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Non-alcoholic fatty liver disease (NAFLD) is increasingly recognized for its 
global prevalence and potential progression to more severe liver diseases such 
as non-alcoholic steatohepatitis (NASH). The gut microbiota plays a pivotal role 
in the pathogenesis of NAFLD, yet the detailed characteristics and ecological 
alterations of gut microbial communities during the progression from non-
alcoholic fatty liver (NAFL) to NASH remain poorly understood. Methods: In this 
study, we conducted a comparative analysis of gut microbiota composition in 
individuals with NAFL and NASH to elucidate differences and characteristics. We 
utilized 16S rRNA sequencing to compare the intestinal gut microbiota among 
a healthy control group (65 cases), NAFL group (64 cases), and NASH group 
(53 cases). Random forest machine learning and database validation methods 
were employed to analyze the data. Results: Our findings indicate a significant 
decrease in the diversity of intestinal flora during the progression of NAFLD 
(p < 0.05). At the phylum level, high abundances of Bacteroidetes and Fusobacteria 
were observed in both NAFL and NASH patients, whereas Firmicutes were less 
abundant. At the genus level, a significant decrease in Prevotella expression was 
seen in the NAFL group (AUC 0.738), whereas an increase in the combination 
of Megamonas and Fusobacterium was noted in the NASH group (AUC 0.769). 
Furthermore, KEGG pathway analysis highlighted significant disturbances in 
various types of glucose metabolism pathways in the NASH group compared 
to the NAFL group, as well as notably compromised flavonoid and flavonol 
biosynthesis functions. The study uncovers distinct microbiota characteristics 
and microecological changes within the gut during the transition from NAFL to 
NASH, providing insights that could facilitate the discovery of novel biomarkers 
and therapeutic targets for NAFLD.
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) has emerged as a 
prominent global health challenge in the field of hepatology, 
characterized by abnormal accumulation of lipids in the liver, 
including non-alcoholic fatty liver (NAFL) and non-alcoholic 
steatohepatitis (NASH; Scavo et al., 2022; Huang et al., 2023; Ren et al., 
2023). The latter often progresses to cirrhosis, liver failure, and 
hepatocellular carcinoma (HCC), making it the leading cause of liver 
transplantation (Davis et  al., 2019; Huang et  al., 2021). Despite 
advancements in understanding the pathogenesis and therapeutic 
approaches for NAFLD (Sun et  al., 2019), significant challenges 
remain in the early diagnosis and treatment of the disease.

The gut microbiota, which refers to the microbial community 
residing within the gastrointestinal tract, plays a crucial role in host 
digestion, immunity, and metabolism. Dysbiosis, characterized by 
unhealthy alterations in the normal bacterial ecology, pervades the 
entire pathological continuum of NAFLD, encompassing conditions 
from simple steatosis to NASH, and extending through to advanced 
fibrosis, culminating in cirrhosis and hepatocellular carcinoma 
(Hoyles et al., 2018; Javdan et al., 2020; Mohr et al., 2020).

The foundational study by Demir et al. presented groundbreaking 
evidence supporting a causal relationship between the gut microbiota 
and the pathogenesis of NAFLD, as demonstrated by mouse models 
and fecal transplant experiments (Demir et al., 2022). The findings 
revealed an increase in two distinct bacterial species (Trichophylidae 
bacteria 609 and Barnesiella) among mice exhibiting steatosis (Jin et al., 
2022). However, significant disparities were observed in terms of 
composition, predominant genera, as well as abundance levels for 
specific genera and species when comparing the gut microbiota profiles 
between mice and humans (Javdan et al., 2020; Mohr et al., 2020). 
Therefore, it is imperative to detect and differentiate the disparities 
between gut microbiota and NAFLD in human subjects. In recent 
years, numerous studies have concentrated on the characteristics of gut 
microbiota in human patients with steatosis, NASH, or related 
cirrhosis. Current research has demonstrated an increase in Proteus 
(Raman et al., 2013; Shen et al., 2017; Hoyles et al., 2018; Loomba et al., 
2019) and Enterobacterium (Hoyles et  al., 2018) within NAFLD 
patients. Conversely, Riederia (Zhu et al., 2013; Del et al., 2017) and 
Ruminococcus exhibited a reduction at the genus level (Zhu et al., 
2013; Del et al., 2017). Specifically, Escherichia (Zhu et al., 2013; Hoyles 
et  al., 2018) Doxella (Zhu et  al., 2013; Del et  al., 2017), and 
Gastrobacillus (Zhu et al., 2013; Del et al., 2017) displayed an upward 
trend. On the other hand, anaerobic sporococcus (Wang et al., 2016; 
Roeb, 2022), Bacillus faecalis (Wang et al., 2016; Hoyles et al., 2018), 
Bacillus (Zhu et al., 2013; Hoyles et al., 2018), Bacillus faecalis (Zhu 
et al., 2013; Roeb, 2022), and Prevotella (Boursier et al., 2016; Hoyles 
et al., 2018) all showed a downward trajectory. The microbial signatures 
observed in NASH patients were similar to those found in NAFLD 
when compared to healthy individuals serving as controls. However, 
these findings exhibited variations attributed to disparities in cohort 
demographics, including but not limited to sex, ethnicity, severity of 
liver disease stage, presence or absence of type 2 diabetes mellitus and 
BMI, as well as the patient population being either pediatric or adult. 
An additional factor that could complicate the interpretation of 
changes in microbiota composition in NAFLD is sarcopenia. Xiangya 
study has found that the relative abundance of six species (Desulfovibrio 
piger, Clostridium symbiosum, Hungatella effluvii, Bacteroides fluxus, 

Absiella innocuum, and Clostridium citroniae) was also positively 
associated with the severity of sarcopenia (Wang et  al., 2022). 
Sarcopenia is a common complication of various chronic diseases 
(Tarantino et al., 2023), yet its specific molecular mechanisms remain 
unclear. Sarcopenia’s close relationship with the gut microbiome has 
been documented in studies by Nikkhah et al. (2023) and Ren et al. 
(2021) and the prevalence of sarcopenia in patients with NAFLD has 
been noted by Cai et  al. (2020). Additionally, discrepancies in gut 
microbiota composition were influenced by factors such as obesity-
related metabolic diseases and the sequencing techniques employed for 
gut microbiota analysis. Consequently, certain contemporary studies 
even present contradictory trends when compared to the 
aforementioned results (Kim et al., 2021; Galli et al., 2022; Girdhar 
et al., 2023).

