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Shiitake (Lentinula edodes) is one of the most widely grown and consumed 
mushroom species worldwide. They are a potential source of food and medicine 
because they are rich in nutrients and contain various minerals, vitamins, 
essential macro- and micronutrients, and bioactive compounds. The reuse of 
agricultural and industrial residues is crucial from an ecological and economic 
perspective. In this study, the running length (RL) of L. edodes cultured on 64 
substrate compositions obtained from different ratios of bagasse (B), wheat 
bran (WB), and beech sawdust (BS) was recorded at intervals of 5  days after 
cultivation until the 40th day. Multilayer perceptron-genetic algorithm (MLP-GA), 
multiple linear regression, stepwise regression, principal component regression, 
ordinary least squares regression, and partial least squares regression were used 
to predict and optimize the RL and running rate (RR) of L. edodes. The statistical 
values showed higher prediction accuracies of the MLP-GA models (92% and 
97%, respectively) compared with those of the regression models (52% and 71%, 
respectively) for RL and RR. The high degree of fit between the forecasted and 
actual values of the RL and RR of L. edodes confirmed the superior performance 
of the developed MLP-GA models. An optimization analysis on the established 
MLP-GA models showed that a substrate containing 15.1% B, 45.1% WB, and 
10.16% BS and a running time of 28 days and 10  h could result in the maximum L. 
edodes RL (10.69  cm). Moreover, the highest RR of L. edodes (0.44  cm d−1) could 
be obtained by a substrate containing 30.7% B, 90.4% WB, and 0.0% BS. MLP-
GA was observed to be an effective method for predicting and consequently 
selecting the best substrate composition for the maximal RL and RR of L. edodes.
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1 Introduction

The cultivation of the mushrooms not only lessens the environmental effects of the wastes 
used as substrate but also provides an economically viable alternative for producing high-
quality and beneficial food and precious metabolites (Israilides and Philippoussis, 2003). 
Shiitake, Lentinula edodes (Berk.) Pegler, has been cultivated for thousands of years. L. edodes 
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is one of the best-known medicinal and edible mushrooms worldwide, 
especially in East Asia, due to its widespread use in food and 
traditional medicines (Xu et al., 2014; Mahdizadeh et al., 2021; Ahmad 
et  al., 2023). This valuable medicinal mushroom is used to treat 
influenza, tumors, high blood pressure, heart disease, obesity, 
age-related sexual dysfunction, liver problems, diabetes, fatigue, 
weakness, high cholesterol, and respiratory diseases (Bisen et al., 2010; 
Ahmad et al., 2023). Shiitake is nourishing and appetizing as a food 
and exhibit several pharmacological properties, including antiviral, 
immunomodulatory, antifungal, antibacterial, antiviral and anticancer 
effects (Bisen et al., 2010; Diallo et al., 2020; García-Cruz et al., 2020; 
Ahmad et al., 2023). The lignan-rich fraction extracted from L. edodes 
mycelial culture medium is promising for the treatment of AIDS and 
hepatitis B (Bisen et al., 2010).

The preferred substrate for L. edodes is hardwood sawdust 
supplemented with rice bran, wheat bran and millet powder 
(Philippoussis et al., 2007). Bagasse substrate supplemented with rice 
bran improved mushroom quality and biological efficiency of shiitake 
(Rossi et  al., 2003). Bagasse is an important solid residue in the 
sugarcane industry, and hundreds of millions of tons of bagasse are 
produced worldwide every year (Mahmud and Anannya, 2021). The 
use of bagasse (Selman-Housein et al., 2000) and other agricultural 
residues (Devi et al., 2017), including wheat bran, is crucial from both 
environmental and economic perspectives. Beech sawdust is obtained 
in abundance from the timber industry (Jahedi et al., 2023). The reuse 
of these solid wastes is also crucial for environmental reasons (Gordić 
et al., 2014; Jahedi et al., 2023). In this study, different ratios of bagasse 
(B), beech sawdust (BS), and wheat bran (WB) were used as growing 
substrates to determine the compatibility of agricultural and industrial 
residues for shiitake production. The ratio of substrate components 
should be  optimized to achieve the best running of L. edodes. A 
detailed analysis of the effects of the ratio of growing substrate 
components on the running length (RL) and running rate (RR) of 
L. edodes and their optimal quantity selection would lay the foundation 
for the commercialization of the conversion of agro-industrial residues 
into foods with therapeutic active ingredients. However, optimizing 
the ratio of growing substrate components to achieve the maximum 
running is expensive and time-consuming. Evaluating the relationship 
between the input variables “ratios of substrate components (B, BS, 
and WB) and running time” and the output variables “RL and RR of 
L. edodes” could simplify the optimization of the growing substrate for 
production of this valuable medicinal and edible mushroom. Analyses 
of biological data have been conducted using multivariate statistical 
methods, including multiple linear regression (MLR), stepwise 
regression (SR), principal component regression (PCR), ordinary least 
squares regression (OLSR), and partial least squares regression (PLSR; 
Wold, 1966; Farhadi et al., 2020; Salehi et al., 2020b). Growth is a 
highly nonlinear and complex biological process involving multiple 
interconnected signaling and biochemical pathways (Olas et al., 2020). 
The optimal conditions for a complex process can be  accurately 
predicted using efficient nonlinear computational algorithms (Struik 
et al., 2005; Gallego et al., 2011). Traditional prediction and modeling 
methods, including regression models, have negligible nonlinear 
fitting and prediction capabilities (Farhadi et al., 2020; Salehi et al., 
2020a,b). Artificial intelligence (AI) is used to address issues that 
cannot be explained using traditional computing techniques. One of 
the key aspects of AI is artificial neural networks (ANNs), which 
discover multifactorial nonlinear relationships between the output 

