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Introduction: Fipronil (FIP) and thiobencarb (THIO) represent widely utilized 
pesticides in paddy fields, presenting environmental challenges that necessitate 
effective remediation approaches. Despite the recognized need, exploring 
bacterial consortia efficiently degrading FIP and THIO remains limited.

Methods: This study isolated three unique bacterial consortia—FD, TD, and MD—
demonstrating the capability to degrade FIP, THIO, and an FIP + THIO mixture 
within a 10-day timeframe. Furthermore, the bioaugmentation abilities of the 
selected consortia were evaluated in paddy soils under various conditions.

Results: Sequencing results shed light on the consortia’s composition, revealing a 
diverse bacterial population prominently featuring  Azospirillum, Ochrobactrum, 
Sphingobium, and Sphingomonas genera. All consortia efficiently degraded 
pesticides at 800 µg/mL concentrations, primarily through oxidative and 
hydrolytic processes. This metabolic activity yields more hydrophilic metabolites, 
including 4-(Trifluoromethyl)-phenol and 1,4-Benzenediol, 2-methyl-, for FIP, 
and carbamothioic acid, diethyl-, S-ethyl ester, and Benzenecarbothioic acid, 
S-methyl ester for THIO. Soil bioaugmentation tests highlight the consortia’s 
effectiveness, showcasing accelerated degradation of FIP and THIO—individually 
or in a mixture—by 1.3 to 13-fold. These assessments encompass diverse soil 
moisture levels (20 and 100% v/v), pesticide concentrations (15 and 150 µg/g), 
and sterile conditions (sterile and non-sterile soils).

Discussion: This study offers an understanding of bacterial communities adept 
at degrading FIP and THIO, introducing FD, TD, and MD consortia as promising 
contenders for bioremediation endeavors.

KEYWORDS

pesticide, bioremediation, response surface methodology, soil bioaugmentation, 
transformation products

1 Introduction

In contemporary agriculture, the predominant strategy for pest management in 
agroecosystems involves the widespread use of pesticides (Topping et al., 2020). While 
effective in controlling pests, the extensive application of pesticides raises concerns about 
environmental pollution, affecting soil, sediments, and ground and surface waters. This 
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issue is surged by the potential bioaccumulation of pesticides in the 
food chain, posing risks to human health (Lin et al., 2020; Pang 
et al., 2020).

Fipronil (FIP), an insecticide from the phenylpyrazole chemical 
family, is commonly employed in rice paddies to combat the rice 
stem borer, Chilo suppressalis (Lepidoptera: Crambidae). FIP tends 
to persist in soil, with a soil sorption coefficient (Koc) ranging from 
825 to 6,863 (Ying and Kookana, 2006; Lin et  al., 2009), and it 
shows propensity to accumulate in non-target organisms such as 
fish and earthworms, as indicated by its bioconcentration factor 
(BCF) (Jackson et  al., 2009; Qu et  al., 2014). Classified as 
environmentally harmful, with an environmental impact quotient 
(EIQ) of 103.5 (Moinoddini et al., 2014), FIP also poses significant 
risks to honeybees and other beneficial insects (Zaluski et al., 2015; 
Kasai et  al., 2016). Similarly, Thiobencarb (THIO), a systemic 
thiocarbamate herbicide used in paddies, exhibits moderate to high 
toxicity to aquatic organisms and has the potential to cause soil and 
groundwater pollution due to its moderate mobility in soil (Saka, 
2010; Wang et al., 2019).

Considering the environmental repercussions of pesticide use, 
bioremediation utilizing soil microorganisms emerges as an 
effective approach to mitigate agrochemical pollution (Torabi et al., 
2017; Pourbabaee A. et al., 2018; Pourbabaee A. A. et al., 2018; 
Pourbabaei et al., 2020; Li J. et al., 2022; Pang et al., 2023). Several 
indigenous microbial strains have been reported to mineralize FIP, 
including Aspergillus sp., Bacillus thuringiensis, Klebsiella 
pneumoniae, Paracoccus sp., Staphylococcus arlettae, 
Stenotrophomonas sp., and Streptomyces sp. (Kumar et al., 2012; 
Uniyal et al., 2016; Gajendiran and Abraham, 2017; Abraham and 
Gajendiran, 2019; Bhatt et al., 2021a, 2021b). Similarly, aerobic and 
anaerobic microbial strains capable of degrading THIO have been 
recorded in the literature, i.e., Acidovorax sp., Aspergillus niger, 
Azoarcus sp., Corynebacterium sp., Cupriavidus oxalaticus, 
Dechloromonas sp., Pseudomonas sp., and Thauera sp. (Miwa et al., 
1988; Chu et al., 2017; Duc, 2023; Duc et al., 2023). However, the 
limitations of single-strain approaches, which may result in 
incomplete pesticide degradation and the formation of more toxic 
metabolites, necessitate a shift toward microbial community-level 
interventions (Bai et  al., 2020; Li et  al., 2020; Qin et  al., 2020). 
Recent studies emphasize the functional roles of microbial consortia 
and unculturable microorganisms in environmental pollutant 
biodegradation, highlighting the superior degradation potential of 
mixed microorganisms through synergistic metabolism (Bai et al., 
2020; Li et al., 2020; Qin et al., 2020; Zhang et al., 2020; Lin et al., 
2022; Pang et al., 2023).

So far, there has been no report on the isolation of microbial 
consortia for the degradation of FIP and THIO. To address the 
existing knowledge gap, this research aims to (1) isolate and identify 
microbial consortia proficient in degrading FIP and THIO 
individually or in combination, (2) assess optimal degradation 
conditions for FIP and THIO by these consortia, (3) elucidate the 
metabolic pathways employed by the consortia in FIP and THIO 
degradation, and (4) evaluate the consortia’s efficiency in degrading 
FIP and THIO under various soil conditions. Through these 
objectives, we seek to contribute valuable insights into the potential 
application of microbial consortia for the bioremediation of FIP and 
THIO-contaminated environments.

2 Materials and methods

2.1 Chemicals and culture medium

Analytical grade FIP (≥ 95%) and THIO (≥ 98%) were procured 
from Sigma–Aldrich (Supplementary Table S1). All solvents used in this 
research, such as methanol (MeOH), acetone (Ace), and acetonitrile 
(MeCN), were of analytical grade quality (99.9%) and obtained from 
Merck, Germany. Anhydrous magnesium sulfate (MgSO4) and sodium 
chloride (NaCl) of reagent grade purity at 99% were supplied by 
BioShop, Burlington, Canada. Primary–secondary amine (PSA) was 
supplied by Agilent Technologies, United States. Stock solutions of FIP 
and THIO (1 g/L) were prepared in Ace and MeOH for soil/culture 
media spikings and chromatographic analyses, respectively. These 
solutions were stored in amber glass vials at −20°C to ensure stability.

A mineral salt medium (MSM) (Cycoń et al., 2009) composed of 2 g 
(NH4)2SO4, 0.2 g MgSO4.7H2O, 0.01 g CaCl2.2H2O, 0.001 g FeSO4.7H2O, 
1.5 g Na2HPO4.12H2O, 1.5 g KH2PO4, and 0.5 g K2HPO4 per liter of 
deionized water was employed. The pH of the medium was adjusted to 
7.2. Before usage, the medium was sterilized at 121°C for 20 min.

2.2 Soil sample collection and enrichment 
of FIP and THIO degrading consortia

Soil samples were collected from a paddy field in Amol County, 
Mazandaran Province, Northern Iran. The sampling location has long 
been known for its extensive use of FIP and THIO pesticides 
(Supplementary Table S2).