Therefore, in this study, 16S rRNA sequencing technology was 
employed to systematically analyze intestinal samples from Chinese 
individuals pathologically diagnosed with NAFL and NASH, and 
compare them with healthy controls. By investigating the variations 
in intestinal microflora composition at different stages of NAFLD and 
further exploring the correlation between alterations in the abundance 
of dominant strains of intestinal microflora among patients with 
distinct disease stages such as NAFL and NASH, functional analysis 
and mechanistic studies will contribute to comprehending the specific 
role of these microflora in NAFLD progression. The findings from this 
investigation are anticipated to offer novel biomarkers and therapeutic 
targets for diagnosing and treating NASH. Through understanding the 
association between gut microbiota and NASH, we can enhance our 
comprehension of NASH pathogenesis while developing new 
strategies and approaches for its prevention and treatment.

2 Materials and methods

2.1 Study design

This study aimed to investigate the role of gut microbiome in 
patients with NAFL or NASH through 16S rRNA gene amplicon 
sequencing. Patients diagnosed with NAFL or NASH, as well as a 
normal control population, were recruited for this study. Detailed 
demographics are provided in Table 1. Stool samples from the patients 
were collected and immediately stored in −80°C at the time of each 
research visit. DNA extraction of stools, amplification of bacterial 16S 
rRNA genes, cloning, and sequencing of polymerase chain reaction 
(PCR) products were performed at the BGI-Shenzhen laboratory. This 
study was approved by Ethics Committee of Shenzhen Hospital of 
Traditional Chinese Medicine (ethical approval number: K2017-024), 
all the participants who agreed to serve as fecal donors provided 
written informed consent, in accordance with national legislation and 
the Code of Ethical Principles for Medical Research Involving Human 
Subjects of the World Medical Association (Declaration of Helsinki).

2.2 Patient selection

2.2.1 Study participants
Participants were recruited from the Department of Hepatology 

at Shenzhen Traditional Chinese Medicine Hospital between 
December 2018 and December 2019. A total of 237 individuals 
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underwent primary screening, with 32 patients excluded due to 
HBV infection and 10 patients excluded due to alcohol consumption. 
Among the remaining 205 subjects, ultrasound or Fibroscan was 
performed to diagnose NAFLD and categorize them into 140 
NAFLD patients and 65 normal controls. 64 patients out of the 140 
with NAFLD showed abnormal ALT levels (ALT≥40 U/L). All of 

these 140 NAFLD patients were advised to undergo a liver biopsy 
and provide fecal samples; however, 20 of them refused the liver 
biopsy and three patients had unqualified fecal specimens. Finally, a 
total of 53 NASH patients with confirmed biopsies, along with 64 
biopsy-proven NAFLD patients and 65 healthy controls were 
enrolled (Figure 1).

TABLE 1 Characteristics of each group in detail, including clinical, metabolic, biochemical and histological profiles (mean, mean  ±  sd).

Variables (mean, sd) Control NAFL NASH FDR* (NASH vs. 
NAFL)

N  =  65 N  =  64 N  =  53

Age, years 37.03 (9.19) 37.83 (9.29) 34.79 (8.32) 0.070076

Female sex, n (%) 35 (0.54) 31 (0.48) 5 (0.09) 0.000000

Smoking, n (%)

