capture non-uniform and nonlinear transcriptional changes,

we developed DyGAM-NS (dynamic optimized generalized additive model with

natural cubic smoothing). The performance of DyGAM-NS was evaluated by

comparison with seven other commonly used time-course analysis methods.

Based on dimorphic transition induced genes (DTIGs) identified by DyGAM-

NS, cluster analysis was utilized to discern distinct gene expression patterns

throughout dimorphic transitions of T. marne�ei. Simultaneously, a gene

expression regulatory network was constructed to probe pivotal regulatory

elements governing the dimorphic transitions.

Results: By using DyGAM-NS, model, we identified 5,223 DTIGs of T. marne�ei.

Notably, the DyGAM-NS model showcases performance on par with or

superior to other commonly used models, achieving the highest F1 score

in our assessment. Moreover, the DyGAM-NS model also demonstrates

potential in predicting gene expression levels throughout temporal processes.

The cluster analysis of DTIGs suggests divergent gene expression patterns

between mycelium-to-yeast and yeast-to-mycelium transitions, indicating the

asymmetrical nature of two transition directions. Additionally, leveraging the

identified DTIGs, we constructed a regulatory network for the dimorphic

transition and identified two zinc finger-containing transcription factors that

potentially regulate dimorphic transition in T. marne�ei.

Discussion: Our study elucidates the dynamic transcriptional profile changes

during the dimorphic transition of T. marne�ei. Furthermore, it o�ers a novel

perspective for unraveling the underlying mechanisms of fungal dimorphism,

emphasizing the importance of dynamic analytical methods in understanding

complex biological processes.
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Introduction

Systemic dimorphic fungi are significant human pathogens that

cause millions of new infections annually worldwide (Klein and

Tebbets, 2007). The ability of these fungi to transition between

unicellular yeast and multicellular mycelial forms, known as

dimorphic transition, enables them to adapt from environmental

saprophytes to pathogens within hosts. In details, the mycelium-

to-yeast (M-to-Y) transition is crucial for their pathogenicity as

the yeast form evades the host immune system, while the yeast-

to-mycelium (Y-to-M) transition is important for maintaining an

environmental reservoir (Nemecek et al., 2006; Gauthier, 2017).

As the highly association between fungal dimorphic transition

and their pathogenicity, elucidating the genetic mechanisms of

dimorphic transition will not only shed light on understanding

the pathogenic mechanisms of human fungal pathogens, but

also provide theoretical guidance for molecular-based anti-

fungal therapy.

The rapid advancement of high-throughput sequencing

technologies, especially in the field of transcriptomics, has spurred

numerous investigations aiming to employ more efficient genomic

techniques for a comprehensive understanding of the regulatory

mechanisms underlying fungal dimorphic transition. However,

many studies have predominantly relied on static transcriptomic

analysis approaches, focusing on contrasting transcriptomic

differences between the mycelial and yeast phases to identify

regulatory genes involved in the dimorphic transition process.

Given the complex regulatory network governing fungal dimorphic

transition, such static transcriptomic studies often fall short in

capturing the full spectrum of genes that actively regulate the

transition. While some studies have made efforts to elucidate the

regulatory mechanisms by utilizing transcriptomic data obtained

at different time points during the dimorphic transition, the

limited number of sampling time points poses constraints on the

comprehensive analysis of the intricate transcriptional changes that

occur throughout the transition. Consequently, there is an urgent

demand for innovative research strategies that can enable efficient

and accurate deciphering of fungal dimorphic transition.

Temporal transcriptome analysis is a commonly employed

approach for investigating dynamic gene expression changes in

complex biological processes (Bar-Joseph et al., 2012). It allows for

the identification of transient gene expression patterns, response

times, and gene regulatory relationships, thus holding significant

potential for unraveling the regulatory mechanisms underlying

dimorphic transition. However, the proper interpretation of time-

course transcriptome data during dimorphic transition remains

challenging. In recent years, various methods, such as polynomial

regression (Nueda et al., 2014), Gaussian process regression (Äijö

et al., 2014), autoregressive models (Leng et al., 2015), and

natural cubic spline smoothing (Michna et al., 2016), have been

developed to address the complexities associated with time-course

transcriptome analysis. However, the dynamics of gene expression

can differ greatly across species, particularly in microorganisms

like fungi, where gene expression changes exhibit non-uniform

and nonlinear patterns. This variability limits the effectiveness of

existing models in capturing the complex temporal dependencies

inherent in dimorphic transition. Therefore, it is essential to

develop precise and adaptable methodologies that can effectively

analyze time-course transcriptome data and uncover the dynamic

gene expression changes occurring during dimorphic transition.

Talaromyces marneffei (formerly Penicillium marneffei) is a

thermally dimorphic pathogenic fungus that undergoes a switch

from a mycelial form at ambient temperature (25◦C) to a yeast

form at the host temperature (37◦C). This temperature-mediated

dimorphic transition is intricately linked to the pathogenesis of

T. marneffei (Boyce and Andrianopoulos, 2015). Once inside the

host, T. marneffei transforms into yeast cells and adeptly navigates

the harsh environment of macrophages by modulating metabolic

pathways, adjusting nitrogen source preferences, and expressing

peroxidases to counter nutrient deprivation and oxidative stress

(Boyce and Andrianopoulos, 2015; Pruksaphon et al., 2022). This

enables the fungus to thrive and multiply within macrophages.

Subsequently, as macrophages migrate within the host, T. marneffei

achieves systemic dissemination, leading to disseminated systemic

infection. Given its propensity to infect immunocompromised

individuals, such as HIV-positive patients, T. marneffei’s lower

biosafety level and its susceptibility to dimorphic transition

induction under laboratory conditions render it an exemplary

model organism for investigating fungal dimorphism.