and input data (Farhadi et al., 2020; Hesami et al., 2020; Hesami and 
Jones, 2020; Salehi et al., 2020a; Jahedi et al., 2023). ANNs are brain-
inspired systems that mimic the human brain’s ability to sense and 
think in a simplified manner to process information and recognize 
patterns in systems that involve ambiguity and uncertainty (Patnaik, 
1999; Agatonovic-Kustrin and Beresford, 2000). ANNs learn through 
experience and gain intelligence by discovering hidden patterns and 
relationships (Agatonovic-Kustrin and Beresford, 2000). Response 
surface methodology (Kovalchuk et al., 2017), multivariate adaptive 
regression splines (Akin et  al., 2020), and multilayer perceptron-
genetic algorithm (MLP-GA; Jahedi et al., 2023) have been used for 
culture media optimization in plant and fungal research. Multilayer 
perceptron (MLP) is an effective tool in solving complicated 
non-linear problems, handles the massive data set well, quickly 
predicts after training, and obtains the same accuracy even with small 
data. Disadvantages of MLP include that the degree to which the 
dependent variable influences each independent variable is unknown, 
some hyperparameters of the MLP, such as the number of hidden 
neurons and layers, must be tuned, which requires time and power, 
model performance depends on the training quality, and the MLP is 
sensitive to feature scaling (Pedregosa et al., 2011). MLP, one of the 
most well-known feedforward neural networks, exhibits superior 
prediction accuracy compared to traditional statistical methods for 
calculating mathematical functions for analyzing and interpreting 
various unpredictable data sets (Salehi et al., 2020a; Jahedi et al., 2023). 
However, there are numerous problems in designing and training 
ANNs. Due to a large number of hidden neurons, the training time 
increases and data overfitting occurs. Low accuracy rates are caused 
by a few hidden neurons (Matignon, 2005). In addition, one of the 
main problems is the allocation of weights in the MLP structure which 
directly affects the model performance. Network topology and 
learning algorithm parameters control the weights. Learning rates, the 
number of memory taps, and the number of hidden nodes and layers 
are the network factors that can influence ANN performance 
(Tahmasebi and Hezarkhani, 2009). To address these issues, ANNs 
have been combined with other optimization techniques, such as 
genetic algorithms (GA; Plumb et al., 2005; Salehi et al., 2020a).

GA, developed by Holland (1992), is a popular evolutionary 
algorithm that excels in finding answers to problems and has been 
used to optimize bioprocesses (Osama et al., 2015; Farhadi et al., 2020; 
Salehi et al., 2020a; Jahedi et al., 2023). The GA is a search algorithm 
inspired by genetics and natural selection (Holland, 1992). GAs apply 
biologically inspired operators, including crossover, mutation, and 
selection, to obtain high-quality optimization solutions (Katoch et al., 
2021). The principles of GA are the creation of the initial population 
of search solutions (chromosomes), followed by selecting the superior 
search solutions for crossover using a roulette wheel selection method 
and determining the best solution (optimal value, fittest chromosome) 
among them (Holland, 1992). GA obtains solutions improving over 
time, requires no derivative information, displays superior parallel 
capabilities, optimizes continuous functions and discrete functions, 
and multi-objective problems, is the best option for a wide range of 
optimization problems, and can handle a broad search space. 
However, GA is not an efficient method for solving simple problems 
and ones with available derivative information. Additionally, GAs may 
be  computationally costly, especially when working with large 
problem spaces or complex fitness evaluations. Also, the quality of the 
final solution found using GA to a problem is not guaranteed 
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(Sivanandam and Deepa, 2008). This study attempted to automatically 
determine the optimal number of neurons using GA to improve the 
prediction accuracy and determine the optimized values of the inputs 
“(B, BS, and WB ratio)” for the maximum mycelial RL and RR of 
shiitake (L. edodes). Furthermore, the performances of the regression 
and MLP-GA models were evaluated in terms of the prediction 
accuracy of the output variables optimized for the maximum mycelial 
RL and RR of L. edodes, and the most important inputs (factors) were 
detected for the highest RL and RR of shiitake.

2 Materials and methods

Shiitake (L. edodes) strain VM230 was obtained from the culture 
collection of the Plant Pathology Department at Tarbiat Modares 
University (Mahdizadeh et al., 2021).

