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Toxicity of Beauveria bassiana to 
Bactrocera dorsalis and effects on 
its natural predators
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Yi-xiang Qi  and Yong-yue Lu *
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Entomopathogenic fungi (EPF) are economical and environmentally friendly, 
forming an essential part of integrated pest management strategies. We screened 
six strains of Beauveria bassiana (B1–B6) (Hypocreales: Cordycipitaceae), 
of which B4 was the most virulent to Bactrocera dorsalis (Hendel) (Diptera: 
Tephritidae). We further assessed the biological characteristics of strain B4 and 
the environmental factors influencing its ability to infect B. dorsalis. We  also 
evaluated the effects of B4 on two of the natural predators of B. dorsalis. 
We found that strain B4 was the most virulent to 3rd instar larvae, pupae, and 
adult B. dorsalis, causing mortality rates of 52.67, 61.33, and 90.67%, respectively. 
B4 was not toxic to B. dorsalis eggs. The optimum B4 effects on B. dorsalis were 
achieved at a relative humidity of 91–100% and a temperature of 25°C. Among 
the six insecticides commonly used for B. dorsalis control, 1.8% abamectin 
emulsifiable concentrate had the strongest inhibitory effect on B4 strain 
germination. B4 spraying affected both natural enemies (Amblyseius cucumeris 
and Anastatus japonicus), reducing the number of A. cucumeris and killing A. 
japonicus adults. We found a valuable strain of EPF (B4) that is virulent against 
many life stages of B. dorsalis and has great potential for the biological control 
of B. dorsalis. We also provide an important theoretical and practical base for 
developing a potential fungicide to control B. dorsalis.
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1 Introduction

Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is one of the most economically serious 
invasive pests worldwide (Vontas et  al., 2011). It is widely distributed in tropical and 
subtropical regions, damaging a wide variety of fruits and fleshy vegetables (Liu et al., 2019; Li 
et al., 2021). This fruit fly mainly lays eggs inside fruits and vegetables as an adult, and the 
larvae subsequently feed on the fruits and cause damage. It is precisely this concealed method 
of damage by fruit flies that makes their prevention and control challenging (Wakil et al., 
2022). To combat the harmful fruit fly, growers largely rely on chemical insecticides. However, 
although effective, they have many adverse effects with long-term use, including resistance 
problems, non-target effects, and harm to humans and the environment (Jin et al., 2011a; Hsu 
et al., 2012; Khan et al., 2014; Chen et al., 2019; Awan et al., 2021).

Due to the range of issues associated with the use of chemical insecticides, it is essential 
to develop more environmentally friendly fruit fly control methods (Daane and Johnson, 
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2010). Biological control methods based on natural predators, 
parasitoids, and entomopathogenic fungi (EPF) are regarded as safe 
substitutes for chemical pesticides (Dorta et al., 2020). For a long time, 
exploring the use of pathogenic microorganisms as a strategy against 
pests has been a focal point of research (Hajek and St Leger, 1994).

Beauveria bassiana (Hypocreales: Cordycipitaceae) is a pathogenic 
microorganism commonly used in insect control. It has been applied 
to control several pests, achieving significant social, economic, and 
ecological benefits (Butt and Copping, 2000; Cai, 2003; McKinnon 
et al., 2017). Several studies have evaluated the impact of B. bassiana 
on fly species (Diptera: Tephritidae), including Ceratitis capitata 
(Quesada-Moraga et al., 2006; Ekesi et al., 2010), Bactrocera oleae 
(Sookar et al., 2008), Bactrocera zonata (Usman et al., 2021; Wakil 
et  al., 2022), and Bactrocera cucurbitae (Onsongo et  al., 2022). 
However, a limited number of studies have focused on the use of 
B. bassiana against B. dorsalis, and most studies on the pathogenicity 
of B. bassiana against B. dorsalis have been conducted in the laboratory 
(Pan et al., 2008; Zhang et al., 2010; Pan and Zhai, 2015; Wang et al., 
2021; Menzler-Hokkanen et al., 2022).