In this study, we employed a DyGAM-NS (dynamic optimized

generalized additive model with natural cubic smoothing)

approach to analyze the time-course transcriptome data during

the dimorphic transition of T. marneffei. The DyGAM-NS model

combines the flexibility of generalized additive models, which

enable capturing non-linear and complex changes, with dynamic

optimization using natural cubic spline smoothing. By dynamically

optimizing the model parameters for each gene, we identified

the best-fitted models and determined the dimorphic transition

induced genes (DTIGs) in T. marneffei. Cluster analysis of these

DTIGs revealed dynamic expression patterns, providing insights

into the temporal characteristics of the transcriptome during the

dimorphic transition. Furthermore, by integrating the DTIGs

with the transcription factors of T. marneffei, we constructed a

gene expression regulatory network for the dimorphic transition,

uncovering potential regulators involved in dimorphic transition

of T. marneffei. In summary, the DyGAM-NS model not only

enables efficient and accurate deciphering of the regulatory

mechanisms underlying the dimorphic transition of T. marneffei,

but also provides a powerful tool for unraveling complex biological

processes in other microorganisms.

Materials and methods

Strains media, and culture conditions

Talaromyces marneffei strain PM1, isolated from a

talaromycosis patient without HIV infection in Hong Kong

(Yang et al., 2014), served as the basis for our research. Previously,

we generated madsA overexpression and knockout mutant strains

(Yang et al., 2014; Wang et al., 2018) derived from the wild-type

PM1. All strains were maintained at a temperature of 25◦C

on Sabouraud Dextrose Agar (SDA) (Becton, Dickinson and

Company, USA), which was also utilized for preparing conidial
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inocula. Sabouraud Dextrose Broth (SDB) (Becton, Dickinson and

Company, USA) was employed for liquid cultures of the wild-type

strain. To ensure long-term storage, mycelia from each strain were

suspended in 25% (w/v) sterile glycerol and subsequently frozen

at−80◦C.

Whole-genome sequencing of T. marne�ei

PM1

Initially, a conidia suspension of PM1, containing ∼1 × 106

conidia, was introduced into a 50ml SDB culture. This culture

was incubated at 37◦C with shaking at 200 rpm for 7 days.

Subsequently, 5ml of the culture was transferred to a fresh

45ml SDB and incubated overnight at 37◦C. The resulting yeast

cells were harvested through centrifugation at 3000 × g and

washed twice with 1 × phosphate-buffered saline (PBS). Genomic

DNA extraction was carried out using the Epicenter MasterPure

Yeast DNA Purification Kit (Cat. MPY80020) according to the

manufacturer instructions, with a minor modification: RNA was

digested using RNase A, RNase T1, and RNase I instead of solely

RNase A. The quantity and quality of the extracted genomic DNA

were evaluated using the Qubit 4.0 fluorometer (Thermo Scientific,

USA) and NanoDrop spectrophotometer (Thermo Scientific,

USA). Whole genome sequencing was performed by utilizing the

Illumina HiSeq X platform (350 bp insert size with 150 bp paired-

end) and the PacBio Sequel platform (10 kb inserts library).

De novo genome assembly and evaluation
of quality

Subreads were obtained from the PacBio sequencing data using

the SMRT analysis pipeline v5.1.0 (Jayakumar and Sakakibara,

2019). The Canu v1.6 algorithm (Koren et al., 2017) was utilized to

generate a draft genome through an overlapping layout consensus

(OLC) assembly approach, employing PacBio subreads. In this

process, a genome size of 30Mb was specified, as previously

reported that the genome size of T. marneffei is about 30Mb

(Yang et al., 2014), and the longest 40× of subreads were selected

as seed reads to generate error-corrected long reads. The draft

assembly underwent further processing, including the filtration

of bubble sequences and the identification of the mitochondria

sequence by comparing it to the known T. marneffei sequence using

BLASTN v2.12.0+ (Camacho et al., 2009). To enhance the accuracy

of the assembly, Arrow v2.0.2 (Jayakumar and Sakakibara, 2019)

was employed based on PacBio reads, while Pilon v1.24 (Walker

et al., 2014) was used based on Illumina reads for additional

polishing. The completeness of the assembly was assessed by

performing BUSCO v4 analysis (Manni et al., 2021) against the

Eurotiales database.

Temporal RNA preparation and sequencing

In the initial phase of the experiment, conidia of strain

PM1 were inoculated onto SDA plates and cultivated at two

different temperatures, 25◦C and 37◦C, for a duration of 1 week.

Subsequently, the SDA plates incubated at 25◦C were transferred

to 37◦C, while those cultivated at 37◦C were transferred to 25◦C.

This process facilitated the growth of colonies representing the M-

to-Y or Y-to-M transition growth forms, respectively. Total RNA

samples were extracted at specific time points after the temperature

switch, namely at 0, 1, 3, 6, 9, 12, 24, 36, 48, and 72 hours.

In the case of the madsA overexpression and knockout strains,

total RNA samples were extracted at 0 and 48 h for the M-to-Y

transition, and at 0 and 6 h for the Y-to-M transition. For each

time point, three independent biological replicates were used to

extract total RNA using the E.Z.N.A. fungal RNA kit (Omega Bio-

Tek). The quantification of RNA was performed using a Qubit

4.0 fluorometer (Thermo Scientific, USA). A total of 84 strand-

specific libraries, with RNA integrity numbers (RIN) exceeding 6.5,

were constructed and sequenced on an Illumina HiSeq X platform,

resulting in ∼20 million 150-bp paired-end reads for each sample.

Prior to analysis, the reads were trimmed using Trimmomatic

v0.38 (Bolger et al., 2014) based on quality assessment carried

out by FastQC v0.11.5 (https://www.bioinformatics.babraham.ac.

uk/projects/fastqc/).

