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Marine microorganisms are renowned for being a rich source of new 
secondary metabolites that are significant to humans. The fungi strain KHW-
7 was isolated from the seawater collected from the Gulf of Khambhat, 
India, and identified as Curvularia verruculosa KHW-7. On a next-generation 
sequencing platform, C. verruculosa KHW-7’s whole-genome sequencing 
(WGS) and gene annotation were carried out using several bioinformatic 
methods. The 31.59 MB genome size, 52.3% GC, and 158 bp mean read length 
were discovered using WGS. This genome also contained 9,745 protein-
coding genes, including 852 secreted proteins and 2048 transmembrane 
proteins. The antiSMASH algorithm used to analyze genomes found 25 
secondary metabolite biosynthetic gene clusters (BGCs) that are abundant 
in terpene, non-ribosomal peptide synthetase (NRPS), and polyketides type 
1 (T1PKS). To our knowledge, this is the first whole-genome sequence report 
of C. verruculosa. The WGS analysis of C. verruculosa KHW-7 indicated that 
this marine-derived fungus could be  an efficient generator of bioactive 
secondary metabolites and an important industrial enzyme, both of which 
demand further investigation and development.
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Introduction

Curvularia is a genus of fungi that includes several species, many of which are plant 
pathogens. This fungal genus is recognized for causing diseases in several economically 
important agricultural crops, including maize, wheat, barley, rice, and grasses (Huang et al., 
2005; Shirsath et al., 2018; Wang et al., 2022). Moreover, this fungus can also cause various 
types of infections in humans and animals (Samaddar et al., 2023). Curvularia infections can 
range from moderate to severe and affect numerous regions of the body, including the skin, 
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lungs, and nails (da Cunha et al., 2013). To date, there are 131 species 
of Curvularia reported worldwide as per the list of Fungorum (Quach 
et al., 2022). Among these species, C. verruculosa is a significant plant 
pathogen associated with causing various diseases such as leaf spot, 
blight, and ear rot in different plant species (Wei et al., 2022). These 
diseases can lead to significant yield losses in agricultural production. 
It has a wide geographical distribution, impacting crops in diverse 
regions globally, particularly in warm and humid climates where 
conditions favor its growth and spread. The fungi can survive in soil 
for a long time and infect plants through their roots or wounds on 
their stems or leaves. Symptoms of C. verruculosa infection vary 
among crops but commonly include leaf lesions, discoloration, 
wilting, and, in severe cases, the rotting of seeds or ears (Rajput et al., 
2020). Managing diseases caused by C. verruculosa can be challenging. 
The pathogen exhibits certain resistance to fungicides, and its control 
often relies on integrated management practices involving cultural, 
biological, and chemical measures.

Given its ability to affect staple food crops, C. verruculosa can 
pose a threat to food security, especially in regions highly reliant 
on these crops for sustenance. Understanding the significance of 
C. verruculosa as a plant pathogen is crucial for implementing 
appropriate disease management strategies and developing 
resistant crop varieties to mitigate its impact on agricultural 
productivity. As a result, traditional techniques are insufficient to 
determine the boundaries of a species within their respective 
genus, and complete genome sequencing is required for proper 
identification and characterization.