The enrichment process was carried out in 250 mL Erlenmeyer 
flasks, each containing 100 mL of the MSM medium. The medium was 
supplemented with FIP, THIO, or a combination of both pesticides (the 
mixture of FIP and THIO) at a concentration of 25 μg/mL, serving as 
the exclusive carbon source. Pesticide stock solutions in Ace were gently 
mixed into the flasks, followed by a 24-h incubation period to allow for 
Ace evaporation under sterile conditions. Subsequently, 5 g of air-dried 
soil was introduced to the flasks, and they were incubated in darkness 
at 30°C while being shaken at 120 rpm for 10 days. Following this 
incubation period, 5 mL of the content from each flask was transferred 
to fresh 100 mL MSM medium amended with pesticides at a 
concentration of 50 μg/mL. The same incubation conditions as 
mentioned above were maintained for an additional 10 days.

Throughout the incubation period, samples were periodically taken 
from each flask for FIP and THIO degradation and microbial growth 
measurements. High-performance liquid chromatography (HPLC) was 
employed to confirm pesticide degradation. At the same time, microbial 
growth was assessed by monitoring changes in the medium at an optical 
density of 600 nm (OD600) using a spectrophotometer. After several 
successive enrichment cycles at a concentration of 50 μg/mL, three 
consortia displaying the most satisfactory growth and efficiency in 
degrading FIP, THIO, and the FIP + THIO mixture within 7 days were 
selected and designated as FD, TD, and MD, respectively. These 
consortia were harvested by centrifugation at 2,124 × g and 4°C, 
followed by two rounds of washing with sterile phosphate-buffered 
saline (PBS) at pH 7.0. Subsequently, the consortia were resuspended in 
sterilized MSM, supplemented with 40% glycerin, resulting in a final cell 
concentration of approximately 108 cells/ml. The inocula were then 
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cryopreserved at −80°C for subsequent experiments and long-term 
usage (Xu et al., 2020; Pang et al., 2023).

2.3 Evaluation of consortia growth and 
degradation capabilities

To assess the growth and degradation capabilities of the FD, TD, 
and MD consortia, inocula (5%) were introduced into Erlenmeyer 
flasks containing MSM medium amended with FIP, THIO, and the 
FIP + THIO mixture at a concentration of 50 μg/mL. These 
experiments were performed in triplicate, with additional triplicate 
flasks serving as controls with no consortia inoculation. After 10 days 
of incubation (30°C, 120 rpm, in darkness), samples were periodically 
taken from each flask to evaluate pesticide degradation and microbial 
growth. In parallel experiments, employing the same incubation 
conditions and operational procedures, the selected consortia’s 
capability to degrade varying concentrations of FIP and THIO (25, 50, 
100, 200, 400, 600, and 800 μg/mL), either alone or in combination 
with one another, was also investigated.

2.4 Optimization of FIP and THIO 
degradation conditions with the consortia

To assess the impact of various factors on the degradation of FIP 
and THIO, the response surface methodology (RSM) with a Box–
Behnken design was employed (Yang et al., 2018; Zhan et al., 2018; 
Pang et al., 2023). The Box–Behnken design was structured with three 
key variables: pH (5, 7, and 10), pesticide concentration (25, 50, and 
100 μg/L), and inoculum size (1, 5, and 10%). This design encompassed 
17 distinct experiments conducted in triplicates to ensure reliability 
and precision (Supplementary Table S4). The percentage of 
degradation achieved for FIP and THIO, either alone or as a mixture, 
was chosen as the dependent variable for the analysis.

2.5 Assessment of consortia performance 
in paddy soils

The proficiency of the FD, TD, and MD consortia in pesticide 
degradation was examined within paddy soils devoid of any prior 
exposure to FIP or THIO for a minimum of 2 years. These 
investigations were carried out in microcosms comprising 100 mL 
amber glass vials, each containing 40 g of either sterile or non-sterile 
air-dried soil. Aqueous solutions of FIP, THIO, and the FIP + THIO 
mixture were prepared by introducing stock solutions of each pesticide 
in Ace into deionized water. After 24 h of Ace evaporation, solutions 
were filter-sterilized and utilized to spike soil samples at 15 and 
150 μg/g while adjusting the soil moisture to 20 and 100% (v/w). The 
microcosms were then categorized into two groups. The first group 
received inocula of the FD, TD, and MD consortia (5%), each added 
to the glasses spiked with FIP, THIO, and the FIP + THIO mixture, 
respectively. The second group, however, remained uninoculated, 
serving as the control. A summary of soil experimental design is 
presented in Supplementary Table S5. A total of 24 experiments in 
triplicate consisting of 72 microcosms were prepared. Soil microcosms 
were incubated in darkness at 30°C for 14 days. At predetermined 

intervals, subsamples were collected and subjected to HPLC analysis 
to measure the decline in THIO and FIP residues.

2.6 Identification of bacterial consortia

The QIAamp DNA Stool Mini Kit (Qiagen, Germany) was 
employed for DNA extraction from the FD, TD, and MD consortia, 
following the manufacturer’s instructions. Subsequent PCR 
amplification and sequencing procedures were performed at Beijing 
Novogene Bioinformatic Technology Co., Ltd. (Tianjin, China). To 
target the V3-V4 region of the 16S rRNA gene, specific primers 341F-
806F with a barcode (341F: CCTAYGGGRBGCASCAG and 806R: 
GGACTACNNGGGTATCTAAT) were utilized for PCR amplification 
(Niem et al., 2020). The PCR program (T100, Bio-Rad, United States) 
consisted of an initial denaturation at 98°C for 1 min, followed by 
30 cycles including denaturation at 98°C for 10 s, annealing at 50°C 
for 30 s, and extension at 72°C for 30 s. The final extension step was 
conducted at 72°C for 5 min. Subsequently, PCR products underwent 
purification and recovery using the GeneJET Gel Extraction Kit 
(Thermo Scientific, United  States). Library preparation was 
accomplished using the TruSeq DNA PCR-Free Library Preparation 
Kit (Illumina, United  States), with quantification and detection 
performed using the Qubit system (Thermo Scientific, United States). 
After successfully passing the quality assessment, high-throughput 
sequencing was executed on the Illumina NovaSeq 6,000 platform.

Raw sequences were imported into QIIME2-2023.5 and analyzed 
within QIIME 2 (Bolyen et  al., 2019). Demultiplexing, adapter 
sequence, and primer trimming were conducted using the cutadapt 
plugin (Martin, 2011). Denoising, quality and chimera filtering, and 
dereplication of amplicon sequence variants (ASVs) were performed 
utilizing DADA2 (Callahan et al., 2016). Taxonomic assignment of the 
obtained ASVs was executed using the classify-sklearn method with 
a Naive Bayes supervised learning algorithm. This algorithm was 
based on a trained classifier using Greengenes 13_5 v references (Lin 
and Ju, 2023) with a 97% similarity threshold. Alpha diversity metrics, 
including Shannon and Faith’s phylogenetic diversity (Faith’s_PD) 
indexes, were computed using QIIME2. The pairwise Kruskal–Wallis 
test was applied to assess significant differences (Lozupone et  al., 
2006). Finally, a phylogenetic tree was constructed using the impress 
plugin from QIIME2. Raw sequences can be found in the sequence 
read archive (SRA) of the NCBI with the BioProject accession 
number PRJNA1061744.