Annotation of repeat sequences and
protein-coding genes

Repeat regions in the assembly were masked using

RepeatMaker v4.0.7 (http://repeatmasker.org) with a T. marneffei-

specific repeat library generated by RepeatModeler v4.0.7 (http://

repeatmasker.org/RepeatModeler/). Based on the annotation

results obtained from RepeatMasker, we identified the presence

of tandem repeat sequences (with a repeat fragment length of 6

bp) at the ends of each genomic sequence to ascertain telomeric

sequences in T. marneffei. To locate centromeres, we scanned

the genome sequences using 50 kb windows, and identified

regions characterized by low GC content and high transposon

proportion as potential centromeric regions. Gene annotations

were conducted using three distinct types of evidence. Firstly,

the assembly was aligned to a protein database that combined

the UniProt/Swiss-Prot protein database and all sequences of

Talaromyces marneffei from the NCBI protein database, using

Exonrate v2.2.0 (Slater and Birney, 2005). Additionally, temporal

RNA-seq reads of T. marneffei PM1 from various time points

during the dimorphic transition were de novo assembled with

Trinity v2.3.2 (Grabherr et al., 2011). The resulting Trinity

assembly was then passed through the PASA v2.5.2 pipeline

(Haas, 2003) to generate transcript evidence. Furthermore,

ab initio gene predictions were carried out using FGENESH

(Solovyev et al., 2006) and BRAKER2 v2.1.6 (Br ◦una et al., 2021).

For FGENESH, the genome-specific parameters of Penicillium

were employed, while BRAKER2 utilized RNA-seq reads to

enhance the accuracy of gene predictions. The EVidenceModeler

(EVM) v1.1.1 (Haas et al., 2008) was employed to integrate

the three types of evidence into consensus gene structures,

assigning a weight of 10 to transcript alignments, 5 to protein

alignments, and 1 to ab initio gene predictions. The final gene

sets were subjected to a BLASTP v2.12.0+ (Camacho et al.,
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2009) search against the NCBI non-redundant (NR) protein

database. The domains of these genes were annotated using

InterProScan v5.56-89.0 (Jones et al., 2014), which utilizes

publicly available databases. Functional annotations were then

performed using BLAST2GO v5.2.5 (Conesa and Götz, 2008),

incorporating the results obtained from both BLASTP and

InterProScan analyses.

RNA-seq data analysis

RNA-seq short reads were aligned to the annotated genomes

using STAR v2.7.9a (Dobin et al., 2013) to obtain read mappings.

The read count for each gene was calculated using FeatureCount

v2.0.3 (Liao et al., 2014), specifying a library by using “-s

2”. The expression level of genes was quantified using TPM

(transcripts per million). Genes with a mean TPM >1 at

least once during the dimorphic transition were selected for

subsequent analysis. The raw counts were then normalized using

the median of ratios method implemented in DESeq2 (Love et al.,

2014). For the time-course RNA-seq data, principal component

analysis (PCA) was performed using the prcomp function in

R v4.2.2. Visualization of the PCA results was achieved using

the ggplot2 package. The heatmap depicting gene expression

levels during the dimorphic transition was generated using the

pheatmap package. In the case of RNA-seq data from madsA

overexpression and knockout strains, differentially expressed genes

were identified using the DESeq2 method, applying a false

discovery rate (FDR) threshold of <0.05 and a fold change

threshold >2.

Identification of dimorphic transition
induced genes

We utilized a dynamic optimized generalized additive

model with natural cubic smoothing (DyGAM-NS) approach

to capture the non-linear relationship between gene

expression profiles and time during the dimorphic transition

(Equation 1).

Ygenei∼GAM (t) + εgenei (1)

To account for the discrete nature and

overdispersion of read counts, we employed a

negative binomial (NB) distribution with gene-

specific means and dispersion, estimated using DESeq2

(Equation 2).

{

Ygenei∼NB
(

µgenei , θgenei
)

µgenei = E
(

Ygenei

) (2)

The flexibility of the DyGAM-NS method allowed us

to adjust the number and placement of knots (Equation 3).

To determine the optimal parameters for each gene,

we evaluated models with all possible combinations

of knots using the corrected Akaike information

criterion (AICc).

GAM (t) =



















GAM1 (t) , 0 ≤ t < t1
GAM2 (t − t1) , t1 ≤ t < t2

. . .

GAMn (t − tn−1) , tn−1 ≤ t ≤ tn

(3)

The DyGAM-NS model was fitted using the gam function in

the mgcv package (Wood, 2011), and AICc values were calculated

using the AICc function in the AICcmodavg package. Finally, we

filtered the dimorphic transition induced genes (DTIGs) based on

criteria of FDR<0.05, deviance explained>0.7. The code for fitting

the DyGAM-NS model can be downloaded from GitHub (https://

github.com/yangence/DyGAM-NS).

Predicting gene expression levels during
dimorphic transitions using DyGAM-NS
model

Initially, we extracted expression data of all DTIGs identified

during the M-to-Y and Y-to-M transitions. For each DTIG, a

set of data points at an intermediate time point (1, 3, 6, 9, 12,

24, 36, 48 h) was randomly removed. Subsequently, leveraging

data from the remaining 9 time points, we fitted the DyGAM-

NS model for the responding gene. Then, the removed time point

was provided to the DyGAM-NS model to yield its predicted

gene expression level at that time point. Employing the model’s

estimated standard error, we derived the 95% confidence interval

of the predicted expression level. Ultimately, by contrasting the

original gene expression level with the confidence interval, we

evaluated the predictive performance of the DyGAM-NS model.

Clustering gene expression patterns of
DTIGs

In order to select more credible DTIGs, we filtered genes

with expression changes exceeding a 2-fold threshold during the

dimorphic transitions, designating them as highly variable DTIGs

for subsequent clustering analysis. To analyze the expression

pattern of DTIGs, we employed the trimmed k-means method

from the tclust package (Fritz et al., 2012). This method utilized

the fitted values of the DyGAM-NS model for each gene, where

the fitted values were standardized to have a zero mean and unit

variance across samples for each gene. The optimal number of

clusters was determined based on the within sum of squares.