2.1 Preparation of media

Bagasse (B), beech sawdust (BS) and wheat bran (WB) were used 
as components for the growing substrate. First, they were pulverized 
with a blender and passed through a sieve (pore size of 5 mm in 
diameter; Supplementary Figure S1). Different ratios of substrate 
components (Table 1) were mixed manually. It is noteworthy that the 
ratios reported for each component (B, WB, and BS; Table 1) are 
percentages of 10 g of each component. Each substrate was poured 
halfway (1.4 mL) into a glass Pasteur pipette (0.6 mm diameter, 
11.5 cm height, and 2.8 mL volume). The Pasteur pipettes were then 
placed horizontally so that the substrate was placed on one side of the 
glass pipette and the other side was left empty for ventilation. The 
Pasteur pipettes were placed in a tray and some distilled water was 
added. They were then kept in the dark at 25°C for 12 h so that the 
substrate in the Pasteur pipettes completely absorbed the water. A 
sample of the substrates was weighed, gently dried in an oven at 45°C, 
and then weighed again to determine the final water content (55%). 
The substrates were then autoclaved twice at 121°C and 1.5 atm for 
40 min at an interval of 24 h. One mycelial agar plug (4 mm diameter) 
per replicate was cut from the edge of the growing shiitake (L. edodes) 
colony previously cultured on the culture medium prepared from the 
extract “B (25%) + WB (50%) + BS (25%),” using a sterilized cork-
borer, cultured in the Pasteur pipette (Supplementary Figure S2) 
containing the different ratios of substrate components listed in 
Table 1 and kept in the dark at 25°C. The RL (cm) of L. edodes cultured 
on each substrate was recorded at 5-day intervals after cultivation until 
the day 40. The running rate (RR; cm d−1) of L. edodes was calculated 
using Eq. (1).

 
Running rate cm day

Running length cm
Running time day

 
 

 

−( ) = ( )
( )

1

 
(1)

2.2 Experimental design

The experiment was conducted based on a randomized complete 
block design (RCBD) with factorial arrangement containing four 

factors: the bagasse ratio with four levels, i.e., 25% (2.5 g), 50% (5 g), 
75% (7.5), and 100% (10 g), the wheat bran ratio with four levels (25%, 
50%, 75%, and 100%), the beech sawdust ratio with four levels (25%, 
50%, 75%, and 100%), and the running time with eight levels (days 5, 
10, 15, 20, 25, 30, 35, and 40 after cultivation), given 512 treatments, 
and four replicates. The substrate compositions was listed in Table 1.

2.3 Statistical analysis

Parametric statistics were used because the normality hypothesis 
and homogeneity of variance were satisfied. Analysis of variance 
(ANOVA) was used to assess the factorial experiment based on the 
randomized complete block design (RCBD). Least significant 
difference was used to compare the growing substrate compositions 
(64 substrate compositions are presented in Table  1) in a time-
dependent manner to identify the highest significant RL of L. edodes 
during the running time for each substrate. Mean comparisons were 
performed using Student–Newman–Keuls for the factorial 
experiments (examining the effects of different ratios of substrate 
components on the RL and RR of L. edodes in B-ratio-, WB-ratio-, and 
BS-ratio-dependent manners).

2.4 Model development

Data were normalized using the Box–Cox transformation (Box 
and Cox, 1964) before the machine learning algorithm was tested. No 
outliers were identified by the principal component analysis. The 
performance of each tested model on the dataset (2,048 and 256 data 
lines for RL and RR, respectively) was calculated using an eight-fold 
cross-validation method with 10 repeats, and the model with the 
highest prediction accuracy for unknown data from the dataset 
was determined.

2.4.1 Multilayer perceptron model
Three-layered MLP modeling was used to determine the effects of 

the ratio of substrate components, namely B, BS, and WB, and running 
time on the RL and RR of L. edodes.

MLP, a supplement to the feedforward neural network, 
consists of three distinct layers: input, hidden, and output layers, 
as shown in Figure 1. The input layer (visible layer) feeds the 
input variables into the second layer (hidden layer). Between 
input and output lie one or more intermediate layers, so-called 
hidden layers, which form the internal brain of the network. The 
output layer predicts the output based on the information 
transmitted by the input layer. The predicted output is compared 
with the actual output and the error is calculated. Based on this 
error, the network weights are updated via the intermediate layer 
from the output layer to the input layer (Singhal and 
Sharma, 2023).

2.4.2 Genetic algorithm
The GA was employed (i) to optimize the MLP architecture 

design, including the optimal number of neurons, and (ii) to 
determine the optimal values of the input variables (B, BS, and WB 
ratios and running time) in the established MLP-GA models for the 
maximum RL and RR of shiitake.
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TABLE 1 Different substrate compositions for the cultivation of shiitake (Lentinula edodes) and the day (after cultivation) on which the recorded highest 
statistically significant running length (RL).