2.7 Analytical methods

To evaluate the dissipation of FIP and THIO residues in both 
MSM cultures and soils, the extraction method based on the original 
unbuffered QuEChERS approach proposed by Anastassiades et al. 
(2003) was followed. In total, 5 g of samples was extracted using 10 mL 
of MeCN. Subsequently, a salting-out step involved the addition of 4 g 
MgSO4 and 1 g NaCl to each sample. After thorough mixing and 
centrifugation at 5,000 rpm for 5 min, 2 mL of the resulting supernatant 
was subjected to a dispersive solid-phase extraction (d-SPE) cleanup 
step, utilizing 300 mg MgSO4 and 50 mg PSA. After being vigorously 
shaken for 1 min and centrifuged at 5,000 rpm for 4 min, the 
supernatant was evaporated to dryness using N2 and then reconstituted 
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in 250 μL MeOH for subsequent HPLC analysis. For the quantification 
of FIP and THIO, HPLC with a UV/VIS detector was employed 
(Shimadzu, LC9A). Specific wavelengths of 280 and 233 nm were 
selected for FIP and THIO, respectively. Separation was achieved 
using a C18 column (150 × 4.6 mm, 5 μm) at a temperature of 40°C, 
with a mobile phase consisting of a 70:30 (v/v) mixture of MeCN and 
water in isocratic elution mode, with a flow rate of 1 mL/min.

A comprehensive set of method validation procedures was 
conducted following SANTE guidelines (SANTE, 2021), to validate 
the extraction and analysis methods. Precision and accuracy were 
assessed by calculating the recoveries and relative standard 
deviations (RSDs) of FIP and THIO spiked into pesticide-free soils 
or MSM cultures. The instrumental detection and quantification 
limits (IDL and IQL), as well as the estimated method detection and 
quantification limits (EMDL and EMQL), were determined using 
the slope (m) and root mean square error (RMSE) of the solvent 
calibration curve in MeOH. Linearity was assessed through matrix-
matched calibration curves for each pesticide, ranging from EMQL 
to 10 EMQL (see Supplementary material and 
Supplementary Table S6 for detailed information on method 
validation protocols and results).

To extract metabolites produced during FIP and THIO 
degradation in MSM cultures, the same procedure as described for the 
parent compounds was followed. However, during the final 
evaporation stage, the residue was dissolved in 250 μL MeCN. To 
detect the metabolites, gas chromatography–mass spectrometry (GC–
MS) was used, with an Agilent 6,890 N GC equipped with an Agilent 
5,973 N MS detector featuring an electron ionization source (electron 
energy: 70 eV, solvent delay: 60 min, and mass range: 30–250 m/z) 
(Agilent Technologies, United States). Separations were conducted 
using an HP-5 ms column (30 m × 0.25 mm × 0.25 μm) with helium 
(purity >99.999%) as the carrier gas. The detector, ion source, MS 
transmission line, and quadrupole temperatures were set to 320, 230, 
280, and 150°C, respectively.

For FIP metabolites, the carrier gas flow was set at 1.5 mL/min, 
with an injector temperature of 280°C in splitless mode and an 
injection volume of 2 μL. The oven temperature program was as 
follows: the initial temperature was set at 100°C for 1 min, then raised 
to 250°C at a rate of 10°C/min for 2 min, and finally increased to 
280°C at a rate of 10°C/min for 5 min. For THIO metabolites, the 
carrier gas was set at 1 mL/min, with the injector temperature of 
280°C in split mode (split ratio: 1:10). The oven temperature program 
was as follows: the initial temperature was set at 50°C for 30 s, then 
increased to 190°C at a rate of 10°C/min for 1 min, and finally raised 
to 280°C at 10°C/min for 2 min.

2.8 Statistical analyses

The degradation rate (k) and the half-life (t1/2) for FIP and THIO 
in the culture medium and soil were assessed by modeling the data 
with the first-order exponential equation (Eqs. 1, 2) using TableCurve 
2D v5.0 (Torabi et al., 2017):

 C C et
kt= × −

0  (1)

 t k1 2 2/ ln /= ( )  (2)

where C0 denotes the initial concentration of either FIP or THIO 
(μg/ml); k represents the degradation rate (days−1); t signifies the 
degradation time (days); and Ct denotes the concentration of FIP or 
THIO at a specific time, t (μg/ml).

Degradation kinetic parameters of FIP, THIO, and FIP + THIO 
mixture were assessed across various initial concentrations with the 
FD, TD, and MD consortia, respectively, using the Andrews equation 
(Eq. 3) in TableCurve 2D v5.0 (Chen et al., 2013; Yang et al., 2018):

 

q q C

C K C
Ks i

=
+ + 








max

2

 

(3)

In this equation, C corresponds to the concentration of FIP or 
THIO (μg/ml), q represents the specific degradation rate of FIP or 
THIO (day−1), qmax signifies the maximum specific degradation rate of 
FIP or THIO (day−1), Ks is the half-saturation constant (μg/ml), and 
Ki stands for the inhibition constant for FIP or THIO (μg/ml).

To optimize the degradation of FIP and THIO by the selected 
consortia, RSM regression (Eq. 4) was employed using R software 
version 4.3.1.:

 Y b b X b X X b Xi i i ij i j ii i= + ∑ + ∑ + ∑0
2

 (4)

Here, Yi is the predicted response, Xi and Xj are the variables, and 
b0, bi, bij, and bii represent the coefficients of the respective terms. 
Subsequently, this is allowed to plot a response surface, following the 
study by Pang et al. (2023).

In the context of soil experiments, analysis of variance (ANOVA) 
in combination with Tukey’s honestly significant difference (Tukey’s 
HSD) post-hoc test was utilized to compare degradation percentages 
between different treatments. This analysis was performed using R 
software version 4.3.1. Furthermore, the contribution of the addition 
of consortium to the degradation rates of pesticides (k+/−) was assessed 
by measuring the k ratios in soils with and without inoculation, as 
specified in Eq. 5:

 
k k kinoculated soil uninoculated soil+

−
=   /

 
(5)

Principal coordinate analysis (PCoA) of consortia bacterial 
communities was conducted in R software version 4.3.1 using the 
Hellinger transformation.

3 Results

3.1 Characterization of FD, TD, and MD 
consortia

In this investigation, three bacterial consortia capable of 
degrading FIP, THIO, and the FIP + THIO mixture were isolated and 
designated as FD, TD, and MD, respectively. The FD consortium 
showcased a diverse composition, encompassing 102 genera, 61 
families, 31 orders, 19 classes, and 10 phyla. The TD consortium 
comprised 95 genera, 64 families, 30 orders, 20 classes, and 9 phyla. 
Meanwhile, the MD consortium consisted of 41 genera, 35 families, 
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17 orders, 11 classes, and 7 phyla (Figure 1). Alpha diversity indices 
were calculated for each consortium. The MD consortium exhibited 
the highest Shannon diversity (p < 0.01), followed by FD and TD 
consortia (Figure 2A). In terms of Faith’s_PD, the FD consortium 
had the highest value (p < 0.01), while MD and TD had lower Faith’s_
PD values, with no significant difference between them (p > 0.05) 
(Figure 2B).