The R package clusterProfiler v4.6.0 was employed, based on

functional annotations specific to T. marneffei, for Gene Ontology

(GO) functional enrichment analysis of genes within diverse

expression patterns.
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Construction of gene regulatory networks

Gene regulatory networks were constructed using GRNboost2

v0.1.6 (Moerman et al., 2019) based on the time-course expression

data sets. The list of transcription factors (TFs) used as input for

GRNboost2 was identified through the InterPro database (IPR)

and compiled from previous studies (Shelest, 2008). The final gene

regulatory network was obtained by retaining edges with the top

5% cumulative weight. The betweenness centrality of each gene

was calculated using the igraph package in R. Visualization of

the gene regulatory network was performed using the NetworkD3

package in R. Themotifs associated with each regulatory gene in the

network were identified using MEME (Bailey et al., 2009), utilizing

the upstream 500-bp regions of the corresponding target genes.

Data availability

The PacBio and Illumina sequencing data used for genome

assembly have been deposited in the Genome Sequence

Archive under the accession PRJCA002718. The reference

genome sequences of T. marneffei PM1 have been deposited at

DDBJ/ENA/GenBank under the accession JPOX02000000. The

sequencing dataset for time-course RNA-seq of T. marneffei PM1

during M-to-Y and Y-to-M transitions have been deposited in the

Sequence Read Archive under the accession PRJNA970557. The

RNA-seq dataset used for identification of high variable genes

during dimorphic transitions are available for download from the

SRA under the accession PRJNA431116.

Results

Improving the reference genome of
Talaromyces marne�ei strain PM1 to
near-chromosome level

To improve the quality of the reference genome forTalaromyces

marneffei strain PM1 (Yang et al., 2014), we conducted high-

coverage whole-genome sequencing using a combination of PacBio

SMRT (3.3 Gb, 115×) and Illumina (6.0 Gb, 210×) sequencing

technologies. Firstly, we employed PacBio data to construct

the initial draft assembly, resulting in 26 contigs. Subsequently,

we identified and eliminated 12 bubble sequences and one

mitochondria sequence from the draft assembly. Finally, we

polished the genome sequences using both PacBio raw data and

high-coverage Illumina data. The final assembly consisted of

13 contiguous sequences, with a total size of 29.0Mb, an N50

of 3.3Mb, and an L95 of 8 (Table 1). Based on the Eurotiales

database (n = 4,191), we successfully identified 4,067 complete

BUSCOs (97.3%), indicating a significant improvement in the

completeness and continuity of the PM1 genome sequences.

Furthermore, we detected 16 telomere sequences (TCCTAA) and

8 centromere regions in the final assembly (Figure 1), consistent

with previous findings (Gifford and Cooper, 2009; Cuomo et al.,

2020), thereby suggesting that the genome sequences have achieved

near-chromosomal level.

TABLE 1 Summary of T. marne�ei PM1 genome assembly and annotation.

T.
marne�ei

PM1

Previously
reported
PM1

Genome assembly

Genome size (bp) 29,019,915 28,345,621

Contigs 13 216

N50 (bp) 3,334,497 678,243

L95 8 112

GC content (%) 46.7 46.7

Complete BUSCOs 4,076 (97.3%) 3,778 (90.1%)

Single-copy 4,067 2,973

Duplicated 9 805

Fragmented BUSCOs 10 (0.2%) 56

Missing BUSCOs 105 (2.5%) 357

Genome annotation

Protein-coding genes 10,378 9,480

No. of transcripts 16,683 13,042

Mean gene length (bp) 2,400 1,816

Mean no. of exons 3.6 3.6

Gene density (Mb−1) 357.9 334.4

Genes with IPR domain 8,053 (77.6%) /

Genes with GO term 5,822 (56.1%) /

Illustrating transcriptional dynamics of
dimorphic transition by using time-course
RNA-seq data

To explore the dynamic gene activity during the dimorphic

transition of T. marneffei, we conducted RNA-seq analysis

on samples collected at various stages of the time-course,

encompassing both the mycelium-to-yeast (M-to-Y) and yeast-

to-mycelium (Y-to-M) transitions. Recognizing the non-uniform

nature of the dimorphic transition, we strategically selected 10 time

points distributed unevenly over the 0–72 h period (0, 1, 3, 6, 9,

12, 24, 36, 48, 72 h) for both transitions. With three biological

replicates for each time point, a total of 60 samples were subjected

to RNA-seq, yielding an average of 24million read pairs per sample.

Initially, these transcriptome data were employed to facilitate

the genome annotation of PM1, resulting in the identification

of 10,378 protein-coding genes (Table 1). Among these genes,

77.6% of the proteins were annotated with at least one InterPro

domain, and 56.1% were assigned at least one Gene Ontology (GO)

term. Subsequently, the RNA-seq data were mapped to the PM1

reference genome, and uniquely mapped read pairs were utilized

to estimate the expression levels of protein-coding genes using the

transcripts per million (TPM) method. To mitigate the impact of

transcriptional noise arising from low-expression genes, we filtered

out 9,541 genes with a mean TPM <1 in at least one time point

during either the M-to-Y or Y-to-M transition.
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FIGURE 1

Circos plot of genome assembly and annotation of T. marne�ei PM1. Each track, from outside to inside, represents: the coordinate of 13 sequences

of the genome assembly of PM1, the GC contents (range from 35% to 55%), the proportion of repeat elements (range from 0% to 50%), and the gene

density, respectively. All these genomic characteristics were analyzed using a window size of 50 kb. The telomere sequences are depicted by orange

circles, while the centromere regions are represented by black diamonds.