Whole-genome sequencing (WGS) involves decoding an 
organism’s full DNA sequence, providing a comprehensive grasp 
of its genetic backbone. In fungi, WGS plays a crucial role in their 
characterization and offers several significant advantages (Tao 
et al., 2022). WGS allows for the assessment of the entire genetic 
diversity within a fungal species. It helps identify variations in 
genes responsible for traits such as virulence, pathogenicity, and 
fungicide resistance. For fungi, accurate taxonomic classification 
is essential. WGS enables precise species identification and 
phylogenetic analysis, contributing to a better understanding of 
fungal evolution and relationships between different species 
(Quach et al., 2022). By analyzing the entire genome, it is possible 
to pinpoint specific genes or gene clusters associated with 
virulence and pathogenicity in fungi. WGS helps in detecting 
genetic markers associated with antifungal resistance. This 
information is critical in guiding treatment strategies and 
developing new antifungal substances to combat resistant strains. 
By comparing multiple fungal genomes, scientists can identify 
conserved regions and unique genes, shedding light on species-
specific characteristics and potential targets for diagnostics or 
therapeutics. WGS aids in tracking outbreaks, understanding 
transmission patterns, and differentiating between strains or 
isolates. However, only seven genomes of other Curvularia species 
are accessible through the GenBank (NCBI) database. The 
genome of the plant pathogen C. verruculosa was previously 
sequenced to facilitate in-depth evolutionary research and 
enhance our understanding of pathogen origin and infection 
processes. The results of this study will contribute to the existing 
Curvularia genome database and facilitate future investigations 
into its pathogenic nature.

Materials and methods

Sample collection, isolation, and 
identification of fungi

The marine water sample was collected from four divergent spots 
in the sea area of the Gulf of Khambhat, India (22.1775N 72.4763 E) 
(Supplementary Figure S1). Sea water was collected 10 m apart from 
each spot and at 1 m depth in a germ-free container and transported 
to the laboratory under cool conditions for further isolation and 
purification of fungi. Fungi from collected samples were isolated using 
a marine agar medium (Bonugli-Santos et al., 2015) by adopting serial 
dilution followed by incubation for 48–96 h at 25°C. Single and pure 
fungal colonies were picked up and further allowed for growth on 
marine agar plates. A pure fungal strain, KHW-7, was identified by 
morphological and microscopic observation as well as by sequencing 
of amplified ITS region of the fungal gene.

DNA isolation and quality analysis

The workflow for the WGS experiments is shown in Figure 1. 
Genomic DNA from the KHW-7 strain was extracted using the silica 
spin column DNA extraction method following the manufacturer’s 
manual. Subsequently, 08% agarose gel electrophoresis was performed 
to check the quality of isolated genomic DNA. The presence of a single 
intact band within the gel matrix is indicative of the superior quality 
of isolated genomic DNA. Additionally, a 2-μl fraction of the genomic 
DNA sample was subjected to spectrophotometric analysis using the 
BioTeK Epoch spectrophotometer to determine the A260/280 ratio. 
This ratio serves as a pivotal measure of DNA purity.

Library preparation and sequencing

The libraries were prepared using the commercially available Ion 
Xpress™ Plus Fragment Library Kit (Thermo Fisher Scientific, 
United States) as per the manufacturer’s instructions. This process 
involved stages such as DNA fragmentation, fragment purification, 
ligation of fragments, fragment amplification, and final quantification. 
The commercially available Ion Library TaqMan Quantitation kit was 
used for quantification purposes. The size of the fragmented DNA was 
assessed (Quality Control Step) using the Agilent™ High Sensitivity 
DNA Kit on the Agilent™ 2,100 Bioanalyzer, following the provided 
instructions. After library preparation, the template was prepared 
using the Ion Chef automated system according to the manufacturer’s 
instructions available with the Ion 550 Kit (Thermo Scientific, 
United States), and the Ion 550 Chip Kit was utilized for loading 
samples with the assistance of the Ion Chef, followed by sequencing 
on the Ion GeneStudio S5 Plus System (Ion Torrent, Thermo Scientific, 
United States).

Preannotation data processing

The Ion Torrent single-end sequencing reads were subjected 
to adapter and quality trimming using cutadapt (v4.7) and Trim 
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Galore (v0.4.1) with phred score cutoff of 20. The obtained 
superior quality reads were built from scratch using SPAdes 
v3.13.0. The initial analysis, such as base pair calling and 
trimming of sequences, was performed using the Ion Torrent 
browser. This process resulted in obtaining readings of good 
quality. The sequence readings were assembled de novo using the 
SPAdes assembler v3.1.0 (Torrent browser) with the default 
parameters. The scaffolds obtained were filtered based on their 
respective length, with a minimum threshold of 500 base pairs. 
Assembly statistics were generated by QUAST (v5.2.0).