Current smoker 26 (0.4) 25 (0.39) 9 (0.17) 0.000000

Ex-smoker 2 (0.03) 2 (0.03) 6 (0.11) 0.000000

Non-smoker 37 (0.57) 37 (0.58) 38 (0.72) 0.792146

BMI, kg/m2 22.76 (2.84) 29.26 (3.60) 29.44 (4.56) 0.000037

WC, cm 76.46 (12.57) 89.81 (10.83) 98.11 (7.70) 0.000342

CAP, dB/m 213.25 (18.84) 304.64 (35.16) 325.38 (35.84) 0.000757

E, kPa 4.31 (1.22) 5.12 (1.35) 9.25 (11.87) 0.000000

ALT, U/L 16.46 (7.00) 22.10 (7.23) 76.17 (34.50) 0.000000

AST, U/L 20.96 (8.49) 19.18 (3.89) 40.22 (15.45) 0.000000

GGT, U/L 17.94 (17.00) 27.48 (17.49) 71.45 (47.93) 0.000091

ALP, U/L 54.75 (14.00) 62.10 (16.68) 73.34 (14.43) 0.278399

TBIL, umol/L 15.58 (5.88) 15.01 (8.71) 16.39 (5.13) 0.21574

DBIL, umol/L 3.49 (1.84) 3.16 (1.82) 3.57 (1.64) 0.441257

IBIL, umol/L 12.09 (4.72) 12.03 (7.22) 12.82 (3.74) 0.003631

ALB, g/L 47.93 (2.39) 48.87 (2.30) 50.43 (3.81) 0.496058

PLT, % 258.31 (53.98) 284.52 (66.26) 273.00 (139.86) 0.000006

AFP, mg/L 2.83 (1.78) 3.23 (1.90) 1.68 (1.68) 0.000005

CR, mmol/L 68.57 (15.43) 66.59 (14.25) 78.92 (12.10) 0.000006

UA, umol/L 325.32 (84.63) 382.16 (80.30) 453.94 (83.03) 0.91268

eGFR 106.91 (13.25) 102.24 (22.07) 101.88 (16.32) 0.019299

TG, mmol/L 1.11 (0.54) 1.77 (1.73) 2.04 (0.77) 0.047391

TC, mmol/L 4.35 (0.76) 4.72 (0.99) 5.05 (0.91) 0.300345

LDL, mmol/L 6.73 (32.17) 3.09 (0.95) 3.28 (1.01) 0.818905

FBG, mmol/L 4.42 (0.87) 5.15 (0.56) 5.18 (0.63) 0.314147

HBAlc, % 5.62 (0.31) 5.70 (0.33) 5.76 (0.32) 0.004465

FBC, nmol/L 1.52 (0.63) 2.36 (0.98) 2.91 (1.41) 0.005862

FBI, pmol/L 46.85 (27.25) 86.17 (44.70) 116.34 (91.35) 0.054905

SF, umol/L 18.31 (6.98) 18.28 (6.30) 20.51 (6.10) 0.000000

FER, nmol/L 123.58 (113.66) 145.72 (117.95) 328.30 (211.70) 0.144514

CER, g/L 0.14 (0.03) 0.17 (0.04) 0.16 (0.04) 0.000000

AST/ALT 1.37 (0.43) 0.93 (0.24) 0.57 (0.21) 0.000000

SAF score – 1.52 (0.31) 4.81 (0.74) 0.005000

HOMA-IR 1.37 (0.91) 2.75 (1.48) 3.71 (2.84) 0.005000

TyG 7.4 (0.39) 7.52 (0.64) 7.65 (0.32) 0.000000

*By Mann–Whitney test. HOMA-IR calculation formula: FPG (mmol/L) × FBI (μU/mL)/22.5. TyG calculation formula: ln [TG (mg/dl) × FBG (mg/dl)]/2.
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2.2.2 Inclusion criteria
Inclusion criteria were: (1) Presence of hepatic steatosis confirmed 

by liver imaging techniques such as ultrasonography or fibroscan; (2) 
Absence of any concurrent chronic liver diseases including viral 
hepatitis or autoimmune hepatitis; (3) Alcohol consumption below 
20 g/day.

2.2.3 Liver biopsy and histopathology
The percutaneous liver biopsy was performed under 

ultrasound guidance following local anesthesia. A 16-G Tru-Cut 
biopsy needle (C.R. Bard Inc., Covington, United  States) was 
inserted into the liver parenchyma to obtain an adequate amount 
of liver tissue containing a minimum of 10 portal tracts with an 
approximate length of 2.0 cm for precise diagnostic purposes. The 
obtained specimens were promptly fixed, embedded in paraffin, 
and stained with hematoxylin–eosin (HE). Subsequently, all 
specimens were sent to the Department of Pathology at Shenzhen 
Traditional Chinese Medicine Hospital for evaluation. Liver 
pathological images were diagnosed by two experienced 
pathologists who were blinded to the TE (CAP) value and color 
Doppler ultrasound scans. The SAF score was employed to semi-
quantify each individual feature of NAFLD, encompassing 
steatosis, inflammatory activity, and fibrosis, in accordance with 
the SAF (0–7) scoring system (Bedossa et  al., 2012). The 
classification of NAFLD comprises two subtypes: NAFL and 
NASH. The scoring criteria encompass hepatocyte steatosis (0–3), 
balloon-like degeneration (0–2), and lobular inflammation (0–2). 
NASH is diagnosed when both balloon-like degeneration and 

lobular inflammation coexist, or if the total score on each scale is 
≥3; otherwise, NAFL is diagnosed.

2.2.4 Genomics DNA extraction
DNA was extracted from fecal samples using the MagPure Stool 

DNA kit B (Magen, China) according to the provided protocol. 
Subsequently, the DNA was quantified utilizing a Qubit Fluorometer 
with the Qubit® dsDNA BR Assay kit (Invitrogen, China), and its 
quality was assessed by electrophoresis on a 1% agarose gel.

2.2.5 Library construction
Variable region V4 of bacterial 16S rRNA gene was amplified with 

degenerated PCR primers, 515F (5’-GTGCCAGCMGCCGCG 
GTAA-3′) and 806R (5’-GGACTACHVGGGTWTCTAAT-3′). The 
forward and reverse primers were both modified with Illumina 
adapter, pad, and linker sequences. PCR enrichment was conducted 
in a 50 μL reaction system containing 30 ng of template DNA using the 
following cycling conditions: pre-denaturation at 95°C for 3 min, 
followed by 30 amplification cycles consisting of denaturation at 95°C 
for 45 s, annealing at 56°C for 45 s, and extension at 72°C for 45 s. A 
final extension step was performed in 72°C for a duration of 10 min. 
Subsequently, the PCR products were purified using Agencourt 
AMPure XP beads and eluted in Elution buffer. The quality assessment 
of libraries was conducted using the Agilent Technologies’ bioanalyzer 
model number 2100. Once validated, these libraries were subjected to 
sequencing on Illumina HiSeq2500 platform (BGI, Shenzhen, China) 
following the standard protocols provided by Illumina. This resulted 
in the generation of paired-end reads with a length of 2 × 250 bp.

FIGURE 1

Consort flow diagram of study participants.
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2.2.6 Sequencing and bioinformatics analysis
The raw reads were subjected to adaptor removal, as well as the 

elimination of low-quality and ambiguous bases. Subsequently, the 
Fast Length Adjustment of Short reads program (FLASH, v1.2.11) 
was employed to merge paired-end reads with tags in order to 
obtain the final tags.

The tags were denoised into operational taxonomic units 
(OTUs) using two methods: unoise3 with VSEARCH (v2.22.1; 
Rognes et al., 2016), and DADA2 with QIIME2 v2023.2 (Bolyen 
et al., 2019). Chimera sequences were identified by comparing 
them to the gold database Silva (v123; Quast et al., 2012) using 
VSEARCH. Subsequently, an OTU feature table was generated for 
further analysis using VSEARCH (v2.22.1). Taxonomic 
classification of the OTU representative sequences was performed 
with Silva v123 (Pelin et  al., 2013), employing a minimum 
confidence threshold of 0.6, and trained on the Greengenes 
database v13_8 through QIIME2(v2023.2; Yokono et al., 2018). 
Finally, USEARCH global (Edgar, 2010) was utilized to compare 
all tags back to the OTUs in order to obtain an abundance 
statistics table for each sample.