An initial analysis of the transcriptomic dynamics during the

dimorphic transition was performed using principal component

analysis (PCA). In the M-to-Y transition, PC1 accounted for

64.8% of the variance between samples. Arranging the samples

in the order of sampling time revealed a distinct trajectory on

the PC1-PC2 plane, indicating clear differentiation among the

sample groups (Figure 2A). Notably, during the early stage of the

M-to-Y transition (0–3 h), the distances between sample groups

were notably larger than those at other time points, suggesting a

rapid transcriptional change during the initial phase of the M-to-

Y transition. Similarly, in the Y-to-M transition, PC1 explained

61.1% of the variance between samples. A discernible trajectory

was observed on the PC1-PC2 plane among the sample groups in

the order of transition time (Figure 2B). The inter-group distances

indicated that the magnitude of transcriptional changes during

the early stage of the Y-to-M transition was not as pronounced

as in the M-to-Y transition. Importantly, when all samples were

subjected to PCA, a circular differentiation trajectory was formed

between sample groups, aligning with the reversible cyclic nature

of the dimorphic transition (Figure 2C). On the PC1-PC2 plane in

the PCA of all samples, PC1 effectively distinguished between the

M-to-Y and Y-to-M transitions, indicating distinct transcriptional

regulation patterns during the dimorphic transition. Heatmap

analysis based on gene expression levels across all samples further

demonstrated that a considerable proportion of genes exhibited

differential expression patterns during the dimorphic transition

(Figure 2D), highlighting the complexity and nonlinearity of

transcriptional dynamics during this process.
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FIGURE 2

Transcriptional dynamics during M-to-Y and Y-to-M transitions of T. marne�ei. The scatter charts show the di�erentiation trajectory during

dimorphic transition of (A) M-to-Y, (B) Y-to-M, and (C) M-to-Y together with Y-to-M based on the scores of the first two principal components. (D)

Heatmap of gene expression levels, measured with TPM, during M-to-Y and Y-to-M transition. The expression levels are standardized to have zero

mean and unit variance across samples for each gene.

Identification of dimorphic transition
induced genes by using generalized
additive model and natural cubic spline

In this investigation, we employed an unevenly spaced

sampling strategy that better aligns with the biological changes

observed during the dimorphic transition of T. marneffei. To

effectively capture the non-uniform and non-linear dynamics of

the time-course data, we proposed a dynamic fitting method,

referred to as dynamic optimized generalized additive model with

natural cubic smoothing (DyGAM-NS), to examine the dynamic

alterations in gene expression induced by the dimorphic transition.

By incorporating natural cubic splines as smoothing terms,

DyGAM-NS allows for non-uniform and customizable partition

knots, thereby accommodating the changing characteristics of

gene expression during the dimorphic transition. The read

counts for each gene during transition was modeled using

a negative binomial distribution with gene-specific dispersion

parameters. To explore the optimal parameters for the DyGAM-

NS model, we randomly selected 100 genes without replacement

and fitted their expression changes over time using various

NS partition numbers, NS knots, and dispersion coefficients.

Model performance was evaluated using the corrected Akaike

information criterion (AICc). The results demonstrated that gene-

specific optimization of NS partition numbers, NS knots, and

dispersion coefficients enhanced the performance of the DyGAM-

NSmodel (Supplementary Figure S1). Consequently, for each gene,

we exhaustively explored combinations of NS smoothing term

partition numbers and knots and selected the optimal parameter

combination based on AICc. Compared to the default parameters,

most genes (92.3% in M-to-Y and 96.4% in Y-to-M) exhibited

improved model performance after parameter optimization

(Supplementary Figures S2A, B). Summarizing the optimal model

parameters for each gene revealed that most of genes had an
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optimal partition number of 5 (Supplementary Figures S2C, D),

indicating the complex and diverse changes in the transcriptome

during the dimorphic transition. In the M-to-Y transition, there

was a noticeable presence of genes with partition knots at 1 and

3 h compared to the Y-to-M transition (Supplementary Figure S2E,

F), further suggesting the more rapid early transcriptome changes

in the M-to-Y transition.

Using DyGAM-NSmodel, we identified 6,167 and 8,085 DTIGs

in M-to-Y and Y-to-M transitions, respectively. Due to the lack of

known data on true DTIGs of T. marneffei, direct evaluation of the

precision and recall of the DyGAM-NS model is challenging. Thus,

we alternatively estimated precision and recall using two different

approaches. Given that genes involved in regulating the dimorphic

transition should display significant expression changes during

the process, DTIGs that do not exhibit differential expression

between any two time points in the time-course data are likely

false positives. Applying this criterion, we estimated the precision

of M-to-Y DTIGs to be 96.1% (5,926/6,167) and Y-to-M DTIGs to

be 96.1% (7,770/8085) (Table 2). To assess the recall of the model,

we identified highly variable genes (HVGs) based on the biological

coefficient of variation (BCV) during the dimorphic transition.

Genes involved in regulating the dimorphic transition are expected

to have higher BCV in temporal data compared to a static state.

We employed a chi-square test to identify genes with significantly

higher BCV (Brennecke et al., 2013) (FDR < 0.05) during the

dimorphic transition than in a static state, considering them as

HVGs. Using the HVG dataset as the criterion to evaluate the

DyGAM-NS model, we estimated the recall of M-to-Y to be 98.1%

(152/155) and Y-to-M to be 98.2% (280/285) (Table 2). Finally,

based on the estimated precision and recall, the estimated F1-scores

of the DyGAM-NS model in the M-to-Y and Y-to-M transitions

were both 97.3% (Table 2).