Proteobacteria dominated all consortia (FD: 67%, TD: 92%, and 
MD: 72%), with Azospirillum sp. as the most abundant genus (FD: 
69%, TD: 87%, and MD: 48%). An unclassified genus of Rhizobioales 
was significant in FD (26%) and MD (12%). Notably, in MD, 
Ochrobactrum sp., Shinella sp., Sphingobium sp., and Sphingomonas 
sp. were present at relative abundances of 17, 7, 4, and 3%, 
respectively (Figure  1; Supplementary Figure S1). Bacteroidetes 
constituted the second-highest phylum in FD and MD (22%), 
contrasting with only 3% in TD. Chitinophaga sp. dominated 
Bacteroidetes in FD (62%) and MD (56%), followed by an 
unclassified Bacteroidales genus (30 and 34%, respectively) and 

Bacteroides sp. (5 and 6%, respectively) (Figure  1; 
Supplementary Figure S2). Firmicues represented 9, 4, and 17% of 
FD, TD, and MD consortia, respectively. Oscillospira sp. and Dorea 
sp. and genera of Ruminococcaceae, Lachnospiraceae, and 
Clostridiales were most abundant (Figure  1; 
Supplementary Figure S3). Actinobacteria constituted 1% of each 
consortium. Bifidobacterium sp., Adlercreutzia sp., Mycobacterium 
sp., and Curtobacterium sp. and unclassified genera in 
Coriobacteriaceae and Bifidobacteriaceae comprised over 90 and 
70% of bacteria in FD and TD, respectively. In MD, Bifidobacterium 
sp. (55%) and Acinetobacter sp. (33%) were predominant (Figure 1; 
Supplementary Figure S4).

PCoA accounted for 99% of the bacterial variation at the phylum 
level. The phyla with the longest negative loadings on PC1 
(Cyanobacteria, Firmicutes, and Bacteroidetes) influenced the scores 
mostly of consortia MD and FD with their spatial, whereas the 
variables with positive loadings (Proteobacteria) influenced mainly 
the scores of TD consortium. The phyla with loadings of positive 
signs in PC2 (Fusobacteria, Bacteroidetes) influenced consortium 
FD while phyla with loadings of negative signs in PC2 (Firmicutes, 
Cyanobacteria, Actinobacteria, Synergistetes, and Verrucomirobia) 
influenced consortia TD and MD (Figure 1C).

3.2 Growth and degradation efficiencies of 
FD, TD, and MD consortia

The results indicate that all three consortia possess robust growth 
and effective degradation of FIP, THIO, and the FIP + THIO mixture 
in the MSM cultures within 10 days after incubation (Figure  3). 
Specifically, the FD and TD consortia exhibited notable 9- and 25-fold 
increases in culture OD600, respectively, compared with the control 
(Figures  3A,B). In the presence of FD and TD consortia, the 
degradation rates of FIP and THIO were accelerated by 13 and 7 
times, respectively, compared with uninoculated cultures 
(Figures 3A,B). Similarly, the MD consortia significantly enhanced the 
degradation rates of FIP and THIO, showing 13- and 11-fold increases 
compared with the control (Figure 3C).

The degradation of various concentrations of FIP and THIO by 
three consortia, along with associated kinetic parameters such as 
R2, qmax, Ks, and Ki, is shown in Figure 4. The findings indicate that 
all consortia exhibited tolerance to elevated levels of FIP and 
THIO, successfully degrading these pesticides within the 
concentration range of 25–800 μg/mL. However, as the pesticide 
concentration increased, the degradation efficiency of the consortia 
decreased. Specifically, for FIP, the FD and MD consortia achieved 
the highest degradation rates at 25 and 50 μg/mL, registering 0.25 
and 0.23 day−1, respectively. Nevertheless, at concentrations 
exceeding 50 μg/mL, a decline in FIP degradation rates was 
observed, reaching the lowest values at 800 μg/mL for the FD and 
MD consortia (0.12 and 0.08 day−1, respectively), indicating an 
inhibitory effect of high FIP concentrations on the consortia 
(Figures 4A,C).

Similar trends were observed for THIO, with the TD and MD 
consortia exhibiting the highest degradation rates (0.20 and 0.42 day−1) 
at 50 and 25 μg/mL, respectively. Conversely, the inhibition of THIO 
dissipation rates was noted at 800 μg/mL with the TD and MD 
consortia (0.11 and 0.05 day−1, respectively) (Figures 4B,D).

FIGURE 1

(A) Relative abundance of the bacteria present in the isolated 
consortia at the phylum level, (B) phylogenetic tree based on the 
most abundant bacterial phyla in the three isolated consortia, and 
(C) PCoA plot of the isolated bacterial consortia.
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3.3 Optimization of FIP and THIO 
degradation with FD, TD, and MD consortia

The optimization of FIP and THIO degradation conditions was 
conducted through an RSM regression, employing a Box–Benken 
design with 17 experiments (Supplementary Table S4). Three crucial 
independent variables, such as culture pH (X1), pesticide 
concentration (X2), and inoculum size (X3), were selected for this 
study. The results revealed that the measured degradation of FIP 
ranged from 39.5 to 96.4% with the FD consortium and from 5.1 to 
89.1% with the MD consortium. Similarly, for THIO, measured 
degradation percentages varied between 1.7 and 87.7% with the TD 
consortium and between 2.0 and 85.9% with the MD consortium 
(Supplementary Table S4). Quadratic polynomial models were 
employed to fit the degradation data for FIP by the FD and MD 
consortia (Eqs. 6, 7, respectively) and for THIO by the TD and MD 
consortia (Eqs. 8, 9, respectively).
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Table 1 provides a comprehensive analysis of variance (ANOVA) 
results for FIP and THIO. The high determination coefficient (R2 > 0.9), 
accompanied by significant model F values (p < 0.01) and non-significant 
lack-of-fit F values (p > 0.05), attests to the robustness of our predictive 
models for FIP and THIO degradation by the consortia. The influence 
of pH, pesticide concentration, and inoculum size on FIP and THIO 
dissipation was found to be statistically significant with the FD and TD 
consortia, respectively (p < 0.01). Interestingly, for the MD consortium, 
only pesticide concentration exhibited a significant effect on THIO 
degradation (p = 0.01) (Table  1). In contrast, for the MD consortia, 
interaction effects and quadratic terms of each factor significantly 
impacted the degradation of both FIP and THIO (p < 0.05).

Three-dimensional response surfaces were constructed with pH, 
pesticide concentration, and inoculum size (Figure  5). For FIP 
degradation, the optimal conditions with FD and MD consortia, 
achieving approximately 94% predicted degradation, were identified at 
pH 7.5–7.7, a pesticide concentration of 70–100 μg/mL, and an inoculum 
size of 4–6% (Figures 5A–C,G). Similarly, for THIO degradation, optimal 
conditions resulting in approximately 94% predicted degradation were 
determined at pH 7–7.7, a pesticide concentration of 68–70 μg/mL, and 
an inoculum size of 4–6% (Figures 5D–F,I).

3.4 Metabolic pathway of FIP and THIO 
degradation with FD, TD, and MD consortia

GC–MS results demonstrated comparable metabolite profiles in 
the degradation of FIP by the FD and MD consortia (Table  2; 

FIGURE 2

Box plots showing Shannon diversity (A) and Faith’s_PD (B) indexes for the isolated consortia. Different letters show significant differences (Kruskal–
Wallis test, p  <  0.05).

https://doi.org/10.3389/fmicb.2024.1366951
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Faridy et al. 10.3389/fmicb.2024.1366951

Frontiers in Microbiology 07 frontiersin.org

Supplementary Figure S5). Analysis of these metabolites facilitated the 
formulation of a novel pathway for FIP degradation by the FD and 
MD consortia (Figure 6). According to this proposed pathway, FIP 
initially underwent a hydrolytic reaction, yielding 1-aminononadecane, 
N-trifluoroacetyl, and 4-(trifluoromethyl)-phenol. Subsequently, these 
metabolites transformed into 1-trifluoroacetoxyhexadecane, 
2-hexadecanole, and 1,4-benzenediol through oxidative or 
hydrolytic processes.