The estimation of alpha and beta diversity was conducted using 
USEARCH (v11.0.667; Edgar, 2010) and QIIME2 (v2023.2) at the 
OTU level, respectively. The visualization of diversity analysis was 
generated using the R package “amplicon” (Labun et al., 2019), while 
the Chord diagram illustrating different classification levels was 
created using the R package “circlize” (Gu et al., 2014).

Differential analysis was performed using the “edgeR” (Chen et al., 
2016) package and STAMP (Parks et al., 2014). Volcano plots and 
Manhattan plots were generated using the “ggplot2” (Ginestet, 2011) 
package. LDA analysis was conducted using LEfSe (Zhang et  al., 
2013). A false discovery rate (FDR) of 0.05 and an LDA score greater 
than 2 were used as indicators of statistical significance. KEGG 
function prediction was carried out using the PICRUSt (Wilkinson 
et al., 2018) and PICRUSt2 (Douglas et al., 2020) software. Organism 
Level Microbiome Phenotypes were predicted using BugBase (Ward 
et al., 2017) software. Significant species of function were determined 
by R (v4.2.3), based on Wilcox-test or Kruskal-test.

2.2.7 Statistical analysis
Because the data did not all satisfy the normal distribution, 

the Mann–Whitney test was used to test each clinical data. The 
statistical test of negative binomial distribution was used to 
analyze OTU differences by edgeR. The Wilcoxon rank sum test 
was used to analyze species differences between the two groups. 
LEfSe analysis firstly used the non-parametric Kruskal-Wallis 
rank sum test to detect species with significant differences 
between different groups in multiple groups of samples, and then 
used the Wilcoxon rank sum test for groups of significantly 
different species to analyze the differences between groups. 
Finally, linear discriminant analysis (LDA) was used to reduce the 
dimensionality of the data to evaluate the influence of species with 
significant differences. In the analysis of metabolic pathways, 
Welch’s t-test was used to compare the two groups. Data sets that 
involved more than two groups were assessed by one-way ANOVA 
followed by Tukey–Kramer post-hoc tests. p < 0.05 was considered 
statistically significant and Story false discovery rate (FDR) of 
0.05 was used as indicators of statistical significance.

3 Results

3.1 Clinical characteristics of NAFLD 
population

This study included 64 patients diagnosed with NAFL and 53 
patients diagnosed with NASH based on pathological examination, as 
well as 65 individuals without NAFLD serving as controls, according 
to the predefined inclusion criteria. The comprehensive characteristics 
of each group, encompassing clinical, metabolic, biochemical, and 
histological profiles, are presented in Table 1. Most of the clinical 
indices such as BMI, CAP, E, ALT, AST, GGT, ALP, UA, etc. showed 
significant variance. The values of CAP, ALT, E, HOMA-IR and other 
clinical indices gradually increased in the control, NAFL and NASH 
groups, and the indices in the NAFL and NASH groups were mostly 
higher than the normal values of liver function tests.

3.2 Species diversity of the gut microbiome 
in groups

In microbiome sequencing, the UNOISE3 algorithm yielded a 
total of 13,686 operational taxonomic units (OTUs). A sparse profile 
based on observed species indicates that the sequencing data is 
sufficient for detecting all species present in the samples 
(Supplementary Figure S1). To assess differences in bacterial diversity 
among the three groups, sequence alignment was performed to 
estimate both alpha and beta diversity. Our study revealed significant 
differences in α diversity between the NAFL group, NASH group, and 
control group (Shannon index, p < 0.05; Figure 2B). Beta diversity was 
subsequently evaluated using CPCoA rankings (Figure 2C), revealing 
a significant variation in species composition across the three groups 
(variance: 1.32%; p = 0.009). The Venn diagram demonstrated that 
there was a total of 2,481 OTUs shared among all three groups, with 
differentially expressed OTUs numbering at 210 for the control group, 
156 for NAFL, and 71 for NASH. Furthermore, the number of group-
specific taxa decreased from healthy control patients to NAFL patients 
to NASH patients (Figure 2A).

3.3 Differences in the taxonomic 
composition in groups

To investigate taxonomic differences between NAFL and NASH 
groups at the phylum and genus levels, we employed edgeR and LEFSe 
for analysis. The relative abundance of bacteria was assessed across all 
three groups at both the phylum and genus levels, revealing statistically 
significant disparities. At the phylum level, each sample exhibited distinct 
species composition (Figure  3A), with Bacteroidetes, Firmicutes, 
Proteobacteria, Fusobacteria, and Actinobacteria being the predominant 
phyla accounting for 95% or more abundance in all three groups 
(Figure 3B). At the phylum level, the predominant bacteria in the NAFL 
group were predominantly members of the phylum Bacteroidetes 
(73.9%), Firmicutes (17.2%), Fusobacteria (3.4%), and Proteobacteria 
(4.6%). The NASH group was also dominated by members of 
Bacteroidetes (71%), Firmicutes (19.7%), Fusobacteria (4.1%), and 
Proteobacteria (4.8%). At the genus level, Bacteroides, Prevotella_9, 
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Faecalibacterium, Megamonas, and Fusobacterium were the predominant 
genera accounting for 90% or more abundance in all three groups 
(Figure 3C). The results of the edgeR package analysis, illustrated by the 
Manhattan plot (Figure 4A) showed that there was an enrichment of 
Bacteroidetes and Fusobacteria, while the ratios of Firmicutes and 
Proteobacteria were depleted in both the NAFL group and NASH group, 
as depicted in Supplementary Figure S2. Compared to the NAFL group, 
the NASH group exhibited higher levels of Firmicutes but lower levels of 
Bacteroidetes at phylum level, with Bacteroides being enriched as the 
most abundant genus (FDR < 0.05; Supplementary Figure S2). The relative 
abundance of Bacteroides and Fusobacterium was significantly higher in 
the NAFL group, while Prevotella_9 was lower compared to the control 
group. In the NASH group, there was an enrichment of Megamonas and 
Fusobacterium. Furthermore, the NASH group exhibited higher levels of 
Megamonas and Fusobacterium compared to the NAFL group.