Gene annotation

A repeat library was created from scratch for the chosen 
assembly of the KHW-7 strain using RepeatModeler v2.0.4. This 
library was then utilized as a customized library for softmasking 
with RepeatMasker v4.1.5. The Funannotate v1.8.16 pipeline was 
used to structurally annotate the masked assemblies. The BUSCO 
database v5.7.1 was utilized to identify conserved gene models for 
the purpose of training the Ab initio gene predictors such as 
Augustus, glimmerhmm, and snap. The generation of gene 
models was based on evidence, achieved by matching the 
sequences of contigs with the unified protein sequence database 
(UniProtKB; https://www.uniprot.org/) using the DIAMOND 

program. Subsequently, the gene models were refined using 
Exonerate. The Funannotate process utilized the 
EVidenceModeler,1 which included a weighting method, to 
choose the consensus models from a pool of ab initio and 
evidence-based gene models. Functional annotation of the 
consensus models was conducted following the elimination of 
models with insufficient lengths, gaps, and transposable 
elements (TEs).

The gene models were functionally predicted using InterProScan 
(v-5.67-99.0), which involved mapping to the Gene Ontology (GO) 
database2 and eggNOG-mapper (v4.5.1) based on the eggNOGorthology 
database.3 The significantly enriched GO terms were further analyzed 
to find out the interactions among several biosynthetic pathways using 
the “ClueGO”4 plugin of the CytoScape software (v3.7.2.0). Signal 
peptides (secretome) were predicted using SignalP (v6.0) and Phobius.5 
Biosynthetic gene clusters (BGCs) were identified in the genome using 
fungiSMASH,6 which is a specialized version of antiSMASH designed 

1 https://github.com/EVidenceModeler

2 https://geneontology.org/

3 http://eggnog45.embl.de/#/app/home

4 https://apps.cytoscape.org/apps/cluego

5 https://phobius.sbc.su.se/

6 https://fungismash.secondarymetabolites.org/#!/start

FIGURE 1

Workflow showing whole-genome sequencing. DNA quantification is carried out following the samples’ DNA isolation. The latter stages of the WGS 
procedure are sequencing and library preparation. Finally, several bioinformatic techniques are used to carry out downstream analysis. The figure was 
generated using BioRender (www.biorender.com; accessed on 23rd April 2024).
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for fungal genomes. The tRNA and rRNA genes were detected using 
tRNAscan-SE7 and Barrnap,8 respectively.

Functional annotation using the annotate pipeline9 used to 
annotate genes by performing similarity search against databases of 
UniProt, Pfam, dbCAN (CAZyme), MEROPS, and BUSCO 
pezizomycotina gene models. Output of InterPro, EggNog, SignalP, 
Phobius, tRNAscan-SE, and antiSMASH was added to the final 
comprehensive annotation files, which can be directly submitted to 
the National Center for Biotechnology Information (NCBI). Further 
annotation was conducted using the NCBI non-redundant (NR) 
genome database,10 Pathogen Host Interactions (PHIs),11 and the 
Comprehensive Antibiotic Resistance Database (RGI-CARD).12

Results

Fungal strain identification

The fungal isolate, KHW-7, was identified using ITS gene 
sequencing. This partial ITS gene sequence showed 100% homology 
with reference strains of C. verruculosa. Barrnap was used to predict 
rRNA genes within the assembled genome. Partial ITS gene sequence 
was searched in the predicted 9 rRNA sequences of KHW-7 using 
local NCBI blastn application, and Blast output produced 100% 
alignment against contig574 spanning 5.8S region as well as between 
start and end of 18S and 28S rRNA regions, respectively. Other 
phylogenetic marker genes, glyceraldehyde 3-phosphate 
dehydrogenase (gdph), found in the annotated protein sequences, 
show 100% similarity with other partial gdph genes of C. verruculosa.