Similar to FIP, THIO degradation with the TD and MD consortia 
also resulted in comparable metabolites (Table  3; 
Supplementary Figure S6). The proposed pathway for THIO 
degradation indicates the cleavage of the C-S bond, leading to the 
production of benzenecarbothioic acid, S-methyl ester, and subsequently 
carbamothioic acid, diethyl-, and S-ethyl ester (Figure 7). Additionally, 
benzothiazole and 2-methyl-1-hexadecanethiol were observed as 
products of THIO degradation with the TD and MD consortia.

FIGURE 3

Growth-linked degradation of (A) FIP, (B) THIO, and (C) FIP  +  THIO mixture in MSM inoculated with the FD, TD, and MD consortia, respectively. Kinetic 
parameters derived from the first-order exponential equation (Eqs. 1, 2) are reported. In the case of the FIP and THIO mixture, the initial turbidity of the 
culture, resulting from adding two pesticide solutions, prevented the measurement of OD600. Error bars represent standard deviations (n  =  3).
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3.5 FIP and THIO degradation in soil with 
FD, TD, and MD consortia

Significant improvements in FIP degradation (p < 0.01) were 
evident in both sterile and non-sterile soils at 20 and 100% moisture 
conditions, following the inoculation of FD and MD consortia (Tables 4, 
5). In non-inoculated soils, the half-life (t1/2) of FIP in sterile and 
non-sterile samples ranged from 14 to 139 and 8 to 27 days, respectively. 
Upon inoculation with FD or MD consortia, the t1/2 of FIP decreased to 
8–18 and 4–20 days in sterile and non-sterile soils, respectively (Tables 4, 
5). It is particularly noteworthy that FD’s more pronounced effect on 
sterile soils at 20% moisture result in a significant increase in FIP 
degradation (p < 0.01) and k(+/−) values of 6.80 and 9.53 at 15 and 
150 μg/g, respectively (Table 4). Under 100% moisture conditions, FD 
consortia were significantly effective (p < 0.01), although the effect was 
less pronounced compared with 20% moisture, yielding k(+/−) values of 
1.82 and 3.94 at 15 and 150 μg/g, respectively (Table 4). Similarly, MD 
consortia exhibited significant efficacy in FIP degradation at 20% 
moisture in non-sterile and sterile soils compared with 100% moisture 
(p < 0.01). However, at 15 μg/g, the effect of MD consortia was not 
significant at 100% moisture content (p > 0.05) (Table 5).

THIO degradation in soil by TD and MD consortia followed a 
parallel pattern, significantly increasing the degradation of THIO in both 

sterile and non-sterile soils at 20 and 100% moisture conditions (p < 0.01) 
(Tables 5, 6). In non-inoculated soils, the t1/2 of THIO in sterile and 
non-sterile samples ranged from 19 to 88 and 4 to 38 days, respectively. 
Inoculation with FD or MD consortia decreased the t1/2 of THIO to 7–23 
and 5–14 days in sterile and non-sterile soils, respectively (Tables 5, 6). TD 
consortium, when inoculated, resulted in more pronounced THIO 
degradation at 20% moisture compared with 100% moisture in sterile soil 
at 15 μg/g (k(+/−) = 4.5) and in both sterile and non-sterile soils at 150 μg/g 
(k(+/−) = 5.42 and 4.61, respectively) (p < 0.01) (Table 6). The highest THIO 
degradation efficiency with the MD consortium was observed at 150 μg/g 
and 20% moisture in both sterile and non-sterile soils (k(+/−) = 6.38 and 
7.68, respectively; p < 0.01). At 15 μg/g, however, the increase in 
degradation was less pronounced (k(+/−) = 3.88) with no significant 
difference between the two moisture contents (p > 0.05) (Table 5).

4 Discussion

4.1 Bacterial composition of the isolated 
consortia

In our investigation, three distinct consortia—FD, MD, and TD—
were isolated to proficiently degrade FIP, THIO, and the FIP + THIO 

FIGURE 4

Relationship between initial concentrations of FIP and THIO and their specific degradation rate by FD, TD, and MD consortia. (A,C) Degradation of FIP 
concentrations by FD and MD consortia, respectively, (B,D) degradation of THIO concentrations by TD and MD consortia, respectively.
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TABLE 1 Analysis of variance for the quadratic FIP and THIO degradation models by the selected consortia.

Source df FD consortium TD consortium MD consortium

FIP THIO FIP THIO

SS MS F-
value

p-
value

SS MS F-value p-
value

SS MS F-value p-
value

SS MS F-value p-
value

Model 9 16802.02 1866.89 99.96 < 0.01 44667.44 4963.05 115.6 < 0.01 34478.48 3830.94 31.89 < 0.01 46817.15 5201.91 341.5 < 0.01

X1 1 334.18 334.18 17.89 < 0.01 4502.34 4502.34 73.70 < 0.01 285.17 285.17 3.39 0.07 26.52 26.52 1.60 0.21

X2 1 3641.24 3641.24 194.97 < 0.01 3768.45 3768.45 61.69 < 0.01 150.69 150.69 1.79 0.19 121.14 121.14 7.31 0.01

X3 1 1084.16 1084.16 58.05 < 0.01 2316.50 2316.50 37.92 < 0.01 50.62 50.62 0.60 0.44 14.86 14.86 0.90 0.35

X X1 2
1 26.83 26.83 1.44 0.24 2770.72 2770.72 45.36 < 0.01 1966.62 1966.62 23.38 < 0.01 329.68 329.68 19.91 < 0.01

X X1 3
1 407.92 407.92 21.84 < 0.01 146.03 146.03 2.39 0.13 365.98 365.98 4.35 0.04 322.45 322.45 19.47 < 0.01

X X2 3
1 0.25 0.25 0.01 0.91 515.22 515.22 8.43 0.01 1054.20 1054.20 12.53 < 0.01 185.50 185.50 11.20 < 0.01

X
1

2 1 10205.2 10205.2 546.44 < 0.01 22899.86 22899.86 374.87 < 0.01 23605.10 23605.10 280.66 < 0.01 36422.84 36422.84 2199.23 < 0.01

X2
2 1 603.52 603.52 32.32 < 0.01 2366.84 2366.84 38.75 < 0.01 1453.97 1453.97 17.29 < 0.01 4534.61 4534.61 273.80 < 0.01

X
3

2 1 498.72 498.72 26.70 < 0.01 5381.49 5381.49 88.10 < 0.01 5546.11 5546.11 65.94 < 0.01 4859.55 4859.55 293.42 < 0.01

Residual 41 765.70 18.68 - - 2504.58 61.09 - - 3448.36 84.11 - - 679.03 16.56 - -

Lack of Fit 17 85.07 5.01 0.18 0.99 278.28 16.37 0.18 0.99 383.15 22.54 0.18 0.99 75.45 4.44 0.18 0.99

Pure error 24 680.66 28.36 - - 2226.29 92.76 - - 3065.21 121.72 - - 603.58 25.15 - -

Total 50 17567.73 351.35 - - 47172.01 943.44 - - 37926.84 758.53 - - 47496.18 949.92 - -

Adjusted R-squared: 0.95 0.94 0.91 0.98

X1: Culture pH, X2: pesticide concentration (μg/ml), X3: Inoculum size (%).
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FIGURE 5

Response surface 3D graphs for FIP and THIO degradation optimization by FD, TD, and MD consortia. (A,G) Effect of pesticide concentrations and 
inoculum size on FIP degradation by FD and MD consortia, respectively, (D,J) effect of pesticide concentrations and inoculum size on THIO 
degradation by TD and MD consortia, respectively, (B,H) effect of pH and inoculum size on FIP degradation by FD and MD consortia, respectively, (E,K) 
effect of pH and inoculum on THIO degradation by TD and MD consortia, respectively, (C,I) effect of pesticide concentrations and pH on FIP 
degradation by FD and MD consortia, respectively, (F,L) effect of pesticide concentrations and pH on THIO degradation by TD and MD consortia, 
respectively.
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TABLE 2 Intermediate transformation products during FIP degradation by FD and MD consortia.