The LEfSe analysis was employed to construct a cladogram for the 
identification of specific bacteria associated with the three groups 
(Figure  4B). Megamonas and Fusobacterium were found to 
be significantly enriched in the fecal samples of patients belonging to 
the NASH group, as indicated by high LDA scores (log10 > 4). 
Conversely, Subdoligranulum and Ruminococcus_2 were identified 
as the predominant microbiota in the control group (Figure 4C).

3.4 Difference analysis of intestinal flora 
expression between NAFL and NASH 
patients

In the study cohort, we constructed a random forest classifier 
model for 65 healthy controls, 64 NAFL and 53 NASH to evaluate the 
diagnostic efficacy of intestinal microbiome markers and explore their 
potential as a non-invasive diagnostic tool for NAFL and 
NASH. Through a 10-fold cross-validation of the random forest 
model, the dataset was partitioned into 10 subsets, with nine of them 
utilized for training purposes and one reserved for testing. The 
accuracy rate was computed for each experiment, and the average 
accuracy rate from 10 iterations serves as an estimation of the 
algorithm’s performance. This process was repeated using 10-fold 
cross-validation to obtain a final averaged estimation of the algorithm’s 
accuracy. Using this approach, the first five microbial genera were 
selected as the best marker set for NAFL and NASH (Figure 5A), 
Combining the results of species abundance and LEfSe analyses, 
we decided to assess the potential value of Prevotella_9, Megamonas 
and Fusobacterium as biomarkers. The results showed that compared 
with the control group, Prevotella_9 distinguished NAFL with an 
AUC of 0.738 (95% CI = 0.580–0.896; Figure  5B). However, the 

FIGURE 2

Comparisons of the alpha diversity and beta diversity about control, NAFL and NASH patients. (A) Venn diagram showing overlaps of the operational 
taxonomic units (OTUs) in the two groups (Shannon index). (B) Alpha diversity of the three groups, as quantified by diversity indices (Shannon, p  <  0.05). 
(C) Principal coordinate analysis (CPCoA) plots of bacterial beta diversity of the three groups based on Euclidean. (p  =  0.009).
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expression of Megamonas and Fusobacterium continues to 
progressively increase in the control group, NAFL group, and NASH 
group, with a particularly significant elevation observed in the NASH 
group. The combined presence of these taxa effectively distinguishes 

NASH with an AUC of 0.769 (95% CI = 0.610–0.927; Figure 5C). It is 
evident that Prevotella_9 exhibits a significant decrease in expression 
as the most representative bacterial taxon in NAFL, while Megamonas 
and Fusobacterium demonstrate a notable increase in expression as 
the most representative taxa in NASH. To differentiate between the 
microflora profiles of the NAFL and NASH groups, a simple forest 
analysis was conducted using single and combined data for 
Megamonas and Fusobacterium compared to those solely of the 
NAFL group (Figure 5D), this yielded an AUC value of 0.666 for single 
Fusobacterium alone. These findings suggest a potential correlation 
between elevated levels of Megamonas and Fusobacterium and 
disease progression.

3.5 Public data validation

To validate the robustness and generalizability of the analysis 
findings, we selected two sets of publicly available NAFLD-related 
sequence data for species diversity analysis. The respective Project ids 
associated with these datasets are PRJNA737039 and PRJNA540738. 
Upon comparing our data with the two public datasets, it is evident 
that the composition and variability of gut microbiota across different 
countries and regions are substantial. These discrepancies are likely 
influenced by factors such as geographical environment and dietary 
practices. Notably, our analysis results exhibit a higher degree of 
similarity with the PRJNA737039 project, with predominant species 
including Bacteroides, Prevotella_9, Faecalibacterium, and Roseburia. 
The observed differences in species composition and significant 
disparities may be  attributed to disease classification standards, 
regional influences, and other variables. This suggests that the findings 
of our research may have greater relevance and applicability within the 
context of China (Supplementary Figure S3). The PRJNA737039 
dataset originated from China, while the PRJNA540738 dataset was 
obtained from Germany. Combining species diversity analysis with 
LEfSe difference analysis revealed that in Project PRJNA737039, 
Bacteroidetes, Prevotella_9 and Faecalibacterium were significantly 
expressed in both NAFL and NASH groups compared to healthy 
controls, which is consistent with the species composition observed 
in our own sample. In contrast, Project PRJNA540738 exhibited a 
distinct pattern of species expression, including Bacteroides, Blautia, 
Bacillus, and Faecalibacterium. Our analysis findings exhibit a high 
degree of resemblance to the taxonomic composition of the Chinese 
dataset, while displaying significant disparities with the European 
data. This underscores the credibility of our analytical results and 
further highlights dissimilarities in gut microbiome composition 
between Asian and European NAFLD patients, potentially attributed 
to factors such as dietary habits and living environment.