We selected the B4 strain, which was the most virulent to all life 
stages of B. dorsalis, from the six B. bassiana strains, and evaluated the 
effects of environmental factors (temperature, relative humidity, and 
relative soil water content), different concentrations, and chemical 
reagents on the virulence of B. bassiana (B4) on B. dorsalis and two of 
its natural enemies. Our research provides an important theoretical 
and practical basis for developing targeted B. bassiana agents and 
insecticide applications to effectively control different life stages of 
B. dorsalis in the field.

2 Materials and methods

2.1 Beauveria bassiana strain cultures

We obtained six strains of B. bassiana (B1–B6). Strain B1 was 
provided by the Laboratory of Fungal Pesticide Creation, Institute of 
Agricultural Environment and Sustainable Development, Chinese 
Academy of Agricultural Sciences (Beijing, China). Strains B2–B4 
were provided by the Biocontrol Laboratory, Institute of Plant 
Protection, Guangdong Academy of Agricultural Sciences 
(Guangzhou, China). Strain B5 was provided by the Insect Ecology 
Laboratory, South China Agricultural University (Guangzhou, China). 
Strain B6 was collected from B. dorsalis in a starfruit plantation (Boluo 
County, Guangdong Province, China; 23°23′N, 114°30′E).

Beauveria bassiana strains were incubated on Sabouraud dextrose 
agar with a 1% yeast (SDAY) medium at 25°C for 7–10 days, with a 
16:8-h (light:dark) regime (Pan et  al., 2008; Zhang et  al., 2010). 
Conidia were isolated using the method of Ekesi et al. (2003), after 
which the mature conidia were diluted using 0.1% Tween-80 in sterile 
water to prepare a suspension with a concentration of 1.0 × 108 
conidia/mL. A solution of 0.1% Tween-80 in sterile water was used as 
the control.

2.2 Insect collection and rearing

Fallen fruits (carambola) were collected from Boluo County 
(Huizhou City, Guangdong Province), Conghua, Tuhua, and Popcorn 

Park in Guangzhou (Guangdong Province). Bactrocera dorsalis larvae 
were collected from the fruits and cultured in the laboratory. Larvae 
were reared on an artificial diet for two generations before testing was 
initiated, which enabled us to accurately identify their adults and 
establish pure breeding colonies of B. dorsalis. Larvae were reared 
indoors on an artificial diet (Jin et al., 2011b) and adults were fed a 1:1 
yeast/sugar artificial diet and water (Liu et  al., 2017). The diet 
described by Jin et al. (2011b) contains corn gain, banana, sodium 
benzoate, yeast, sucrose, winding paper, hydrochloric acid, and water. 
Different B. dorsalis life stages were cultured in the laboratory 
(temperature: 26 ± 1°C, relative humidity [RH]: 60–70%, and 14:10-h 
light:dark photoperiod) (Li et  al., 2023). Two natural enemies of 
B. dorsalis, the predator Amblyseius cucumeris (Mesostigmata: 
Phytoseiidae) and the parasitoid Anastatus japonicus (Hymenoptera: 
Eupelmidae), were provided by the Biological Control Group, Institute 
of Plant Protection, Guangdong Academy of Agricultural Sciences. 
Amblyseius cucumeris was raised on bran and fed with Aleuroglyphus 
ovatus (Acari: Acaridae) (temperature: 26 ± 1°C, RH: 70 ± 5%, and 
16:8-h light:dark photoperiod) (Zhang et al., 2002; Li, 2017). Anastatus 
japonicus adults were reared in 10% honey water, and eggs of 
Antheraea pernyi (Lepidoptera: Saturniidae) were used as alternative 
hosts for offspring reproduction (temperature: 24 ± 1°C, RH: 70 ± 5%, 
and 16:8-h light:dark photoperiod) (Zhao et al., 2023).