The taxonomy of this genome is:
Cellular organisms >Eukaryota >Opisthokonta >Fungi >Dikarya 

>Ascomycota >saccharomyceta >Pezizomycotina >leotiomyceta 
>dothideomyceta >Dothideomycetes >Pleosporomycetidae 
>Pleosporales > Pleosporineae >Pleosporaceae > Curvularia 
>Curvularia verruculosa.

Sequencing and assembly of the genome

For genome assembly, the SPAdes assembler, version 3.13.0, was 
used to process and utilize a total of 6,110,868 high-quality reads. The 
31.59 Mb genome of C. verruculosa KHW-7 featured a guanine–
cytosine (GC) content of 50.44%. The screened reads were ordered 
into 1,323 contigs (≥500 bp), making 31,589,880 bp large genome with 
81,050 N50 value. Moreover, the integrity was 97%, indicating excellent 
quality of genome assembly. The circos plot of the annotated genome 
of C. verruculosa KHW-7 is depicted in Figure 2. Another reported 
Curvularia spp. was also reported to have a genome size of 33–36 Mb 
and an average 50% G + C content (Quach et al., 2022). Comparative 
genome features of reported Curvularia spp. are depicted in Table 1. 

7 http://lowelab.ucsc.edu/tRNAscan-SE/

8 https://bio.tools/barrnap

9 https://github.com/nextgenusfs/funannotate

10 https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/

11 http://www.phi-base.org/

12 https://card.mcmaster.ca/

At the species level, C. verruculosa KHW-7 is the first sequenced whole 
genome. The presence of repetitive elements, such as interspersed 
repeats and low-complexity DNA sequences, in the genome assembly 
is significant due to their recognized involvement in genome length 
expansion and evolution (Sun et al., 2012). Annotation of the draft 
genome using funannotate pipeline and other RNA prediction tools 
predicted a total of 9,877 genes, of which 9,745 mRNA (CDSs), 123 
tRNA, and 9 rRNA were predicted. As per the funannotate pipeline, 
complete CDSs were 9,489, and partial CDSs were 256. Predicted 
multiple exon transcripts were 7,541 and single exon transcripts were 
2,204, with an average protein length of 502.68. TEs are mobile genetic 
elements that have a role in the occurrence of mutations, regulation of 
gene expression, and rearrangement of chromosomes, enabling 
populations to adapt efficiently to environmental changes (Lorrain 
et al., 2021). A total of 9,877 genes were functionally annotated by 
performing sequence similarity searches against the Pfam, InterPro, 
BUSCO, EggNOG, MEROPS, and CAZyme databases and utilizing 
the SignalPsecretome prediction program. These searches resulted in 
a total of 25,199 annotations. Further, the KEGG annotation predicts 
a total of 3,724 genes, the COG annotation predicts a total of 6,979 
genes, and the GO terms annotation predicts a total of 6,318 genes. 
(Table 2). Supplementary Table S1 shows the comparison of genome 
features between C. verruculosa KHW-7 and other Curvularia species.

EggNOG annotation

EggNOG-mapper annotated 75% of the predicted proteins in the 
genome, assigning them to 6,979 eggNOGorthogroups, which represent 
over 24 functional categories. The most abundant functional categories 
were S, G, O, U, and E. These results suggest that C. verruculosa KHW-7 
is well-adapted to carbohydrate metabolism, protein turnover, and 
intracellular trafficking. The annotation comprised 991 putative proteins 
and 6,979 proteins with confirmed functions. The proteins were 
categorized as follows: 1,771 proteins were assigned Enzyme 
Commission (EC) numbers, 3,374 proteins were assigned GO 
assignments, and 3,803 proteins were linked to the KEGG pathways. 
EggNOG annotated 6,964 proteins using Pfam, a curated protein 
domain family (Figure 3). While EggNOG provides a reliable and precise 
genome annotation, the approach and execution of the annotation differ 
conceptually from that of BlastKoala (KEGG). Thus, the functional 
annotation was conducted utilizing the anticipated protein sequences of 
the genome. BlastKoala annotated 3,724 entries (38.2%) from a total of 
9,868 entries (protein sequences), and 403 pathways were classified into 
22 functional categories as per Figure 4 and Table 3.