3.6 Functional analysis of the gut 
microbiome

The Bugbase platform was utilized to predict the corresponding 
characteristics and content of each bacterium within the three groups. 
The compositional differences of aerobic bacteria, anaerobic bacteria, 
facultative anaerobes, mobile element carriers, biofilm formers, gram-
negative species, gram-positive species, potentially pathogenic strains, 
and stress-tolerant organisms in these three groups are illustrated in 

FIGURE 3

Comparisons of the taxonomic classifications of control, NAFL, 
NASH group. (A) Phyla composition for each sample. The species 
composition of all 182 samples is displayed, revealing significant 
variations in both the species distribution and relative abundance 
among each sample. Consequently, subsequent investigations can 
selectively focus on a few specific samples for comprehensive data 
analysis and clinical examination. p  <  0.05. (B) Top 8 phyla in the 
three groups. p  <  0.05. In the three groups, despite variations in the 
relative abundance of species, the phyla Bacteroidetes and 
Firmicutes consistently represented the largest fractions. This 
suggests that regardless of the health status—spanning from the 
healthy individuals, through those with NAFL, to patients with 
NASH—the key constituents of the gut microbiome remain 
fundamentally stable, without extreme shifts from dominance to 
depletion. (C) Top 11 genera in the three groups. p  <  0.05. Upon 
refining the analysis down to the genus level, we discerned more 
defined taxonomic categories, and the distinctions between species 
became increasingly conspicuous. This enables the identification of 
potentially pathogenic bacteria associated with conditions such as 
NAFL or NASH. Such genus-level differential analysis is instrumental 
in establishing a foundation for clinical diagnosis, informing 
treatment strategies, and guiding preventative measures.
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Supplementary Figure S4. Bacteroides exhibited higher enrichment in 
the NAFL group while Firmicutes were enriched in the NASH group 
with regards to their high-level phenotypes present potential 
pathogenicity (Supplementary Figure S4H).

PICRUSt and PICRUt2 were utilized for predictive functional 
analysis. KEGG pathway comparisons were conducted to investigate 
potential variations in the functional composition of the microbiome 
among NAFL, NASH, and control groups. PICRUST2 essentially 
encompasses the findings obtained from PICRUST 
(Supplementary Figure S5). In comparison to the control group, 
numerous pathway differences were observed in NAFL, such as 
increased abundance of lipid IVA biosynthesis, 6-hydroxymethyl-
dihydropterin diphosphate biosynthesis I, CMP-3-deoxy-D-manno-
octulosonate biosynthesis I, and 6-hydroxymethyl-dihydropterin 
diphosphate biosynthesis III (Chlamydia), while decreased abundance 
was found in superpathway of purine deoxyribonucleosides 
degradation, L-methionine biosynthesis III, and phosphatidylglycerol 
biosynthesis I (plastidic; Figure 6A). The pathways were significantly 
different in the NASH group compared with the control group. 
Specifically, 6-hydroxymethyl-dihydropterin diphosphate 
biosynthesis, L-lysine biosynthesis II, and superpathway of 
L-phenylalanine biosynthesis were more abundant in NASH while 
superpathway of hexuronide and hexuronate degradation, 
phosphatidylglycerol biosynthesis II (non-plastidic), and 
phosphatidylglycerol biosynthesis I  (plastidic) was less abundant 

(Figure 6B). Compared to the control group, there were significant 
differences in pathways between NASH and NAFL groups. Creatinine 
degradation II was more abundant in NASH compared to NAFL while 
superpathway of UDP-N-acetylglucosamine-derived O-antigen 
building blocks biosynthesis, L-1,2-propanediol degradation, dTDP-
L-rhamnose biosynthesis I, succinate fermentation to butanoate, and 
Flavone and flavonol biosynthesis were significantly less abundant 
than the NAFL group (Figure 6C).

4 Discussion

There is already evidence to suggest that the development of fatty 
liver is related to gut bacteria, including dysbiosis-induced dysfunction 
of the intestinal epithelial barrier. This dysfunction allows the 
translocation of bacterial components and leads to liver inflammation. 
Additionally, various metabolites produced by the gut microbiota may 
affect the liver, thereby regulating susceptibility to NAFLD.

In our study, 16S amplicon analysis revealed alterations in the gut 
microbiota composition in NAFL and NASH diseases compared to a 
healthy control group, as well as differences between the two diseases. 
The NAFL group exhibited an increased abundance of Gram-negative 
bacteria and a decreased abundance of Gram-positive bacteria 
compared to the control group. Bacterial diversity showed significant 
differences (p < 0.05) among the three groups, with species diversity 

FIGURE 4

Bacterial biomarkers identified with the edgeR and linear discriminant analysis effect size (LEfSe) algorithm. (A) The results of the differential analysis of 
10 genera including Bacteroides, Parabacteroides, Prevotella_2, Prevotella_9, Roseburia, Faecalibacterium, Megamonas, Fusobacterium, Parasutterella, 
Sutterella are presented. Manhattan plots for analysis of genus differences between NAFL and control groups (Figure 4A, left; p  <  0.05). Bacteroides and 
Fusobacterium were significantly expressed in NAFL group compared with the control group. Manhattan plots for analysis of genus differences 
between NASH and control groups (Figure 4A, middle; p  <  0.05). Faecalibacterium and Fusobacterium were significantly expressed in NASH group 
compared with the control group. Manhattan plots for analysis of genus differences between NASH and NAFL groups (Figure 4A,right; p  <  0.05). 
Bacteroides was significantly decreased in NASH group compared with the NAFL group. (B) Cladogram showing the relationships between taxa at 
different taxonomic levels. Each circle represents a hierarchical structure, followed by phylum, class, order, family and genus. Different phyla are 
marked with different colors. The size of the nodes represents the abundance of the taxon. (C) Linear discriminant analysis (LDA) scores with the LEfSe 
tool for taxa, with LDA scores >4 and p  <  0.05 shown in the histogram.
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progressively decreasing by threefold in the NASH group. This shift 
toward specific bacterial types promotes an increase in pathogenic 
abundance (Shen et al., 2017). At the phylum level, the abundances of 
Bacteroidetes and Fusobacteria, were higher in NAFL and NASH 
patients than in the control group, while the abundances of firmicutes 
were lower. At the genera level, a significant reduction in the 
abundance of Prevotella was observed in the NAFL group. In contrast, 
the NASH group showed a higher proportion of Megamonas and 
Fusobacterium (p < 0.05). These findings align with existing data from 
Asian patients but differ substantially from European case data, 
suggesting variations in gut microbiome composition between 
Eurasian populations (Quesada-Vazquez et al., 2020).