2.3 Insecticide

We tested several current pesticides routinely applied in  local 
Chinese orchards. We  purchased 40% Phoxim emulsifiable 
concentrate (EC) from Shandong Shengbang Lunan Pesticide Co 
(active ingredient: phoxim, CAS: 14816–18-3). We  acquired 45% 
Malathion EC from Guangdong Gaozhou Chemical General Factory 
(active ingredient: malathion, CAS: 121–75-5). We purchased 48% 
Lorsban (EC) from Dow Agro, USA (active ingredient: chlorpyrifos, 
CAS: 2921-88-2). We procured 1.8% Avermectin EC from Zhejiang 
Shenghua Baike Biological Co (active ingredient: avermectin, CAS: 
71751–41-2). A 10% Glyphosate aqueous solution (AS) was produced 
by Nantong Jiangshan Pesticide Chemical Co., Ltd. (active ingredient: 
glyphosate, CAS: 1071-83-6). Lastly, a 20% Paraquat AS was sourced 
from Hubei Shalongda Co (active ingredient: paraquat, CAS: 
4685-14-7).

2.4 Determining Beauveria bassiana 
virulence

To accurately determine the virulence of the six strains of 
B. bassiana, the 1.0 × 108 concentration was used to determine its 
pathogenicity to B. dorsalis (Pan et al., 2008). Eggs, 3rd instar larvae, 
and pupae of B. dorsalis were dipped in a spore suspension of 
1.0 × 108 conidia/mL for 30 s (Pan et al., 2008). The eggs were then 
placed in a rearing box with artificial feed. We used 3rd instar larvae 
because, in the field, the first two larval instars feed within the host 
plant; after reaching the third instar, they emerge from the host plant 
and drop to the soil to pupate (Susanto et al., 2022). At this point, 
they may come into contact with other materials and substrates, 
including soil containing B. bassiana. Therefore, only 3rd instar 
larvae were tested.
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The 3rd instar larvae and pupae were transferred to plastic boxes 
containing moist sandy soil (water mixed with sandy soil, keeping the 
surface of the sandy soil in contact with water, but not saturating it, to 
avoid particles sticking together) and reared at 25°C. Egg hatching, 
larval pupation, and pupal emergence was recorded daily. Adults were 
treated using the film method (Lohse et al., 2015). Specifically, we used 
a hand-held sprayer to evenly spray an equal volume (5 mL) of the 
suspension containing 1.0 × 108 conidia/mL on the internal wall of a 
250-mL triangular bottle. The suspension was air dried. We collected 
an initial 30 emerging adults over 1 to 2 days, while adding feed and 
water, and observed the mortality rate over 15 days. Thirty eggs 
(freshly laid eggs, 1–2 h old), 3rd instar larvae, pupae (1–2 days after 
pupation), and adults were used in each treatment (six different 
B. bassiana strains for each B. dorsalis life stage), with five replicates of 
observations starting from the third day of the treatment (observations 
were made up to day 15, five times in total).

2.5 Strain B4 biological trait determination

After initial screening showed that the B4 strain was the most 
virulent of the six tested, we  diluted B. bassiana (B4) into five 
concentrations, i.e., 1.0 × 103, 1.0 × 104, 1.0 × 105, 1.0 × 106, and 1.0 × 107 
conidia/mL. The B. dorsalis treatment followed the procedure 
described in Section 2.4. Observations were made daily after 
treatment, and mortality was recorded for each treatment for 20 days. 
We  calculated the mortality, lethal mid-concentration (LC50), and 
lethal mid-time (LT50).

2.6 Effect of environmental factors on the 
virulence of the B4 strain

The effect of temperature on the virulence of the B4 strain was 
tested at eight different temperatures (13, 16, 19, 22, 25, 28, 31, and 
34°C, observed for 10 days). The flies were reared at 95% relative 
humidity and 16:8-h light:dark cycle in an artificial climatic chamber 
to observe the effect of temperature on mortality. The treatment of the 
different B. dorsalis life stages with strain B4 followed the procedures 
outlined in Section 2.4.

The effect of RH on the virulence of the B4 strain involved 
exposing different B. dorsalis life stages to a constant relative humidity 
in four different ranges, i.e., 60–70, 71–80, 81–90, and 91–100% 
RH. The treatment of the different B. dorsalis life stages with strain B4 
followed the procedures outlined in Section 2.4. The larvae, pupae, 
and adults were observed for 10 days at 25°C after inoculation.