Bagasse (%) Wheat bran (%) Beech sawdust (%) Substrate name Days-to-highest RL

S1 0 0 0 S0/0/0 -

S2 0 0 25 S0/0/25 40

S3 0 0 50 S0/0/50 40

S4 0 0 100 S0/0/100 40

S5 0 25 0 S0/25/0 30

S6 0 25 25 S0/25/25 30

S7 0 25 50 S0/25/50 30

S8 0 25 100 S0/25/100 30

S9 0 50 0 S0/50/0 30

S10 0 50 25 S0/50/25 30

S11 0 50 50 S0/50/50 30

S12 0 50 100 S0/50/100 30

S13 0 100 0 S0/100/0 30

S14 0 100 25 S0/100/25 30

S15 0 100 50 S0/100/50 30

S16 0 100 100 S0/100/100 30

S17 25 0 0 S25/0/0 35

S18 25 0 25 S25/0/25 35

S19 25 0 50 S25/0/50 35

S20 25 0 100 S25/0/100 30

S21 25 25 0 S25/25/0 30

S22 25 25 25 S25/25/25 30

S23 25 25 50 S25/25/50 30

S24 25 25 100 S25/25/100 30

S25 25 50 0 S25/50/0 25

S26 25 50 25 S25/50/25 30

S27 25 50 50 S25/50/50 30

S28 25 50 100 S25/50/100 30

S29 25 100 0 S25/100/0 25

S30 25 100 25 S25/100/25 25

S31 25 100 50 S25/100/50 25

S32 25 100 100 S25/100/100 25

S33 50 0 0 S50/0/0 35

S34 50 0 25 S50/0/25 35

S35 50 0 50 S50/0/50 30

S36 50 0 100 S50/0/100 30

S37 50 25 0 S50/25/0 30

S38 50 25 25 S50/25/25 30

S39 50 25 50 S50/25/50 30

S40 50 25 100 S50/25/100 30

S41 50 50 0 S50/50/0 30

S42 50 50 25 S50/50/25 25

S43 50 50 50 S50/50/50 25

(Continued)
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Holland (1992) proposed GA as a search strategy based on 
principles of natural selection (Goldberg, 1989; Sakawa, 2002; Guo 
et al., 2010). The GA begins with a population of random initial 

solutions (Figure 2). Each individual in a population is called a 
chromosome, which represents a possible solution to a problem. 
Chromosomes evolve over a series of iterations called generations. 
Chromosomes were assessed during each generation using fitness 
measurements (Figure 2). The next generation is created by crossing 
two chromosomes from the current generation or by changing one 
chromosome through a mutation, creating new chromosomes 
called offspring (Verma and Verma, 2012). To maintain a stable 
population size, a new generation is created by selecting parents and 
offspring based on fitness values and rejecting others. Fitter 
chromosomes have a higher chance of being selected. The best 
chromosome, which likely reflects the optimal solution to the 
problem, is obtained after several generations using algorithms 
(Guo et al., 2010).

The population size, crossover probability and mutation 
probability are the most important GA parameters. A generation 
number of 500, a crossover rate of 0.85, a mutation rate of 0.01, and 
an initial population of 50 (Haupt and Haupt, 2004; Abramson, 2007) 
were set to develop the fittest MLP structure and optimize the input 
variables (the ratios of B, BS, and WB, and running time) for the 
maximum output variables (the RL and RR of L. edodes).

The optimization strategy for finding the optimal MLP 
architecture and optimal values of input variables for the maximum 
RL and RR of L. edodes using the GA in the developed MLP-GA 
models is shown in Figure 3.

The performance of the MLP-GA models was evaluated using the 
coefficient of determination (R2), root mean square error (RMSE) and 

Bagasse (%) Wheat bran (%) Beech sawdust (%) Substrate name Days-to-highest RL

S44 50 50 100 S50/50/100 25

S45 50 100 0 S50/100/0 25

S46 50 100 25 S50/100/25 25

S47 50 100 50 S50/100/50 30

S48 50 100 100 S50/100/100 30

S49 100 0 0 S100/0/0 40

S50 100 0 25 S100/0/25 40

S51 100 0 50 S100/0/50 40

S52 100 0 100 S100/0/100 40

S53 100 25 0 S100/25/0 30

S54 100 25 25 S100/25/25 30

S55 100 25 50 S100/25/50 30

S56 100 25 100 S100/25/100 30

S57 100 50 0 S100/50/0 35

S58 100 50 25 S100/50/25 30

S59 100 50 50 S100/50/50 30

S60 100 50 100 S100/50/100 30

S61 100 100 0 S100/100/0 30

S62 100 100 25 S100/100/25 25

S63 100 100 50 S100/100/50 25

S64 100 100 100 S100/100/100 25

TABLE 1 (Continued)

FIGURE 1

Schematic of multilayer perceptron (MLP) architecture.
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mean absolute error (MAE), as previously reported (Farhadi et al., 
2020; Salehi et al., 2020a,b).

2.4.3 Sensitivity analysis of the models
The MLP-GA models were subjected to sensitivity analysis to 

ascertain the degree of importance of the model input variables (ratios 
of B, BS, WB, and running time) on the model output variables, i.e., 
the RL and RR of L. edodes. The criterion used to determine the 
sensitivity of the ratios of B, BS, and WB and running time was the 
variable sensitivity error (VSE) value showing the performance 
(RMSE) of the MLP-GA model when a particular input variable was 
not available in the model. The variable sensitivity ratio (VSR) was 
derived as the ratio of the VSE and MLP-GA model errors (RMSE 
value) when all input variables were accessible. The estimated VSR 
values were then rescaled to fall within the range [0,1]. The highest 
importance variable of the model was the input variable with the 
highest VSR (Farhadi et al., 2020; Salehi et al., 2020a, 2021).