To comprehensively assess the effectiveness of the DyGAM-

NS model in identifying DTIGs, we conducted a comparison

with seven commonly employed time-course analysis methods

(McCarthy et al., 2012; Law et al., 2014; Nueda et al., 2014; Leng

et al., 2015; Fischer et al., 2018) (Table 2). Comparison results

revealed that the DyGAM-NS model demonstrates performance

on par with other methods in identifying DTIGs. The estimated

F1-score of DyGAM-NS slightly surpasses that of the other

seven methods. Furthermore, comparing the DTIGs identified

by DyGAM-NS with those of the other seven methods, DTIGs

identified by the DyGAM-NSmodel can be validated by at least two

other methods in both M-to-Y and Y-to-M transitions, suggesting

the robustness of our approach.

Of particular interest is the DyGAM-NS model’s potential in

predicting gene expression levels of DTIGs at various time points

during dimorphic transition. To validate this, for all identified

DTIGs genes, we randomly excluded samples from any one set

of time points during the dimorphic transition. We then utilized

the expression data from the remaining 9 time points to fit the

DyGAM-NS model. Next, we used the newly fitted model to

predict the gene expression levels for the randomly excluded time

points and compared them with the original data to assess their

accuracy. The results indicate that during the M-to-Y transition

process, 51.5% (3174/6167) of DTIGs’ actual expression levels

fall within the 95% confidence interval of the predicted values.

Similarly, during the Y-to-M transition process, 51.9% (4194/8085)

of DTIGs’ actual expression levels fall within the 95% confidence

interval of the predicted values. In comparison to other methods,

DyGAM-NS not only exhibits comparable DTIG identification

capabilities but also demonstrates potential in predicting temporal

gene expression levels.

Clustering of DTIGs indicate that di�erent
gene expression pattern for M-to-Y and
Y-to-M transitions of T. marne�ei

To explore the dynamic changes of DTIGs during the

dimorphic transition of T. marneffei, we further applied stringent

filtering criteria (fold change of expression levels during dimorphic

transitions > 2), resulting in the identification of 3,084 and

4,156 highly variable DTIGs in M-to-Y and Y-to-M transitions,

respectively. By using a modified trimmed k-means clustering

algorithm (Fritz et al., 2012), we discovered 11 distinct expression

patterns in both M-to-Y and Y-to-M transitions. In the M-

to-Y transition, we discovered 11 distinct expression patterns

(Figure 3), encompassing three primary types of changes: 4 up-

regulated patterns, 5 down-regulated patterns, and 2 pulse-

like patterns. Among the up-regulated expression patterns, we

observed critical genes involved in the survival of T. marneffei

within host macrophages, such as iron affinity-related genes

(Pasricha et al., 2016) (ftrA, ftrC, and sidA) in pattern M-

to-Y-up-1, pepA (Payne et al., 2019) in pattern M-to-Y-up-

3, and cytochrome P450 monoxygenases (Boyce et al., 2018)

(simA) and the tyrosine metabolic regulator (Boyce et al.,

2015) (hmgR) in pattern M-to-Y-up-4. These findings suggest

significant transcriptional changes occurring during the early stages

of the M-to-Y transition, facilitating rapid adaptation to the

harsh intracellular environment. Concerning the down-regulated

expression patterns, we identified genes associated with conidiation

and pigment synthesis (Borneman et al., 2002a; Todd et al.,

2003; Woo et al., 2010, 2012; Sapmak et al., 2015) (alb1, pbrB,

pks11, pks12, brlA, and stuA), which are closely linked to the

morphological characteristics of the mycelia. Additionally, the

pulse-like expression patterns exhibited an immediate transient

decrease in gene expression at the early stage of the M-to-Y

transition, potentially indicating a transient response regulation

mechanism during this transition. However, the underlying

mechanism governing these genes remains unknown and warrants

further investigation.

DTIGs associated with the Y-to-M transition can be classified

into 11 distinct expression patterns (Figure 4), which can further

be grouped into three types of changes: 5 up-regulated patterns,

2 down-regulated patterns, and 4 pulse-like patterns. In the up-

regulated expression pattern Y-to-M-up-1, we identified two basic

leucine-zipper (bZIP) transcription factors (Nimmanee et al., 2014;

Dankai et al., 2016) (atfA and yapA), known to regulate the

response of T. marneffei to environmental stress. Another up-

regulated pattern (Y-to-M-up-3) contains the C2H2 transcription

factor (Bugeja et al., 2013) (hgrA), which governs the formation of

the hyphal cell wall. Similarly, up-regulated patterns Y-to-M-up-2
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TABLE 2 Performance of DyGAM-NS and other commonly used models in identification of DTIGs.

Model Tools DTIGs Precision Recall F1-score

M-to-Y

DyGAM-NS In-house 6,167 96.1% 98.1% 97.1%

AR-HMM EBSeqHMM 6,134 98.7% 88.3% 93.2%

Polynomial regression Next maSigPro 2,855 98.4% 79.6% 88.0%

GLM edgeR 7,527 93.2% 97.1% 95.1%

Linear limma 9,129 90.4% 100.0% 95.0%

Impulse ImpulseDE2 9,488 87.5% 100.0% 93.3%

Cubic splines edgeR 8,279 91.8% 100.0% 95.7%

Autocorrelation AutoCor 3,513 94.6% 58.4% 72.2%

Y-to-M

DyGAM-NS In-house 8,085 96.1% 98.2% 97.1%

AR-HMM EBSeqHMM 7,356 97.5% 82.0% 89.1%

Polynomial regression Next maSigPro 5,610 98.5% 95.2% 96.8%

GLM edgeR 7,803 94.6% 96.7% 95.6%

Linear limma 9,486 92.5% 96.3% 94.4%

Impulse ImpulseDE2 9,698 91.1% 99.6% 95.2%

Cubic splines edgeR 9,302 93.2% 99.3% 96.2%

Autocorrelation AutoCor 3,769 98.4% 62.9% 76.7%

(Borneman et al., 2002a; Zuber et al., 2003; Woo et al., 2012)