The combined effect of temperature and RH on B4 strain growth 
was also assessed. Discs were collected from the edge of B4 colonies 
that had been cultured for 7 days using a 5-mm diameter paper punch. 
The discs were inoculated into the center of SDAY medium, marked 
with two points at the bottom of the Petri dish to highlight the original 
diameter, and incubated under different temperature and RH 
conditions. Subsequently, the diameter of the colonies was measured 
every 2 days. The final data was recorded on the 10th day (with 
five replicates).

To determine the effect of the relative soil moisture content on the 
virulence of the B4 strain, we used loose sandy soil with a field water 
holding capacity of 4.5%. Before test initiation, the soil was sieved to 

remove impurities and then baked in an oven at 105°C for 5–6 h until 
it reached a constant mass. Six different relative soil water levels (40, 
50, 60, 70, 80, and 90%) were obtained following the protocol of Hou 
et al. (2022). We sprayed 5 mL of a 1.0 × 107 conidia/mL suspension 
evenly on the soil surface at different RHs with a hand-held sprayer. 
The 3rd instar larvae were then placed on the soil and the number of 
larvae pupating was recorded daily (six treatments, 30 larvae per 
treatment, five replicates). For the pupal virulence test, pupae that had 
pupated 1–2 days prior were placed on soil with different relative water 
contents, a hand-held sprayer was used to apply 5 mL of a suspension 
of 1.0 × 107 conidia/mL to the soil surface, and the number of emerging 
adults was recorded daily (six treatments, 30 pupae per treatment, five 
replicates). The relative water content of the test soils was maintained 
by weighing the samples at 12 h intervals at 25°C and supplementing 
them with water to account for any evaporatory loss to maintain a 
consistent water content.

2.7 Effect of common chemical agents on 
the biological characteristics of the B4 
strain

The six insecticides were tested at three different concentrations. 
The first concentration involved using the recommended field 
concentration (concentrations recommended for routine use in the 
instructions), which is considered a lethal dose. The second 
concentration was the conventionally used concentration diluted five 
times, considered a sublethal dose, whereas the third concentration 
was the conventionally used concentration diluted ten times, 
considered a low sublethal dose (Xu et al., 2002).

The B4 strain, cultured for 10 days (25°C, 16:8-h light:dark), was 
used to prepare a conidial suspension using sterile water containing 
0.1% Tween-80. Each agent was adjusted to the desired concentration 
using 1 mL of B4 conidia suspension containing 5% sucrose. 
We transferred 100 μL of the solution to a sterile slide and placed it in 
a Petri dish lined with filter paper, added sterile water dropwise to the 
dish to maintain 100% RH, and incubated it for 24 h to observe spore 
germination using a microscope (Sigma-Aldrich Chemie GmbH, 
Taufkirchen, Germany; in five replications).

We applied 0.1 mL of the insecticide solution to evenly coat the 
surface of the SDAY medium. We transferred a 5-mm diameter disc 
of the B4 strain (cultured at 25°C and 95% RH for 7 days) to the center 
of the medium containing the insecticide. The sampling method of the 
disc followed the procedure described in Section 2.6. We marked two 
points at the bottom of the Petri dish to highlight the initial diameter; 
each treatment was replicated five times. The colony diameter was 
measured on the 5th and 10th d. We used the culture medium without 
pesticide as the control.

2.8 Effect of strain B4 on the natural 
enemies of Bactrocera dorsalis

The effect of strain B4 on A. cucumeris was assessed. The 
concentration of spore powder in 0.1 g was calculated to be 7.0 × 109 
conidia/g using haemocytometry (Mulatu et al., 2021). We created 
three treatments of B. bassiana with 0.5, 2.5, and 12.5 g (based on 
pre-experimental results and the characteristics of the feeding patterns 
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of A. cucumeris) (Zhang et al., 2002; Li, 2017). We mixed the samples 
with 500 g of bran and 10 g of seeds containing approximately 300 
mites (in five replicates). The mite population was observed on the 
10th and 20th days after inoculation. Five samples (of 0.1 g each) were 
randomly collected and observed using a dissecting microscope.