Interproscan and go annotation

InterProScan consolidates protein signatures from many databases 
into a unified and searchable resource, leveraging their unique 
capabilities to create a robust integrated database and diagnostic tool 
for classifying protein sequences. InterProScan classifies proteins into 
families and identifies important domains and sites, which is invaluable 
for identifying distantly related proteins and predicting their functions. 
Interproscan has annotated a total of 9,489 genes out of a total of 9,745 
genes predicted, of which 6,318 are with GO annotation. A total of 
3,056 genes were assigned the Enzyme Commission (EC) codes 
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(Supplementary Figure S2; Table 4). A more precise identification of 
the interaction among different biosynthetic pathways was performed 
by the CytoScape network analysis of the various significantly enriched 
GO terms (biological process, molecular function, and cellular 
component), as shown in Figures 5, 6 and Supplementary Figures S3, S4.

Secondary metabolites

The antiSMASH, specifically the fungal version 
(fungiSMASH), analysis of C. verruculosa genome revealed 25 
BGCs for secondary metabolites, of which 9 regions show 

sequence similarity from 13 to 100%. C. verruculosa is found to 
be rich in T1PKS (Polyketides type 1) (6 hits, 13 to 100%) and 
more so than with other secondary metabolites’ signals, such as 
non-ribosomal peptide synthetase (NRPS) (2 hits, 46 and 50%) 
and terpene (40%) (Supplementary Figure S5). The gene located 
at position 73.1 exhibited a significant similarity with the choline 
biosynthesis gene cluster (GenBank: CH236925.1) from 
Aspergillus nidulans FGSC A4. Prior reports indicate that 
administering choline and alpha-lipoic acid to Balb/c mice 
resulted in a significant reduction in the levels of isoprostanes and 
reactive oxygen species (ROS) produced in bronchoalveolar 
lavage (BAL) fluid. This, in turn, effectively regulated oxidative 

FIGURE 2

Circos plot of the annotated genome of C. verruculosa KHW-7. The forward and reverse CDS. rRNA, tRNA, and GC contents are shown.
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stress. The administration of either choline or alpha-lipoic acid 
resulted in a decrease in lipid peroxidation levels and NFkappaB 
activity, as demonstrated by Mehta et al. (2009). Therefore, these 
compounds can be  regarded as major antioxidants. In fungi, 

metabolites play a crucial role in the proliferation of filamentous 
fungi (Markham et al., 1993). The genome BGC region 88.1 of 
C. verruculosa exhibited significant resemblances to the Glarea 
lozoyensis 1,3,6,8-tetrahydroxynaphthalene BGC (GenBank: 
AF549411.1). The analysis suggests that the T1PKS gene cluster 
present in the genome of C. verruculosa could be accountable for 
the synthesis of 1,3,6,8-tetrahydroxynaphthalene (T4HN). The 
study conducted by Mosunova et al. (2022) showed that melanin-
forming fungus actively synthesizes T4HN using the acetogenic 
pathway. T4HN was identified as a result of the pentaketide 
synthase PKS1  in the black fungus Colletotrichum lagenarium. 
Several instances of BGCs have been documented in Aspergillus 
section Nigri, which is mostly linked to the production of 
bioactive secondary metabolites (Wang et al., 2023). Region 393.1 
was discovered to bear a strong resemblance to the peramine BGC 
observed in Epichloe festucae (GenBank: AB205145.1). Epichloë 
synthesizes peramine, a compound that exhibits antibacterial, 
fungicidal, and insecticidal properties. This measure protects 
crops post-harvest by effectively countering phytopathogenic 
organisms (Song et al., 2021).