(gasC, pks11, pks12, and stuA) and Y-to-M-up-4 (Todd et al., 2003;

Woo et al., 2010; Sapmak et al., 2015) (pbrB, alb1, and brlA)

exhibit genes related to the morphological characteristics of the

mycelia, including conidiation and pigment synthesis. Notably,

the dynamic changes in the transcriptome during the Y-to-M

transition are not as pronounced as those observed in the M-to-

Y transition. For instance, the mycelia phase-related genes found in

the pattern Y-to-M-up-4 gradually upregulate in the later stage of

the Y-to-M transition (Figure 4). In terms of the down-regulated

expression patterns, functional enrichment analysis reveals a

significant enrichment of translation-related functions, indicating

a decreased demand for protein synthesis and related processes

during the Y-to-M transition. Moreover, the continuously down-

regulated pattern Y-to-M-down-2 exhibits a significant enrichment

ofmitochondrial-related components and genes associated with the

tricarboxylic acid (TCA) cycle. This finding is consistent with the

fact that T. marneffei relies primarily on the TCA cycle for energy

metabolism in the yeast phase, whereas glycolysis is prominent in

the mycelia phase (Pasricha et al., 2017). Additionally, we observed

genes related to intracellular survival (Pasricha et al., 2016; Payne

et al., 2019) (sidA, pepA, and ftrC) in the two down-regulated

expression patterns. Within the pulse-like expression patterns, Y-

to-M-pulse-1 includes the RFX transcription factor (Bugeja et al.,

2010) rfxA, which plays a role in regulating cell division. Functional

enrichment analysis also indicates a significant enrichment of cell

division and cycle-related functions in pattern Y-to-M-pulse-1,

suggesting that cell division is inhibited in the early stage of the

Y-to-M transition and reactivated in the later stage.

Gene regulation network underlying
potential regulators of dimorphic transition
of T. marne�ei

To elucidate the regulatory relationships among DTIGs during

the dimorphic transition, we employed the GRNboost2 (Moerman

et al., 2019) method to construct a directed gene regulatory

network. To enhance the accuracy of the GRNboost2 approach, we

utilized 5,223 DTIGs identified by the DyGAM-NS model in both

the M-to-Y and Y-to-M transitions as target genes. Additionally,

we incorporated 401 candidate transcription factors as prior

information, identified through a combination of functional

annotation of T. marneffei and known fungal transcription factor

domains (Shelest, 2008). To ensure the focus on robust regulatory

relationships, we retained the top 5% cumulative weight of

strong gene-gene regulatory interactions to form the final gene

regulatory network. Following the filtering process, the dimorphic

transition gene regulatory network comprised 2,243 pairs of

robust regulatory relationships involving 1,664 genes, of which

325 were transcription factors (Figure 5A). Notably, within these

1,664 genes, TM060272, TM021494, and TM030196 emerged as

the most significant genes based on their betweenness centrality

within the network (Figure 5B). TM060272, possessing a Zn(2)-

C6 fungal-type DNA-binding domain (IPR001138), displayed up-

regulation during the M-to-Y transition but exhibited minimal

changes during the Y-to-M transition, indicating its role in M-

to-Y transition regulation. Conversely, TM021494, which also

contains a zinc finger domain, exhibited up-regulation during the

Y-to-M transition while showing little change during the M-to-Y
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FIGURE 3

Gene expression levels and enriched gene ontologies of the 11 expression patterns in M-to-Y transition. The line charts represent the expression

tendency of the 11 expression patterns in M-to-Y transition. Each light gray line represents a gene, and the black lines are drawn based on the mean

values at each time point. The gene expressions levels are measured with TPM and standardized to have zero mean and unit variance across samples.

The bar chart shows enriched gene ontologies for each expression pattern, which are presented in di�erent colors.

transition, suggesting its involvement in the regulation of the Y-to-

M transition. The TM030196 gene (abaA) exhibited an immediate

transient increase in expression during the early stage of theM-to-Y

transition (0–9 h) but showed minimal changes during the Y-to-M

transition, supporting its regulatory role in the M-to-Y transition,

consistent with previous research (Borneman et al., 2002b).

To assess the precision of the gene regulatory network

governing the dimorphic transition, we focused on the MADS-

box transcription factor madsA gene (TM030606), which has

been experimentally verified to play a role in regulating the

dimorphic transition (Yang et al., 2014; Wang et al., 2018)

(Figure 5B). To validate the downstream regulatory genes within

the dimorphic transition regulatory network, we employed

knockout and overexpression strains of madsA. RNA-seq analysis

was conducted on these strains at four time points during the

dimorphic transition (0 and 48 h for M-to-Y, and 0 and 6 h for

Y-to-M). By integrating the transcriptome data from the wild-

type strain at corresponding time points, we identified 1,788 genes

regulated by madsA during the dimorphic transition, of which

1,066 were identified as DTIGs by DyGAM-NS. Notably, in the

gene regulatory network constructed using GRNboost2, over 50%

(7/12) of the downstream target genes of madsA were validated

(Supplementary Figure S4).

Discussion

Dimorphic transition represents a sophisticated adaptive

mechanism in thermally dimorphic fungi, enabling their survival

and propagation across diverse environments. Understanding the

regulatory mechanisms underlying fungal dimorphic transition

is a key scientific pursuit, given its close connection to fungal

pathogenicity. Our study focused on the model organism of
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FIGURE 4

Gene expression levels and enriched gene ontologies of the 11 expression patterns in Y-to-M transition. The line charts represent the expression

tendency of the 11 expression patterns in Y-to-M transition. Each light gray line represents a gene, and the black lines are drawn based on the mean

values at each time point. The gene expressions levels are measured with TPM and standardized to have zero mean and unit variance across samples.