Through the analysis of three main bacterial genera, namely 
Prevotella_9, Megamonas, and Fusobacterium, it was observed that 
compared to the control group, Prevotella_9 exhibited a 
discriminative ability for distinguishing NAFL with an AUC of 

0.738 (95% CI = 0.580–0.896; Figure  5B). Conversely, the 
combination of Megamonas and Fusobacterium demonstrated a 
discriminative potential for identifying NASH with an AUC of 
0.769 (95% CI = 0.610–0.927; Figure  5C). In the NAFL group, 
we observed that Fusobacterium alone had a superior diagnostic 
performance than Megamonas alone, or Fusobacterium and 
Megamonas combined. More specifically, as shown in Figure 5D, 
the AUC of Fusobacterium is 0.666 (95% CI = 0.486–0.846), 
surpassing that of Megamonas alone (0.562, 95% CI = 0.372–0.753), 
or that of Fusobacterium and Megamonas combined (0.594, 95% 
CI = 0.394–0.793). These observational results suggest that an 
increased abundance of Prevotella_9 has diagnostic value for NAFL, 
while elevated levels of Megamonas and Fusobacterium may 
indicate a more severe disease state that has progressed to the 
NASH stage, especially the increase in Fusobacterium, which has 
more significant diagnostic meaning. In other words, changes in 

FIGURE 5

Diagnostic potential of gut microbial markers in NAFL and NASH patients. Diagnostic potential of gut microbial markers in NAFL and NASH patients. 
(A) Five microbial markers (Bacteroides, Prevotella_9, Ruminococcus_2, Subdoligranulum, Megamonas, Fusobacterium) were selected as the markers 
set by the random forest model. (B) The classification performance of the multivariable logistic regression model using relative abundance of genera 
(Prevotella_9) was assessed using area under the ROC. The AUC value of 0.738 with 95% CI of 0.580–0.896 between control versus NAFL group. 
(C) Classification performance of a multivariable logistic regression model using the relative abundance of genera (Megamonas, Fusobacterium, and a 
combination of both) was evaluated using the area under the ROC. The highest AUC value between the control group and the NASH group was 0.769, 
with a 95% CI of 0.610–0.927, belonging to the combination of Megamonas and Fusobacterium. (D) Classification performance of a multivariable 
logistic regression model using the relative abundance of genera (Megamonas, Fusobacteria, and a combination of both) evaluated using the area 
under the ROC. The highest AUC value between the NAFL and NASH groups was 0.666, 95% CI, belonging to the genus Fusobacterium.
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these three main gut genera could provide a non-invasive basis for 
diagnosing different stages of NAFLD.

Building upon previous research, we conducted an analysis on the 
potential pathogenic mechanisms of Bacteroides and Fusobacterium. 
The gut microbiota has the ability to ferment dietary carbohydrates 
into ethanol, which subsequently enters the bloodstream and is 
eventually metabolized by the liver. Notably, Bacteroides is recognized 
as one of the primary producers of ethanol (Amaretti et al., 2007). 
Both animal studies and clinical trials have consistently demonstrated 
that NAFL patients exhibit significantly elevated levels of 
gastrointestinal ethanol compared to control groups, with a strong 
correlation observed between these levels and alterations in gut 
microbiota composition (Cope, 2000). The higher abundance of 
Bacteroides in the NAFL group, compared to the control group, 
implies that an elevated Bacteroides content may contribute to liver 
damage by promoting endogenous ethanol production. Fusobacterium 
has been reported to produce short-chain fatty acids with both 

anti-inflammatory and pro-inflammatory properties (Fan et al., 2019). 
An increase in Fusobacterium abundance can serve as a marker for 
tumor occurrence and intestinal inflammation (Kostic et al., 2012; 
Zhang et al., 2018). Fusobacterium, a pro-inflammatory bacterium 
known to impair the integrity of the intestinal barrier (Neubauer et al., 
2019), has been observed in fatty samples and is associated with the 
exacerbation of liver steatosis and recurrence of NAFL (Fan et al., 
2019). The Prevotella spp. and P. Capri complexes are commonly 
associated with non-Western dietary patterns characterized by a high 
intake of carbohydrates, resistant starch, and fiber content. There is a 
negative correlation between the relative abundance of Prevotella and 
Bacteroides (Carelli et al., 2023).

Prevotella has a number of classification methods, and it has been 
reported that a 16S rRNA sequence method was utilized to reclassify 
Prevotella and identify 5 genera (Adkins et  al., 2017). This study 
unveiled a negative correlation between changes in Prevotella-9 
abundance and Bacteroides, which aligns with previous research 