Compound name RT (min) MW (g/mol) Formula

1-Trifluoroacetoxyhexadecane 11.08 338.4 C18H33F3O2

2-hexadecanole 13.66 242.44 C16H34O

1-Aminononadecane, N-trifluoroacetyl- 14.70 379.5 C21H40F3NO

1,4-Benzenediol, 2-methyl- 21.26 124.14 C7H8O2

4-(Trifluoromethyl)-phenol 25.34 1692.11 C7H5F3O

RT: Retention time, MW: molecular weight.

FIGURE 6

Proposed degradation pathway for FIP by FD and MD consortia.

TABLE 3 Intermediate transformation products during THIO degradation by TD and MD consortia.

Compound name RT (min) MW (g/mol) Formula

Benzothiazole, 2-methyl- 13.803 149.21 C8H7NS

1-Hexadecanethiol 18.63 258.51 C16H34S

Carbamothioic acid, diethyl-, S-ethyl ester 20.77 161.27 C7H15NOS

Benzenecarbothioic acid, S-methyl ester 22.103 152.21 C8H8OS

RT: Retention time, MW: molecular weight.
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mixture, respectively. Each consortium exhibited a rich and diverse 
bacterial composition, unveiling the intricate microbial communities 
responsible for pesticide degradation. Notably, the MD consortium 
stood out with the highest Shannon diversity, surpassing FD and TD 
consortia. This elevated Shannon diversity in the MD consortium 
implies a greater overall diversity, encompassing both the variety of 
different taxa (richness) and their even distribution in abundance (Li 
et  al., 2024). Conversely, MD and TD consortia displayed lower 
Faith’s_PD values than FD, indicating a relatively reduced phylogenetic 
diversity (Bai et al., 2023).

The prevalence of Proteobacteria, particularly Azospirillum sp. 
and Rhizobiales, across all consortia aligns with their well-established 
roles in soil ecosystems, encompassing functions such as nitrogen 
fixation, promotion of plant growth, and degradation of pesticides 
(Foster et al., 2004; Spain et al., 2009; Kaneko et al., 2010; Romeh and 
Hendawi, 2014; Liang et al., 2022; Degon et al., 2023). Furthermore, 

the presence of additional genera within Proteobacteria, such as 
Ochrobactrum sp., Shinella sp., Sphingobium sp., and Sphingomonas 
sp., underscores the potential of consortia for comprehensive pesticide 
degradation (Jiang et al., 2011; Wu et al., 2016; Vanitha et al., 2023; 
Wang et al., 2023).

Chitinophaga sp. and Bacteroides sp., identified within the 
Bacteroidetes phylum, are recognized degraders of carbofuran and 
atrazine, highlighting their significant ecological roles within the 
consortia (Karpouzas et al., 2000; Huang et al., 2020). The presence of 
anaerobic bacteria, including Oscillospira sp. and Dorea sp. and genera 
of Ruminococcaceae, Lachnospiraceae, and Clostridiales, suggests a 
potential contribution to reductive/anaerobic reactions in the soil, 
thereby facilitating xenobiotic degradation (Huang et al., 2019; Lu 
et al., 2019). Finally, the dominance of Actinobacteria, specifically 
Bifidobacterium sp., Mycobacterium sp., and Acinetobacter sp., within 
our consortia is noteworthy. These populations, typically found in the 

FIGURE 7

Proposed degradation pathway for THIO by TD and MD consortia.
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rhizosphere, are well-documented pesticide degraders, contributing 
to the consortia’s efficacy in pesticide degradation (Teixeira et  al., 
2010; Kandil et al., 2015; Zhan et al., 2018; Kumar et al., 2021). The 
intricate interplay of these diverse bacterial populations within each 
consortium underscores their potential for comprehensive pesticide 
remediation in various environmental contexts.

4.2 FIP and THIO degradation with the 
consortia

Our study demonstrated the capability of all three consortia to 
effectively degrade pesticides across a concentration range of 
25–800 μg/mL in culture medium. However, a noteworthy trend 
emerged, indicating a reduction in degradation rates at higher 
pesticide concentrations. While microbial tolerance to pesticides has 
been documented in previous studies (Yang et al., 2018; Zhang et al., 
2020) due to repeated exposure during enrichment cycles, research 
has also revealed a detrimental correlation between high pesticide 
concentrations and the degradation capacity of microbial isolates or 
consortia. This correlation can be  attributed to impaired growth, 
metabolism, and enzyme activity of microorganisms at higher 
pesticide concentrations (Li et al., 2020; Zhang et al., 2020; Bhatt et al., 
2021a; Li H. et al., 2022; Pang et al., 2023).

In our investigation, the RSM approach, coupled with the Box–
Behnken design, a widely acknowledged technique for optimizing 
degradation conditions of pesticides by microbial consortia, was 
employed. By considering key growth-determining factors such as 
culture pH, pesticide concentration, and inoculum size, our research 

aimed to identify conditions that would maximize the consortia’s 
pesticide degradation capabilities (Zhan et al., 2018; Birolli et al., 2020; 
Bhatt et al., 2021a,b; Pang et al., 2023). Notably, our findings unveiled 
that an inoculum size of 4–6%, along with conditions favoring a 
neutral to alkaline pH range, enhanced the degradation ability activity 
of the consortia. Furthermore, pesticide concentrations within the 
range of 60–100 μg/mL were identified as providing an optimal energy 
source for the consortia without inducing toxic effects (Zhan et al., 
2018; Li H. et al., 2022; Bhatt et al., 2023; Pang et al., 2023).

4.3 Metabolic pathway of FIP and THIO 
degradation with the consortia

In this study, metabolic pathways involved in FIP and THIO 
degradation by the isolated consortia were unraveled. FD and MD 
consortia exhibited a shared initial step in FIP degradation through 
the hydrolytic cleavage of the C-N bond, which was succeeded by 
subsequent oxidation and hydrolysis reactions. These results align 
with the existing literature, highlighting oxidative and hydrolytic 
processes as primary degradation pathways for FIP when microbial 
isolates are employed (Mandal et  al., 2013, 2014). Notable 
compounds resembling our findings, such as octadecane sulfonyl, 
hexadecane-1-sulfonic acid, 4-hydroxy-, delta-sultone, and 
5,8,11-heptadecatrienyl methyl ester, have been identified during 
FIP degradation by Bacillus sp. and Streptomyces rochei (Abraham 
and Gajendiran, 2019; Bhatt et  al., 2021a). Another metabolite 
observed, 1,2-benzene dicarboxylic acid, with the potential to 
transform into 1,4-benzenediol, further reinforces the diversity of 

TABLE 4 Kinetics for FIP degradation in soil by the FD consortium.