The MLP-GA and regression models were developed and 
evaluated mathematically using MATLAB (R2010a; MATLAB, 2010) 
and XLSTAT (XLSTAT, 2017), respectively, and graphics were created 
using GraphPad Prism 9 (2020).

2.5 Validation experiment

The ratios of bagasse, wheat bran, and beech sawdust and running 
time optimized by the GA were examined to assess the efficiency of 
the MLP-GA model in forecasting and optimizing the RL and RR of 
L. edodes.

3 Results

3.1 Effect of running time on Lentinula 
edodes running length

To determine the relationship between the running length (RL) 
and running time of L. edodes, the RL of shiitake cultured on growing 
substrate compositions (Table 1) was assessed at 5-d intervals after 
cultivation until the 40th day. Overall, L. edodes RL increased during 
the running time and its highest significant level on S25/50/0, S25/100/0, 
S25/100/25, S25/100/50, S25/100/100, S50/50/25, S50/50/50, S50/50/100, S50/100/0, S50/100/25, 
S100/100/25, S100/100/50, and S100/100/100 was recorded on 25th day after 
cultivation (Table 1). Accordingly, the highest statistically significant 
RL of L. edodes cultured on S0/25/0, S0/25/25, S0/25/50, S0/25/100, S0/50/0, S0/50/25, 
S0/50/50, S0/50/100, S0/100/0, S0/100/25, S0/100/50, S0/100/100, S25/0/100, S25/25/0 S25/25/25, 
S25/25/50, S25/25/100, S25/50/25, S25/50/50, S25/50/100, S50/0/50, S50/0/100, S50/25/0, S50/25/25, 
S50/25/50, S50/25/100, S50/50/0, S50/100/50, S50/100/100, S100/25/0, S100/25/25, S100/25/50, 
S100/25/100, S100/50/25, S100/50/50, S100/50/100, and S100/100/0 was measured 30 days 
after cultivation. Also, the highest significant RL of shiitake cultured 
on S25/0/0, S25/0/25, S25/0/50, S50/0/0, S50/0/25, and S100/50/0 was observed 35 days 
after cultivation. Besides, the highest statistically significant RL of 
L. edodes cultured on S0/0/25, S0/0/50, S0/0/100, S100/0/0, S100/0/25, S100/0/50, S100/0/100 
was recorded on 40th day after cultivation (Table 1).

3.2 Effects of different substrate 
compositions on Lentinula edodes running 
length

The effects of different growing substrate compositions on 
running length (RL) of L. edodes were explored in running-time- 
(L. edodes culture age), B-ratio-, WB-ratio-, and BS-ratio-dependent 
manners. As mentioned previously, the highest significant level of 
L. edodes RL was measured on 64 substrates. Accordingly, these time 
points were considered as a benchmark for the RL of L. edodes and 
were used in the subsequent statistical analysis. ANOVA showed that 
the main effects of the factors “B, WB and BS ratios” and their 
interactions (reciprocal and trilateral effects) on the RL 
(Supplementary Table S1) and RR (Supplementary Table S2) of 
L. edodes were highly significant. This suggests that the bagasse ratio 
affected the RL and RR of L. edodes differently at each ratio of wheat 
bran and beech sawdust or vice versa (i.e., the ratio of wheat bran and 
beech sawdust affected the RL and RR of L. edodes differently at each 
bagasse ratio). To examine these significant interaction effects, the B 
ratio was further analyzed on each ratio of WB and BS (Tables 2, 3).

A mean comparison of the RL and RR of L. edodes cultured on the 
64 substrates (Table 1) is presented in Tables 2, 3, respectively. Among 
the 64 substrate compositions used for L. edodes cultivation, the 
highest RL of L. edodes was recorded in substrates “S0/100/100, S0/50/0, 
S50/100/50, S25/50/25, S100/25/25, and S0/100/0” (Table 2). As shown in Table 3, 

FIGURE 2

Schematic representation of genetic algorithm (GA) as an 
evolutionary optimization algorithm.
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S25/50/0, S25/100/0, S25/100/25, S25/100/50, S50/50/25, S50/100/0, S50/100/25, S100/100/50, and 
S100/100/100 exhibited the highest RR of L. edodes cultures on the different 
substrate compositions (Table 1).

3.3 Regression analysis

Mushroom growth is influenced by the type and ratio of substrate 
components (Ashrafuzzaman et al., 2009). Accordingly, optimizing 
the growing substrate composition is the main step to maximize the 
mycelial RL and RR of L. edodes. Predicting the optimal ratio of 
substrate components and running time is crucial for large-scale 
production of L. edodes.