Carbohydrate enzymes (CAZyme)

The fungal genome possesses CAZymes gene families, which 
are widely responsible for many biological events, including the 
degradation of lignocellulose materials (Garron and Henrissat, 
2019). Functional annotation of the genes of C. verruculosa was 
conducted using the CAZy database. CAZy is a specialized 
database for data annotation that focuses on carbohydrate 
enzymes (Brandi et al., 2009). There were 509 genes identified as 
CAZymes, and they were classified into six different kinds in the 
database. The genes were ranked in descending order based on 
their abundance, with glycoside hydrolases (GHs) having the 
highest count of 240, followed by auxiliary activities (AAs) with 
133, glycosyl transfers (GTs) with 71, carbohydrate esterases 
(CEs) with 47, carbohydrate-binding modules (CBMs) with 20, 
and polysaccharide lyases (PLs) with 19 (Figure 7). Moreover, 
47.15% of total genes of CAZymes were occupied by GHs, 
followed by auxiliary active enzymes (AAs) (26.12%), establishing 
these fungias potent strain for the breakdown of biomaterials 
mainly composed of lignin, cellulose, and hemicelluloses 
(Chylenski et al., 2019). The presence of CEs, CBMs, and PLs also 
confirms various plant biomass degradation capacities of 
C. verruculosa (Geng et al., 2021). The comparative analysis of 
CAZymes from all studied genomes of Curvularia spp. showed 
similar patterns of CAZymes found in C. verruculosa KHW-7 
(Quach et al., 2022). Other than GHs and AAs, the genome of 
C. verruculosa KHW-7 also possesses 71 GTs family members 
largely involved in the biosynthesis of various polysaccharides 
and oligosaccharides (Lairson et al., 2008).

Peptidase database and transcription 
factors

The MEROPS database discovered a total of 326 proteases, which 
may be classified into different groups, including aspartic (A), cysteine 

TABLE 1 General features of the C. verruculosa KHW-7 genome.

Features Number/bp

Total raw bases 1,023,799,652 bp

Good quality (>Q20) bases 849,468,143 bp

Total raw reads (sequences) 6,276,793

Good quality reads (sequences) 6,133,114

Number of assembled reads 

(sequences)

6,110,868

Mean read length 158 bp

Mean GC percent 52.3%

Contigs (≥ 500 bp) 1,323

Total length 31,589,880 (31.59 Mb)

Largest contig 390,585 bp

GC (%) 50.44

N50 81,050

N90 18,713

L50 120

L90 409

TABLE 2 Complete gene prediction and functional annotation of C. 
verruculosa KHW-7 genome.

Gene prediction and annotation 
parameters

Number

Gene prediction Total nos. of genes 9,877

Mean gene length (bp) 1638.3

Genome % covered by 

genes

46.61

Total nos. of proteins 9,745

tRNA 123

rRna 9

Complete CDSs 9,489

Partial CDSs 256

Secretome prediction Secreted proteins 852

Transmembrane proteins 2048

Secondary metabolites T1PKS, NRPS, Terpene, etc. 25

Functional annotation Pfam 6,964

CAZyme 509

Merops 326

Busco 1,262

Gene ontology 6,318

InterProScan 7,316

Eggnog 7,970

NCBI NR (protein 

database)

9,651
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(C), metallo (M), serine (S), mixed (P), and threonine (T). 
Additionally, the database also includes a class for protease inhibitors 
(I), as depicted in Figure 8. The two highest ranking families among 
the transcription factor (TF) families were the fungal Zn(2)-Cys(6) 
binuclear cluster domain (IPR001138) and the fungal-specific TF 
domain (IPR007219) (Figure 9).