The effect of strain B4 on A. japonicus involved different 
concentrations (based on the results of the previous experiments and 
the characteristics of the feeding patterns of A. japonicus) (Zhao et al., 
2023). Spore suspensions of 1.0 × 105, 1.0 × 106, 1.0 × 107, 1.0 × 108, and 
1.0 × 109 conidia/mL were evenly sprayed on the wall of a tube 
(sterilized glass tubes with a diameter of 15 cm and a height of 20 cm) 
and air dried. Each tube was inoculated with 50 A. japonicus at 
1–2 days after emergence and 50 A. pernyi eggs. Parasitic holes in the 
eggs were evaluated every 5 days, and the experiment was terminated 
on day 20. Parasitized eggs were recorded for each treatment.

2.9 Statistical analysis

Calculations of LC50 and LT50 with corresponding 95% confidence 
limits (CL) were first corrected for mortality and then subjected to 
probit regression analyses using the SPSS v.22.0 software (SPSS Inc., 
Chicago, IL). The SAS software (version 9.4) was used for the other 
data analyses. The experimental results were analyzed using Duncan’s 
multiple range test (DMRT), with p < 0.05 considered statistically 
significant. Normal distribution was verified before data analysis, 
followed by ANOVA. The calculation of the corrected mortality was 
as follows:

  

( )Correction of mortality %
treatment mortality control mortality 100

1 control mortality

=
−

×
−

The calculation of the growth inhibition rate of B. bassiana 
colonies was as follows:

  

( )Inhibition rate %
controlPetridish colony diameter
dosing Petridish colony diameter 100
controlPetridish colony diameter

=
−

×

3 Results

3.1 Virulence of different strains of 
Beauveria bassiana against Bactrocera 
dorsalis

The six strains of B. bassiana were not highly virulent to B. dorsalis 
eggs (Table 1). For 3rd instar larvae, pupae, and adults, the virulence 
of each strain increased with increasing treatment duration. Strain B4 
had the highest virulence in every observation, reaching 52.67% (3rd 
instar larvae), 61.33% (pupae), and 90.67% (adults) at day 15, which 
was significantly higher than that of all the other strains (Table 1). 
Therefore, we  focused entirely on strain B4  in all 
subsequent experiments.

3.2 Biological traits of strain B4

The corrected mortality rates for B. dorsalis were 1.33% (eggs), 
51.04% (3rd instar larvae), 60.54% (pupae), and 90.14% (adults). The 
virulence of strain B4 on the different life stages of B. dorsalis 
decreased from adults > pupae >3rd larvae > eggs. Strain B4 did not 
affect eggs. The LC50 of the B4 strain on B. dorsalis was 0.79 × 107 
conidia/mL on larvae (95% CL of 2.59 × 106–2.40 × 107), 0.78 × 106 
conidia/mL on pupae (95% CL of 3.63 × 105–1.67 × 106), and 1.70 × 105 
conidia/mL on adults (95% CL of 1.08 × 105–2.68 × 105).

At the same concentration (except for 1.0 × 103 conidia/mL), there 
were some differences in the LT50 between the larvae, pupae, and 
adults, suggesting that tolerance to B4 varies between the three life 
stages. The LT50 of each B. dorsalis stage showed a decreasing trend 
with increasing B4 strain concentration (Table 2). Strain B4 was most 
toxic to adults, and the LT50 was less than 10 days at concentrations as 
low as 1.0 × 106 conidia/mL.

3.3 Environmental effects on the virulence 
of the B4 strain

The mortality rate of B. dorsalis increased with temperature (from 
13–25°C), peaking around 25°C and gradually decreasing from 
25–34°C (except for the 3rd instar larvae at 0.56 × 1011 conidia/mL). 
The toxic effect of strain B4 on 3rd instar larvae, pupae, and adults 
peaked at 25°C, with mortality reaching 52.00, 60.00, and 86.67% at a 
concentration of 1.0 × 107 conidia/mL, respectively. At 25°C, the LC50 
of strain B4 was the lowest at concentrations of 0.81 × 107 (larvae), 
0.09 × 107 (pupae), and 0.02 × 107 conidia/mL (adults) (Table  3). 
Similarly, the B4 strain had the highest growth and fastest growth rate 
at 25°C, followed by 28°C (Table 4).