Different regression models (MLR, SR, OLSR, PCR and PLSR) 
were evaluated to determine the best regression method for 
predicting the RL and RR of L. edodes in response to the ratio of 
substrate components and the running time. All the regression 
models displayed statistically significant relationships between the 

input variables (ratios of B, BS, WB, and running time) and output 
variables “L. edodes RL and RR” (Table  4). The statistics of the 
developed MLR, SR, OLSR, PCR, and PLSR models for the RL and 
RR of L. edodes for the ratios of B, BS, and WB and running time 
are presented in Table  4. The goodness-of-fit, measured by R2, 
showed no difference in the predictive performance of the 
regression models developed for the RL and RR of L. edodes in the 
training and testing subsets (Table 4). The prediction accuracies of 
the MLR, SR, OLSR, PCR, and PLSR models were determined by 
plotting the actual (observed) values against the predicted values of 
the training subset (RL: R2 = 0.71, 0.70, 0.71, 0.71, and 0.71, 
respectively; RR: R2 = 0.52, 0.51, 0.52, 0.52, and 0.52, respectively; 
Figures  4, 5). No differences were observed in the prediction 
performance of the developed MLR, SR, OLSR, PCR, and PLSR 
models for the RL and RR of L. edodes (Figures 4, 5). The R2 values 
for the testing subset showed that the developed models accounted 
for 71% and 52% variability in RL and RR of L. edodes, respectively 
(Table 4).

FIGURE 3

Flowchart of integrating multilayer perceptron (MLP) with genetic algorithm (GA) to optimize of the MLP architecture and input values to achieve the 
maximum level of each output.
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TABLE 2 Effects of different ratios of growing substrate components on the running length (cm) of shiitake (Lentinula edodes).

Beach sawdust Wheat bran (0%; 0  g) Wheat bran  
(25%; 2.5  g)

Wheat bran  
(5%; 5  g)

Wheat bran  
(10%; 10  g)

Bagasse (0%; 0 g)

0%; 0.00v 9.15 h-n 9.30 h-n 10.30abc

25%; 2.5 g 6.80r 10.10bcd 9.60e-j 9.75d-h

50%; 5 g 6.80r 9.62e-i 10.57a 9.90def

100%; 10 g 6.80r 9.02lmn 9.57e-k 10.60a

Bagasse (25%; 2.5 g)

0% 5.20u 9.47f-m 9.77d-h 9.67e-i

25%; 2.5 g 5.20u 9.47f-m 10.45ab 9.57f-l

50%; 5 g 9.00lmn 9.72d-h 9.37 g-m 9.50f-l

100%; 10 g 9.07 k-n 10.02cde 9.15i-n 9.20i-n

Bagasse (50%; 5 g)

0% 5.05u 9.60f-j 9.12j-n 9.82d-g

25%; 25 g 5.12u 9.60f-j 9.67d-i 9.75d-h

50%; 5 g 5.12u 9.72d-h 9.30 h-n 10.57a

100%; 10 g 7.20q 10.12bcd 9.27i-n 8.97mn

Bagasse (100%; 10 g)

0% 5.97 t 9.45f-m 7.62p 9.35 g-m

25%; 2.5 g 6.05st 10.35abc 9.27 h-m 9.10 k-n

50%; 5 g 6.32 s 8.82no 9.25 h-m 9.62e-i

100%; 10 g 5.87 t 8.57o 9.25 h-m 9.60e-j

Means within a column followed by the same letter are not significantly different (p ≤ 0.05).

TABLE 3 Effects of the different ratios of growing substrate components on the running rate (cm d−1) of shiitake (Lentinula edodes).

Beach sawdust Wheat bran (0%; 0  g) Wheat bran  
(25%; 2.5  g)

Wheat bran  
(50%; 5  g)

Wheat bran  
(100%; 10  g)

Bagasse (0%; 0 g)

0%; 0.000z 0.305n-r 0.310 L-q 0.343efg

25%; 2.5 g 0.170wx 0.337f-i 0.320j-o 0.325 h-l

50%; 5 g 0.170wx 0.321j-m 0.3525de 0.330 h-k

100%; 10 g 0.170wx 0.301pqr 0.319 k-o 0.353de

Bagasse (25%; 2.5 g)

0% 0.150y 0.316 k-p 0.391a 0.387a

25%; 2.5 g 0.148y 0.316 k-p 0.348ef 0.383a

50%; 5 g 0.257 t 0.324i-m 0.312 L-q 0.380ab

100%; 10 g 0.302pqr 0.334 g-j 0.305n-r 0.368c

Bagasse (50%; 5 g)

0% 0.144y 0.320j-o 0.304o-r 0.393a

25%; 25 g 0.146y 0.320j-o 0.387a 0.390a

50%; 5 g 0.171w 0.320j-o 0.372bc 0.352de

100%; 10 g 0.240u 0.338fgh 0.371bc 0.299qr

Bagasse (100%; 10 g)

0% 0.149y 0.315 k-p 0.218v 0.312 L-q

25%; 2.5 g 0.151y 0.345efg 0.309 L-q 0.364 cd

50%; 5 g 0.158xy 0.294rs 0.308 m-r 0.385a

100%; 10 g 0.147y 0.286 s 0.308 m-r 0.384a

Means within a column followed by the same letter are not significantly different (p ≤ 0.05).
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3.4 Multilayer perceptron-genetic 
algorithm analysis

First, the ratios of B, BS, and WB, and running time were used as 
input variables, and running length (RL) and running rate (RR) of 
L. edodes were used as output variables. The output variables were then 
predicted according to the established MLP-GA models. The 
performance of the developed MLP-GA models was evaluated by 

plotting the predicted values vs. the actual values for training 
(Figures  4, 5) and testing subsets (Table  4). Excellent agreement 
between the forecast and observed values of L. edodes RL and RR was 
observed for both the training and testing subsets (Figures  4, 5; 
Table 4).