FIGURE 6

Functional analysis of the predicted metagenomes. (A) Difference in relative abundance of predicted microbial genes related to metabolism 
information between NAFLD and healthy controls. (B) Difference in relative abundance of predicted microbial genes related to metabolism information 
between NASH and healthy controls. (C) Difference in relative abundance of predicted microbial genes related to metabolism information between 
NASH and NAFLD. Data were processed through PICRUSt2’s 16S rRNA sequencing data using level 3 of the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) orthologues and using a Student’s t-test. The significance of gut microbial species derived from blocked two-sided Wilcoxon tests 
(+indicates statistical significance FDR  <  0.05, 99.9% confidence intervals).
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findings. Previous studies have reported diverse roles for Prevotella in 
gut health, while P. Capri has demonstrated potential benefits in 
glucose homeostasis and host metabolism. Conversely, another study 
identified an association between P. Capri and insulin resistance. This 
study revealed a significant decrease in NAFLD when comparing 
levels of Prevotella 9 between healthy individuals and those at the 
NAFL stage, suggesting that reduced Prevotella abundance may 
contribute to impaired carbohydrate and starch metabolism, both of 
which are linked to obesity and steatosis. The impact of Prevotella on 
human health remains uncertain, leading to ongoing debates 
regarding its potential benefits or harms. However, it is undeniable 
that the enzymatic digestion of polysaccharides within the Prevotella 
library plays a crucial role in digestive dynamics and intestinal 
homeostasis. It should be  noted that the relationship between 
Prevotella and inflammation, particularly NASH, still lacks clarity. In 
this study, although there was some recovery in Prevotella abundance 
from NAFL to NASH stages, it remained lower than that observed in 
healthy individuals. The relationship between the inflammatory 
response of NAFL and the progression of NASH, as well as fibrosis, 
remains unclear. Some studies have reported a significant increase in 
Prevotella abundance in NASH with fibrosis (Boursier et al., 2016). 
Compared to the control group, the NASH group exhibited higher 
abundances of Megamonas and Fusobacterium. Megamonas, a core 
gut bacterium, may be  indicative of Asian ethnicities. It is closely 
associated with diseases such as inflammatory bowel disease, 
colorectal cancer, ankylosing spondylitis (AS), autism spectrum 
disorder (ASD), and obesity. Previous studies on the gut microbiota 
of European subjects did not report dominant presence of the genus 
Megamonas; it was only observed in studies conducted on Chinese 
individuals, suggesting its potential characteristic nature within the 
Asian population (Boursier et  al., 2016). Studies have revealed a 
negative correlation between the abundance of Megamonas and the 
rate of weight loss, exhibiting a significant increase in the obese 
cohort. The average BMI of our study population exceeded 29 kg/m^2, 
with nearly all NASH patients displaying abnormal ALT levels. These 
findings suggest a substantial elevation in Megamonas abundance 
within the Chinese obese population, which, when combined with an 
augmentation in Fusobacterium abundance, further compromises 
intestinal barrier integrity and facilitates the progression from NAFL 
to NASH.

To further investigate the impact of dysbiosis on microbial 
metabolism, we utilized gene transcription analysis techniques. KEGG 
pathway analysis revealed significant alterations in metabolic pathways 
associated with NAFLD, including notable variations in transcription, 
immune system disorders, signaling molecules and their interactions, 
environmental adaptation, transport and catabolic metabolism. The 
changes of these metabolites are correlated with disease progression. 
In comparison to the NAFL group, the NASH group exhibited 
significant differences in all aspects of glucose metabolism as well as 
biosynthesis of flavonoids and flavonols.

In the KEGG predicted functional pathway analysis of both the 
NASH and NAFL groups, significant increases were observed in the 
biosynthesis of flavones and flavonols, glucose metabolism pathways 
(including the biosynthesis superpathway of O-antigen building 
blocks derived from UDP-N-acetylgalactosamine), degradation 
pathways of L-rhamnose and L-fucopyranose (including L-1,2-
propanediol degradation), biosynthesis of dTDP-L-rhamnose I, and 

butyrate fermentation from succinate in the NAFL group. Additionally, 
creatinine degradation II was significantly higher in the NASH group. 
It has been reported that flavonoid compounds are representative 
substances that protect liver function by regulating CYP2E19 (Liu 
et  al., 2021). Compared to NAFL, the expression of flavones and 
flavonol biosynthesis pathways is reduced in NASH. Numerous 
studies have demonstrated that flavonoid compounds exert 
physiological functions such as antioxidation, lipid-lowering, blood 
sugar regulation, and inflammation inhibition by modulating the gut 
microbiota, thereby preventing various diseases. The presence of an 
inflammatory response in NASH and may be  associated with 
alterations in this pathway. Research has reported the potential role of 
ferritin in reflecting the inflammatory state associated with NAFLD 
and its progression, with elevated ferritin levels indicating 
inflammation and liver damage (Shah and Kowdley, 2019). Although 
we did not initially focus on inflammatory biomarkers such as ferritin 
in our study, in future research on the inflammation associated with 
NASH, we can consider measuring inflammatory biomarkers like 
ferritin in the serum of patients with NAFLD or NASH. Differences 
in various carbohydrate metabolisms also indicate changes in the 
fundamental metabolism between the two groups (Sandoval et al., 
2020; Kariagina and Doseff, 2022; Tan et  al., 2022). This finding 
provides support for the hypothesis that NAFLD is fundamentally a 
metabolic disorder. Our study focused on the Chinese population, 
with participants from various regions of China, including Shenzhen, 
a city known for its immigrant population. It should be noted that the 
relationship between gut microbiome dysbiosis and NAFLD disease 
cannot be  extrapolated to European and American populations. 
Additionally, it is important to acknowledge that the use of 16S rRNA 
gene sequencing methods has inherent limitations in accurately 
determining the composition of the microbiome.

5 Conclusion

In summary, this study employed 16S amplicon analysis to 
uncover changes in the composition of gut microbiota during the 
progression of NAFLD, characterized by a gradual decrease in species 
diversity. At the phylum level, significant shifts were observed in the 
abundance of key bacterial groups including Bacteroidetes, 
Firmicutes, Fusobacteria. Moreover, at the genus level, a noticeable 
reduction was observed abundance of Prevotella within the NAFL 
group while an increased proportion of Megamonas and 
Fusobacterium was evident in the NASH group. The prominent 
expression of Megamonas and Fusobacterium can serve as a valuable 
biological marker for identifying NASH. KEGG pathway analysis 
revealed significant disruptions in various glucose metabolism 
pathways within the NASH group compared to the mild NAFL group, 
along with a notable deficiency in flavones and flavonols biosynthesis. 
Our study has elucidated significant associations between gut 
microbiome alterations and the progression from NAFL to NASH in 
patients with NAFLD. The differential microbial profiles observed in 
NASH patients underscore the potential of microbiota-based 
biomarkers for non-invasive diagnosis, which could mitigate the 
reliance on liver biopsies and enable earlier detection and 
intervention. Our findings suggest that certain bacteria could serve 
as targets for microbiome-modulating therapies, such as Megamonas 
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and Fusobacterium, opening new avenues for precision medicine in 
NAFLD management. Moreover, the novel takes identified in our 
study invite further investigation into their functional roles in 
NAFLD pathophysiology. The potential for microbiome-based 
interventions to attenuate or reverse NAFLD progression is an 
exciting prospect, but it is one that must be  approached with 
rigorously designed clinical trials.
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