Genes regulating pathogenicity factors

The Comprehensive Antibiotic Resistance Database (CARD) 
is designed as an antibiotic resistance ontology (ARO) that links 
antibiotic modules with their targets, resistance mechanisms, gene 
variants, and other relevant information. The Resistance Gene 
Identifier has given no hits against the CARD database. Hence, no 
drug resistance genes are present in the C. verruculosa 
KHW-7 genome.

Genes associated with pathogenicity factors were examined 
and identified utilizing the Pathogen Host Interaction (PHI) 
database. Sequences from the PHI database were downloaded from 
the Virulence Factor Database (VFDB). The total number of 
protein sequences in the full database was 8,216. A BLAST 
homology search between the DNA sequences of C. verruculosa 
strain KHW-7 and PHI database proteins revealed a total of 136 
hits (Supplementary Table S2).

The analysis has revealed that critical pathogenic genes exhibit a 
variety of interacting behaviors, including an increase in virulence (4 
genes), lethal (5 genes), unaffected pathogenicity (35 genes), and key 
non-pathogenic/low virulence genes, including the loss of 
pathogenicity (17 genes) and reduced virulence (69 genes), are 
detailed in Supplementary Table S2.

Discussion

Due to advancements in next-generation sequencing 
technology, there has been a growing focus on studying fungal 
genomes because of their intricate genomic and physiological 
characteristics. This paper is the initial publication of a complete 
genome sequencing of Curvularia verruculosa, a widely 
recognized plant pathogen. The findings enhance our 
comprehension of the genetic characteristics of C. verruculosa, 
particularly in relation to the synthesis of diverse metabolites 
and their components contributing to pathogenicity. Presently, 
there are a mere eight Curvularia genomes that have been 
sequenced and stored in the GenBank database maintained by 
the National Center for Biotechnology Information (NCBI), and 
at the species level, C. verruculosa KHW-7 is the first sequenced 
genome. The 31.59 Md genome of C. verruculosa KHW-7 
contained a total of 9,877 genes, which is somehow lower 

FIGURE 3

EggNOG COG annotation of C. verruculosa KHW-7. Proteins related to carbohydrate transport, posttranslational modifications, amino acid transport, 
and intracellular trafficking were significantly enriched.
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compared to other Curvularia species, C. lunata W3 (33.5 Mb, 
10,165 protein-coding genes), C. kusanoi 30 M1 (33.3 Mb, 
11,004 protein-coding genes), and Curvularia sp. IFB-Z10 
(33 Mb, 9,469 protein-coding genes) (Quach et al., 2022). The 
presence of repetitive components, such as interspersed 
repetitions and low-complexity DNA sequences, was detected in 
the genome assembly of C. verruculosa KHW-7. However, a high 
repetitive content might be associated with accelerated species 
evolution (Pisupati et al., 2018).

TEs are mobile genetic units that can induce mutations, alter 
gene expression, and cause chromosomal rearrangements 
(Castanera et  al., 2016; Lorrain et  al., 2021). These processes 
contribute to the successful adaptation of populations to 
environmental changes. Phytophthora infestans and Blumeriagrami 
f. sp. hordei are two major plant infections with large genome 
sizes due to the presence of a large number of TEs, which make 
up approximately 29% of the genome (Haas et al., 2009; Spanu 
et al., 2010). Furthermore, the TE repertoires exhibit variations 
not just at the genus level but also among closely related fungal 

TABLE 3 KEGG pathway prediction.

Functional categories Entries

Protein families: genetic information processing 788

Genetic information processing 719

Carbohydrate metabolism 346

Protein families: signaling and cellular processes 257

Cellular processes 231

Unclassified: metabolism 194

Amino acid metabolism 171

Protein families: metabolism 146

Environmental information processing 142

Lipid metabolism 132

Energy metabolism 110

Metabolism of cofactors and vitamins 104

Glycan biosynthesis and metabolism 68

Nucleotide metabolism 66

Organismal systems 63

Human diseases 53

Unclassified: signaling and cellular processes 24

Metabolism of other amino acids 22

Xenobiotics biodegradation and metabolism 21

Metabolism of terpenoids and polyketides 20

Biosynthesis of the secondary metabolites 9

Unclassified 29

TABLE 4 GO category summary of C. verruculosa KHW-7.