Pesticide 
concentration 
(μg/g)

Soil 
moisture 

(%)

Soil 
sterility

Consortium 
inoculation*

D 
(%)  ±  SD**

t1/2 
(day)***

R2**** k***** ±  SE 
(day−1)

k******(+/−) ±  SE

15

100

Sterile
+ 67.69bc ± 1.31 9 0.91 0.080 ± 0.007

1.82 ± 0.18
− 48.56fg ± 2.06 16 0.97 0.044 ± 0.002

Non-sterile
+ 78.56a ± 0.46 7 0.99 0.106 ± 0.004

1.29 ± 0.06
− 68.80b ± 2.57 8 0.99 0.082 ± 0.003

20

Sterile
+ 43.26gh ± 1.24 18 0.90 0.039 ± 0.004

6.80 ± 1.01
− 7.78j ± 1.48 121 0.90 0.006 ± 0.001

Non-sterile
+ 55.00def ± 3.35 13 0.94 0.053 ± 0.004

1.62 ± 0.14
− 36.88h ± 2.95 21 0.96 0.033 ± 0.002

150

100

Sterile
+ 52.14ef ± 0.93 13 0.90 0.054 ± 0.007

3.94 ± 0.57
− 18.38i ± 0.96 51 0.92 0.014 ± 0.001

Non-sterile
+ 73.58ab ± 1.33 7 0.99 0.093 ± 0.002

1.30 ± 0.06
− 60.64cd ± 2.82 10 0.97 0.072 ± 0.003

20

Sterile
+ 59.48de ± 3.54 11 0.98 0.065 ± 0.002

9.53 ± 0.90
− 9.24j ± 1.46 102 0.91 0.007 ± 0.001

Non-sterile
+ 37.61h ± 0.35 20 0.98 0.034 ± 0.001

1.06 ± 0.05
− 36.70h ± 0.71 21 0.98 0.032 ± 0.001

SE: Standard error (n = 3). SD: Standard deviation (n = 3). * + and – indicate soils with and without consortium inoculation, respectively. **Degradation after 14 days. Values with the same 
lowercase superscript letters in the column do not defer significantly (Tukey’s HSD post-hoc test, p = 0.05). ***Half-lives of FIP are calculated based on Eq. 2. ****The first-order exponential 
decay model (Eq. 1) coefficient of determination. *****FIP degradation rates based on the first-order exponential decay model (Eq. 1). ******The contribution of the FD consortium to the 
degradation rates of FIP (Eq. 5). Standard errors are calculated via the error propagation method.
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degradation pathways in FIP breakdown (Abraham and Gajendiran, 
2019; Bhatt et al., 2021b). It is intriguing to note that our study did 
not detect FIP sulfone, a known early metabolite (Uniyal et al., 2016; 
Bhatt et  al., 2021a,b), likely due to its rapid production during 
degradation, while our measurements were conducted after a 10-day 
incubation period.

Turning to the degradation pathways of THIO by the TD and MD 
consortia, the process involved the cleavage of the C-S bond, resulting 
in the production of benzenecarbothioic acid, S-methyl ester, and 

subsequent compounds such as carbamothioic acid, diethyl-, S-ethyl 
ester, benzothiazole, 2-methyl-, and 1-hexadecanethiol. These results 
correspond well with the findings by Chu et al. (2017), who identified 
diethylcarbamothioic S-acid as the primary product in aerobic THIO 
degradation by Acidovorax sp. Moreover, metabolites such as 
S-4-chlorobenzyl ethylthiocarbamate and 4-chlorobenzyl mercaptan 
were observed in the degradation of THIO by Pseudomonas sp. and 
Cupriavidus oxalaticus (Duc, 2023; Duc et al., 2023), which further 
corroborated our proposed pathways.

TABLE 5 Kinetics for FIP and THIO degradation in soil by the MD consortium.

Pesticide Pesticide 
concentration 

(μg/g)

Soil 
moisture 

(%)

Soil 
sterility

Consortium 
inoclulation*

D 
(%)  ±  SD**

t1/2 
(day)***

R2**** k***** ± 
SE (day−1)

k******(+/−) 
±  SE

FIP

15

100

Sterile
+ 55.72d ± 1.87 12 0.92 0.058 ± 0.005

1.28 ± 0.11
− 51.34d ± 3.10 14 0.97 0.048 ± 0.002

Non-

sterile

+ 71.34bc ± 0.78 8 0.95 0.090 ± 0.005
1.22 ± 0.11

− 65.00c ± 6.68 9 0.95 0.074 ± 0.005

20

Sterile
+ 53.90d ± 2.74 13 0.98 0.055 ± 0.002

11.07 ± 0.94
− 6.67g ± 0.20 139 0.93 0.005 ± 0.000

Non-

sterile

+ 51.22d ± 2.21 14 0.96 0.051 ± 0.003
2.00 ± 0.17

− 30.21e ± 1.38 27 0.94 0.026 ± 0.002

150

100

Sterile
+ 69.93bc ± 0.78 8 0.98 0.089 ± 0.003

6.88 ± 0.36
− 16.66f ± 0.54 54 0.98 0.013 ± 0.001

Non-

sterile

+ 89.27a ± 1.10 4 0.98 0.156 ± 0.007
1.85 ± 0.09

− 71.21bc ± 1.95 8 0.99 0.084 ± 0.002

20

Sterile
+ 68.44bc ± 0.83 8 0.98 0.083 ± 0.003

13.09 ± 0.94
− 8.62fg ± 0.60 109 0.94 0.006 ± 0.000

Non-

sterile

+ 74.77b ± 1.99 8 0.95 0.092 ± 0.006
3.05 ± 0.34

− 33.92e ± 0.93 23 0.90 0.030 ± 0.003

THIO

15

100

Sterile
+ 55.04cde ± 1.85 12 0.97 0.060 ± 0.003

3.88 ± 0.20
− 19.51h ± 0.14 45 0.99 0.016 ± 0.000

Non-

sterile

+ 60.25c ± 0.61 10 0.92 0.067 ± 0.005
1.25 ± 0.10

− 53.36de ± 0.65 13 0.99 0.054 ± 0.001

20

Sterile
+ 36.10f ± 2.20 23 0.97 0.031 ± 0.001

3.88 ± 0.43
− 10.36i ± 0.49 88 0.88 0.008 ± 0.001

Non-

sterile

+ 50.27e ± 1.57 14 0.98 0.051 ± 0.002
2.13 ± 0.17

− 27.63g ± 1.90 29 0.93 0.024 ± 0.002

150

100

Sterile
+ 74.40b ± 3.08 7 0.98 0.106 ± 0.004

2.88 ± 0.12
− 39.97f ± 1.46 19 0.99 0.037 ± 0.001

Non-

sterile

+ 80.38b ± 2.23 6 0.97 0.124 ± 0.006
0.75 ± 0.04

− 89.34a ± 0.32 4 0.99 0.166 ± 0.002

20

Sterile
+ 56.45cd ± 3.02 11 0.96 0.063 ± 0.003

6.38 ± 0.42
− 12.56i ± 0.28 70 0.98 0.010 ± 0.000

Non-

sterile

+ 79.01b ± 0.62 5 0.87 0.139 ± 0.020
7.67 ± 1.18

− 22.77gh ± 1.09 38 0.96 0.018 ± 0.001

SE: Standard error (n = 3). SD: Standard deviation (n = 3). * + and – indicate soils with and without consortium inoculation, respectively. **Degradation after 14 days. Values with the same 
lowercase superscript letters in the column do not defer significantly (Tukey’s HSD post-hoc test, p = 0.05). ***Half-lives of FIP and THIO are calculated based on Eq. 2. ****The first-order 
exponential decay model (Eq. 1) coefficient of determination. *****FIP and THIO degradation rates based on the first-order exponential decay model (Eq. 1). ******The contribution of the 
MD consortium to the degradation rates of FIP and THIO (Eq. 5). Standard errors are calculated via the error propagation method.
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4.4 Soil bioaugmentation test with the 
isolated consortia