The goodness-of-fit criterion results of the established MLP-GA 
models showed that the established models could accurately (R2 = 0.97, 
and 0.92) predict RL and RR of shiitake (L. edodes) in the testing 

TABLE 4 Statistics on multiple linear regression (MLR), stepwise regression (SR), principal component regression (PCR), ordinary least squares 
regression (OLSR), partial least squares regression (PLSR), and multilayer perceptron-genetic algorithm (MLP-GA) models for the running length 
and running rate of Lentinula edodes cultivated on different substrates obtained from different ratios of bagasse, wheat bran, and beech 
sawdust.

Models Training subsets Testing subsets Pr  >  F

R2 RMSE MAPE R2 RMSE MAPE

Running length

MLR 0.71 1.88 1.53 0.71 1.88 1.54 <0.0001

SR 0.70 1.87 1.53 0.71 1.88 1.54 <0.0001

PLS 0.71 1.86 1.52 0.71 1.86 1.52 <0.0001

PCR 0.71 1.87 1.52 0.71 1.86 1.52 <0.0001

OLS 0.71 1.86 1.51 0.71 1.86 1.52 <0.0001

MLP-GA 0.97 0.54 0.43 0.97 0.60 0.47 <0.0001

Running rate

MLR 0.52 0.06 0.05 0.53 0.05 0.04 <0.0001

SR 0.51 0.06 0.05 0.51 0.05 0.04 <0.0001

PLS 0.52 0.06 0.05 0.51 0.05 0.04 <0.0001

PCR 0.52 0.06 0.05 0.53 0.05 0.04 <0.0001

OLS 0.52 0.06 0.05 0.53 0.05 0.04 <0.0001

MLP-GA 0.98 0.01 0.01 0.92 0.02 0.01 <0.0001

R2, coefficient of determination, RMSE, root mean square error, MAE, mean absolute error.

FIGURE 4

Scatter plot of actual data vs. predicted values of the running length of Shiitake (Lentinula edodes) using multiple linear regression (MLR), stepwise 
regression (SR), principal component regression (PCR), ordinary least squares regression (OLSR), partial least squares regression (PLSR), and multilayer 
perceptron-genetic algorithm (MLP-GA) models in the training subset. The solid line shows a fitted simple regression line for scatter points.

https://doi.org/10.3389/fmicb.2024.1366264
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Safaie et al. 10.3389/fmicb.2024.1366264

Frontiers in Microbiology 10 frontiersin.org

subset, which was not utilized in the training processes of the 
MLP-GA models (Table 4). Furthermore, the established MLP-GA 
models exhibited balanced statistical values for the training and 
testing subsets (Table 4).

3.5 Sensitivity analysis of the models

VSRs were computed using all the data lines (training and testing 
subsets: 2,048 and 256 data points for the RL and RR, respectively) to 
list the input variables according to their relative importance in the 
model. VSRs were calculated for each of the output variables (L. edodes 
RL and RR) for the ratios of B, BS, and WB and running time 
(Table 5). Analysis of the RL model revealed that L. edodes RL was 
most sensitive to running time (VSR = 1.000), followed by WB ratio 
(VSR = 0.535), B ratio (VSR = 0.008), and WB ratio (VSR = 0.000). 
Accordingly, the RR of L. edodes was more sensitive to the WB ratio 
(VSR = 1.000), followed by the B ratio (VSR = 0.062) and the BS ratio 
(VSR = 0.000; Table 5).

3.6 Mathematical optimization

The MLP-GA was linked to the GA to find the optimal levels of 
the input variables (ratios of B, BS, and WB and running time) for 
achieving the maximum RL and RR of L. edodes. The optimization 
analysis on the established MLP-GA models revealed that the substrate 
composition of 15.1% (1.51 g) bagasse, 45.1% (4.51 g) wheat bran and 
10.16% (1.01 g) beech sawdust and the running time of 28 days and 
10 h could result in the maximum L. edodes RL (10.69 cm; Table 5). 

The highest RR of L. edodes (0.44 cm d−1) could be obtained by a 
substrate containing 30.7% (3.07 g) bagasse, and 90.4% (9.04 g) wheat 
bran (Table 5).

3.7 Comparison of MLP-GA and regression 
models

The statistical values showed a higher prediction accuracy of the 
MLP-GA models compared with that of the regression models in 
terms of the calculated R2 for MLP-GA vs. regression models: 
RL = 0.97 vs. 0.71, and RR = 0.92 vs. 0.52 (Table 4).