The bar chart shows enriched gene ontologies for each expression pattern, which are presented in di�erent colors.

dimorphic fungi, Talaromyces marneffei, and demonstrated the

significant potential of high-resolution temporal transcriptomes

in deciphering the regulatory mechanisms underlying fungal

dimorphic transition. On the one hand, temporal transcriptomes

provide comprehensive coverage of the entire biological process,

surpassing the limitations of static transcriptomic studies. In

previous studies, comparisons of transcriptional profiles at different

temperatures yielded limited information, with only a fraction of

genes associated with dimorphic transition identified. In contrast,

our study utilized temporal transcriptional data spanning the

first 72 h of M-to-Y and Y-to-M transitions, resulting in the

identification of a larger number of dimorphic transition induced

genes (DTIGs). Specifically, we identified 3,084 DTIGs in theM-to-

Y transition and 4,156 DTIGs in the Y-to-M transition, accounting

for 50.3% (5,223 out of 10,378) of all protein-coding genes.

This substantial increase in DTIG identification highlights the

importance of high-resolution temporal data in comprehensively

identifying regulatory genes related to dimorphic transition. On

the other hand, temporal data also enables the observation

of gene expression changes throughout the biological process,

facilitating the discovery of distinct expression patterns during

dimorphic transition. Our differentiation trajectory analysis

revealed divergent gene expression patterns between the M-to-

Y and Y-to-M transitions. Moreover, we identified numerous

transition-specific DTIGs (1,067 for M-to-Y and 2,139 for Y-

to-M), further supporting the asymmetrical nature of the two

transition directions. Furthermore, the clustering of DTIGs in

both the transition from M-to-Y and Y-to-M reveals the presence

of numerous distinctive expression patterns throughout the

dimorphic transition, including rapid up or down-regulation,

continuous up or down-regulation, and impulse-like. Through

functional analysis, it becomes evident that diverse gene functions
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FIGURE 5

Gene regulatory network of dimorphic transition of T. marne�ei. (A) Visualization of gene regulatory network of dimorphic transition. Each point

represents a gene, the size of points represents importance of genes in the network, which is measured with betweenness, and the color of points

indicates the module to which the corresponding gene belongs. The light gray lines represent strong regulatory relationship between corresponding

gene pairs. (B) The line charts on the right part represent tendency of relative expression level (measured with TPM and standardized across samples)

in M-to-Y (red line) and Y-to-M (blue line) transition for four putative regulators: TM060272, TM021494, TM030606 (madsA), and TM030196 (abaA).

are significantly enriched within these distinct expression patterns,

suggesting that different biological functions play prominent roles

at different stages of dimorphic transition. Consequently, our study

underscores the criticality of temporal transcriptomic data as an

indispensable tool for dissecting the intricate nature of fungal

dimorphic transitions.

Despite the decreasing cost of sequencing technologies,

enabling high-resolution time-course transcriptome sequencing,

challenges persist in deciphering temporal data for complex

biological processes, particularly in microorganisms like fungi. In

this study, we developed the DyGAM-NS model, which integrates

a flexible generalized additive model with dynamic gene-specific

natural cubic spline fitting optimization. We benchmarked the

DyGAM-NS model against seven other commonly used time-

course analysis methods. To assess its performance, we used

differentially expressed gene sets identified through pairwise

comparisons at each time point and highly variable gene

sets based on biological coefficient of variation, given the

absence of a standardized dataset for DTIGs in T. marneffei.

Through this hybrid estimation approach, the DyGAM-NS model

exhibited slightly higher F1-scores for DTIG identification in

both M-to-Y and Y-to-M transitions compared to the other

seven methods. Additionally, our analysis involved gene-specific

parameter optimization for each gene, yielding a unique DyGAM-

NS model for every DTIG. Leveraging the fitted model, our

method can predict gene expression levels at other time points

during dimorphic transitions, a capability currently lacking in other

methods. Cross-validation using random sampling demonstrated

that over 50% of gene expression levels fell within the 95%

confidence interval predicted by the DyGAM-NSmodel in bothM-

to-Y and Y-to-M transitions. This predictive potential for temporal

gene expression levels also supports downstream DTIG expression

pattern clustering and gene regulatory network construction. In

summary, the DyGAM-NS model, as an innovative approach

for identifying dynamic temporal gene regulation, provides fresh

insights into unraveling mechanisms of dimorphic transition and

other complex biological processes, particularly in fungi and

other microorganisms.

In this study, we utilized temporal transcriptomic data to

investigate the dimorphic transition of T. marneffei, focusing

on its distinct gene expression patterns at different stages of

dimorphic transition. During the early stage of M-to-Y transition,

we observed a substantial number of rapid upregulation genes

associated with environmental adaptation, such as pepA, ftrA,

ftrC, sidA, and hmgR. This observation suggests that T. marneffei

undergoes a rapid adaptive response to the harsh environment
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within host macrophages. In contrast, we also identified genes

with delayed response patterns, which are linked to characteristics

specific to mycelial or yeast phase growth but unrelated to

environmental stimuli. For instance, the gene hgrA, involved in

cell wall regulation, remained unchanged until 48 h into the Y-

to-M transition. Functional analysis revealed that although hgrA

is crucial for maintaining hyphal cell wall integrity, it does not

directly participate in stress response, providing valuable insights

into its upregulation during the later stage of the Y-to-M transition.

Furthermore, we constructed a gene regulatory network for the

dimorphic transition of T. marneffei using the DyGAM-NS model

to identify key transcription factors. Interestingly, two zinc finger-

containing transcription factors were found to potentially regulate

the M-to-Y and Y-to-M transitions, respectively. These findings

present new avenues for future research aimed at unraveling the

regulatory mechanisms underlying the dimorphic transition of

T. marneffei.
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