To comprehensively evaluate the degradative potential of FD, TD, and 
MD consortia in paddy soils, extensive bioaugmentation tests were 
conducted. Our key findings can be summarized as follows: (a) Across 
diverse conditions of pesticide concentration, soil moisture, and sterility, 
all consortia significantly enhanced the degradation of FIP and THIO 
compared with non-inoculated soils, (b) notably, the consortia exhibited 
heightened degradation efficiencies in sterile soils, where the absence of 
indigenous biodegradation processes allowed them to serve as primary 
agents responsible for pesticide degradation, and (c) optimal degradation 
of FIP and THIO was observed at 20% moisture conditions, surpassing 
efficiencies observed at 100% moisture.

The increased efficacy of the consortia in sterile soils underscores 
their ability to drive biodegradation processes in environments, otherwise 
limited in such activities. Even in non-sterile soils with existing microbial 
communities, the consortia demonstrated significant impacts on pesticide 
degradation. Although degradation rates were slightly lower compared 
with sterile soils, the consortia’s effectiveness suggests potential synergistic 
interactions with the native microbial community, warranting further 
exploration of niche differentiation or cooperative metabolic activities. 
Our findings align with the study by Pang et al. (2023) and Bhatt et al. 
(2021b), indicating that introducing bacterial consortia enhances 
pesticide degradation. However, our study uniquely delves into the role of 
sterile soil conditions, shedding light on the consortia’s capacity to 
establish and function in the absence of competing microorganisms.

Furthermore, the superior degradation efficiency of our consortia in 
low moisture content can be attributed to the aerobic nature of dominant 

bacterial populations. Even under dominant anoxic conditions in soils 
with 100% moisture, our consortia remained significantly effective, 
emphasizing the role of anaerobic bacterial populations such as 
Oscillospira sp. and Dorea sp. and genera of Ruminococcaceae, 
Lachnospiraceae, and Clostridiales in the degradation of FIP and 
THIO. Previous reports on increased abundance and activity of obligate 
anaerobic bacteria such as Clostridiales under low oxygen conditions in 
flooded soils support these results (Zhou et al., 2012; Lauga et al., 2013; 
Elsayed et al., 2015; Torabi et al., 2020). This promising outcome suggests 
that the high species richness of bacteria in FD, TD, and MD consortia 
endows them with efficient adaptability and biodegradability across 
varied soil conditions (Bhatt et al., 2021c; Lin et al., 2022).

5 Conclusion

In this study, three bacterial consortia, namely, FD, TD, and MD, 
were successfully isolated from paddy soils using the enrichment 
culture method and characterized. These consortia demonstrated a 
remarkable capacity for degrading specific pesticides: FIP, THIO, and 
the FP + THIO mixture, respectively. The efficiency of pesticide 
degradation by all consortia exceeded 80%, accomplished within 
10 days.

The bacterial populations within the consortia exhibited 
considerable diversity, with predominant genera identified as 
Azospirillum, Ochrobactrum, Sphingobium, and Sphingomonas. 
Notably, these consortia displayed robust tolerance and degradation 
capabilities even when exposed to high pesticide concentrations, 
reaching up to 800 μg/mL for both FIP and THIO. The degradation 

TABLE 6 Kinetics for THIO degradation in soil by the TD consortium.

Pesticide 
concentration 
(μg/g)

Soil 
moisture 

(%)

Soil 
sterility

Consortium 
inoclulation*

D 
(%)  ±  SD**

t1/2 
(day)***

R2**** k***** ±  SE 
(day−1)

k******(+/−) ±  SE

15

100

Sterile
+ 37.45h ± 1.39 20 0.99 0.034 ± 0.001

2.32 ± 0.12
− 18.57i ± 1.38 47 0.97 0.015 ± 0.001

Non-sterile
+ 56.90de ± 1.10 11 0.98 0.063 ± 0.002

1.26 ± 0.05
− 50.74fg ± 0.65 14 0.99 0.050 ± 0.001

20

Sterile
+ 47.17g ± 1.30 16 0.99 0.044 ± 0.002

4.50 ± 0.38
− 11.72j ± 0.23 70 0.97 0.010 ± 0.001

Non-sterile
+ 75.97b ± 0.41 7 0.90 0.098 ± 0.002

1.51 ± 0.08
− 61.68d ± 2.53 11 0.99 0.065 ± 0.002

150

100

Sterile
+ 55.62ef ± 1.85 12 0.99 0.056 ± 0.003

1.58 ± 0.10
− 39.00h ± 0.63 20 0.96 0.035 ± 0.001

Non-sterile
+ 67.34c ± 1.82 8 0.99 0.085 ± 0.005

0.98 ± 0.06
− 69.80c ± 1.70 8 0.95 0.086 ± 0.001

20

Sterile
+ 54.75ef ± 1.34 12 0.99 0.057 ± 0.003

5.42 ± 0.36
− 13.90ij ± 0.44 65 0.98 0.011 ± 0.001

Non-sterile
+ 85.32a ± 1.75 5 0.98 0.143 ± 0.004

4.61 ± 0.15
− 34.77h ± 0.07 22 0.99 0.031 ± 0.001

SE: Standard error (n = 3). SD: Standard deviation (n = 3). * + and – indicate soils with and without consortium inoculation, respectively. **Degradation after 14 days. Values with the same 
lowercase superscript letters in the column do not defer significantly (Tukey’s HSD post-hoc test, p = 0.05). ***Half-lives of THIO are calculated based on Eq. 2. ****The first-order 
exponential decay model (Eq. 1) coefficient of determination. *****THIO degradation rates based on the first-order exponential decay model (Eq. 1). ******The contribution of the TD 
consortium to the degradation rates of THIO (Eq. 5). Standard errors are calculated via the error propagation method.
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mechanisms employed by the consortia primarily involved oxidative 
and hydrolytic reactions, representing a novel pathway for the 
degradation of FIP and THIO.

Comprehensive bioaugmentation tests were conducted in soils 
contaminated with FIP and THIO to further evaluate their practical 
applicability. Consortia consistently demonstrated substantial pesticide 
degradation abilities in diverse conditions, including various 
concentrations, soil moistures, and sterile or non-sterile soil conditions.

In conclusion, the findings from this research highlight the 
promising potential of FD, TD, and MD consortia for bioremediation 
and bioaugmentation of FIP and THIO in polluted paddy soils. The 
remarkable pesticide-degrading capabilities, coupled with their 
adaptability to varying soil conditions, position these bacterial 
consortia as valuable tools for addressing pesticide contamination in 
agricultural ecosystems. The application of FD, TD, and MD consortia 
in bioremediation strategies holds promise for enhancing the 
sustainability and environmental health of paddy soil ecosystems.
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