3.8 Validation experiment

The RL of L. edodes cultured on S15/45/10 containing B (1.51 g), WB 
(4.51 g), and BS (1.01 g) for 29 d (optimized input variables in the 
MLP-GA model using the GA) was measured to be 10.81 cm ± 0.35 cm. 
Furthermore, L. edodes RR of 0.448 cm d−1 ± 0.039 was obtained on 
S31/90/0 containing B (3.07 g), WB (9.04 g), and BS (0.00 g).

4 Discussion

Forecasting the optimal ratio of substrate components is 
essential to enhance shiitake production and reduce costs. This is 
the first report to establish a mathematical model for the prediction 
of the RL and RR of L. edodes according to the ratios of growing 
substrate components (B, WB, and BS) and running time, as well as 

FIGURE 5

Scatter plot of actual data vs. predicted values of shiitake (Lentinula edodes) running rate using multiple linear regression (MLR), stepwise regression 
(SR), principal component regression (PCR), ordinary least squares regression (OLSR), partial least squares regression (PLSR), and multilayer perceptron-
genetic algorithm (MLP-GA) models in the training subset. The solid line shows a fitted simple regression line for scatter points.
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the optimization of growing substrate composition to achieve the 
maximum RL and RR. An accurate modeling system is required to 
forecast the optimal ratio of substrate components (B, BS, and WB) 
and running time for the maximum RL and RR of L. edodes. Various 
regression models and MLP-GA modeling were used to examine 
the relationships among the four input variables “ratios of B, WB, 
and BS and running time” and the output variables “RL and RR,” 
and the prediction probability of RL and RR using the studied input 
variables. Such mathematical forecasts have not yet been reported 
for valuable medicinal and edible mushrooms. Previous studies 
(Salehi et al., 2020a,b, 2021; Jahedi et al., 2023) have also indicated 
that MLP-GA models have superior accuracy compared with 
regression models (Figures 4, 5; Table 4). R-squared (Table 4), a 
measure of the fit of regression models for the testing subset, 
showed that these models could describe 71 and 52% variability in 
the RL and RR of shiitake, respectively, for unseen data. The results 
of the present study suggest that the developed MLP-GA models 
correctly predicted the RL and RR of L. edodes (R2 = 0.97 and 0.92, 
respectively; Table 4) in the testing subset, which was not utilized 
in the MLP-GA training process. The closeness of the errors of the 
training and testing subsets (Table 4), as well as the small number 
of hidden neurons confirmed the absence of overlearning during 
training and the good generalizability of the developed MLP-GA 
models for unseen data (Lou and Nakai, 2001; Farhadi et al., 2020; 
Salehi et al., 2020a, 2021). From the statistical metrics including R2 
and RMSE of the training and testing subsets (Table  4), it can 
be  inferred that the tansig activation function worked well for 
modeling throughout the experiment. Furthermore, the small 
RMSE values (Table 4) show the great potential of the developed 
MLP-GA models for predicting the parameters (output variables). 
Mycelium running is a colonization of the substrate thoroughly by 
fungal hyphae. The fungus first colonizes the entire substrate and 
then creates new hyphae by lateral branching, increasing the density 
and surface area of the colony. Fungi thrive in both nutrient-rich 
and nutrient-poor culture media. However, their lateral branching 
occurs only in the nutrient-rich medium, like what is observed in 
sparse and dense growth of fungal hyphae on water agar and potato 
dextrose agar. This could explain why the optimum substrate 
compositions for RL and RR are different.

Regardless of previous studies on the effects of growing substrate 
composition and running time on RL and RR of L. edodes, the question 
remains: which input variables are most important for RL and RR of 

L. edodes? As mentioned previously, sensitivity analysis showed that 
running time was the most important variable affecting mycelial RL of 
L. edodes (Table 5). The RR of L. edodes is important for commercial 
cultivation. Sensitivity analysis revealed that WB ratio was the most 
important factor affecting RR of L. edodes (Table 5). Shiitake running is 
a complex bioprocess that requires reliable methods for the model 
development and optimization. The MLP-GA has been successfully 
used to solve problems in various areas that are highly challenging and 
for which there is no known answer (Eftekhari et al., 2018; Salehi et al., 
2020a; Jahedi et al., 2023). The growing interest in ANNs is primarily 
due to their ability to solve problems in various domains, their ability to 
model complex and nonlinear relationships, their ability to predict 
relationships on unseen data, and the fact that they do not require the 
specification of statistical data distribution (Mahanta, 2017). Due to the 
high prediction performance of the testing subset (Table  4), the 
established MLP-GA correctly predicted the RL and RR of L. edodes.

5 Conclusion

In this study, the RL and RR of L. edodes were modeled and 
optimized using mathematical methods for the first time. The high 
degree of fit between the forecasted and actual values of the output 
variables (the RL and RR of L. edodes) confirmed the superior 
performance of the developed MLP-GA models. This study presents 
MLP-GA as a useful mathematical tool for predicting and optimizing 
complex systems such as the growth of medical mushrooms, and the 
RL and RR of L. edodes in response to the composition of the 
growing substrate.
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