GO Classification GO counts Associated genes

Biological process 15,364 4,758

Molecular function 9,319 5,372

Cellular component 10,439 4,282

FIGURE 4

KEGG pathway annotation. The highest enrichment was found in the protein families related to genetic information processing, followed by 
carbohydrate metabolism.
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taxa. In addition, TEs also serve as unique promoters that disrupt 
transcription processes, hence playing a significant role in fungal 
development and evolution (Mita and Boeke, 2016). The genetic 

analysis detected a total of 2048 transmembrane helices related to 
30 significantly enriched transcription factors in C. verruculosa 
KHW-7 (Figure 9). Moreover, the KEGG analysis has identified 

FIGURE 5

Significantly enriched GO terms (biological process). The total number of genes associated with a specific GO term and % of associated genes are 
shown.
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142 genes related to environmental information processing 
(Table 3). Therefore, this discovery has the potential to facilitate 
the examination of the evolutionary connections and lifestyle 
modifications of C. verruculosa KHW-7 across numerous 
ecological habitats that have yet to be studied.

In C. verruculosa KHW-7, 509 genes were found to be related 
to carbohydrate enzymes (CAZymes) (Figure 7). CAZymes play 
major roles in plant polysaccharide degradation (Ospina-Giraldo 
et al., 2010). Therefore, investigating and analyzing CAZymes from 
fungi with distinct methods of nourishment or infection 
mechanisms can yield insights into their lifestyles and infection 
patterns (Zhao et al., 2013).

Conclusion

In this study, a high-quality de novo genome of the fungal 
isolate C. verruculosa KHW-7 was obtained via WGS and assembly. 
As per NCBI genome submission status, this is the first WGS 
sequencing of C. verruculosa. WGS has revolutionized fungal 
characterization by providing a holistic view of their genetic 
blueprint. From our findings, important genome features and 
annotations were produced using various open-source tools and 
databases. The discovery not only aids in understanding the 
biology and evolution of C. verruculosa but also holds immense 
potential for guiding disease management strategies.

FIGURE 6

ClueGO network analysis results of the significantly enriched GO terms (biological process). This analysis demonstrates the strong 
connections between biological processes that could have a substantial impact on the biology of C. verruculosa KHW-7. These activities 
include the biosynthesis of methionine and ubiquinone, 5′-flap endonuclease activity, RNA alterations, and protein insertion into  
membranes.
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FIGURE 7

Carbohydrate enzymes identified from the C. verruculosa genome. Most of the carbohydrates belonged to glycoside hydrolases followed by auxiliary 
active enzymes.

FIGURE 8

Identified proteases from the C. verruculosa genome. Cysteine was found to be the most enriched protease, followed by metalloprotease.
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FIGURE 9

Identified TFs from the C. verruculosa genome. The fungal Zn(2)-Cys(6) binuclear cluster domain (IPR001138) was the most abundantly present TFs.
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SUPPLEMENTARY FIGURE S1

Sample collection site. Blue spot indicates sample collection site from 

Gujarat province, India with location coordinates.

SUPPLEMENTARY FIGURE S2

Number of Curvularia verruculosa gene sequences with annotations from 
different databases.

SUPPLEMENTARY FIGURE S3

ClueGO network analysis results of the significantly enriched GO terms 
(molecular functions).

SUPPLEMENTARY FIGURE S4

ClueGO network analysis results of the significantly enriched GO terms 
(cellular components).

SUPPLEMENTARY FIGURE S5

Biosynthetic gene cluster identified by antiSMASH.
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