A low RH reduced the mortality of B. dorsalis caused by the B4 
strain. The highest mortality rates were achieved at 91–100% RH 
(1.0 × 107 conidia/mL), and were 89.33% (adults), 63.33% (pupae), and 
52.67% (larvae). Likewise, the minimum LC50 occurred at 91–100% 
RH, with 1.57 × 105 conidia/mL (adults), 0.72 × 106 conidia/mL 
(pupae), and 0.60 × 106 (larvae) conidia/mL (Table 5). The B. bassiana 
growth was significantly higher at 91–100 and 81–90% RH than in all 
of the other treatments. An RH of 91–100% is the optimum growth 
humidity for B4 (Table 6).

The mortality of B. dorsalis between the three relative soil water 
contents of 50, 60, and 70% did not vary significantly. The variations 
in the virulence of the B4 strain between the different water contents 
(40, 80, and 90%) were highly significant. In addition, the highest 
mortality rate was 79.21% for larvae at a relative soil moisture content 
of 60 and 80.63% for pupae at a relative soil moisture content of 50% 
(Table 7).

3.4 Common insecticide effects on the 
biological characteristics of the B4 strain

At three different doses, 1.8% avermectin EC had the strongest 
inhibitory effect on the germination of B4 conidia, and conidia were 
unable to germinate at the lethal dose (Table 8). The remaining five 
agents showed weak inhibition of conidial germination at both lethal 
and sublethal doses, but were not significantly different from the 
control at the low sublethal dose (Table 8).
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Similarly, 1.8% avermectin EC had the strongest inhibitory effect on 
the growth of B4 strains at lethal and sublethal concentrations, followed 
by 48% Lorsban EC (Table 9). While 1.8% abamectin EC still had a 
strong inhibitory effect on B4 strain growth at sublethal doses, there was 
no difference between the other five agents. Therefore, the effect of 1.8% 
abamectin EC on the growth of the B4 strain at low sublethal 
concentrations was further measured. It was found that the inhibitory 
effect was still strong (57.14% on day 5 and 71.05% on day 10). This 
indicates that avermectin cannot be used in conjunction with B4.

3.5 Effect of the B4 strain on natural 
enemies of Bactrocera dorsalis

The B4 strain significantly inhibited A. cucumeris reproduction, 
and the inhibitory effect increased with increasing treatment 
concentrations. Extending the treatment time weakened the 
inhibitory effect of the B4 strain on the mites (Table  10). For 
A. cucumeris, increasing both the treatment time and concentration 
significantly increased the mortality, especially at high concentrations 

TABLE 1 Virulence of different B. bassiana strains against B. dorsalis at the concentration of 1.0  ×  108 conidia/mL.

Stage No.
Average mortality (%)

3 d 5 d 7 d 10 d 15 d

Egg

B1 4.67 ± 0.06 a 4.67 ± 0.06 a 3.33 ± 0.10 a 3.33 ± 0.10 a 3.33 ± 0.10 a

B2 0 b 0 b 0 b 0 b 0 b

B3 10.00 ± 0.32 c 2.00 ± 0.35 c 0 b 0 b 0 b

B4 1.34 ± 0.01 d 1.33 ± 0.01 d 1.33 ± 0.01 c 1.33 ± 0.01 c 1.33 ± 0.01 c

B5 0.67 ± 0.04 e 0.67 ± 0.04 e 0.67 ± 0.04 d 0.67 ± 0.04 d 0.67 ± 0.04 d

B6 0 b 0 b 0 b 0 b 0 b

Control 0 b 0 b 0 b 0 b 0 b

3rd instar larvae

B1 3.33 ± 0.64 b 4.67 ± 0.65 b 8.67 ± 0.61 b 20.67 ± 0.64 b 36.67 ± 1.44 c

B2 1.33 ± 0.02 cd 2.00 ± 0.32 cd 4.00 ± 0.59 c 14.00 ± 1.29 d 26.00 ± 1.82 d

B3 0.67 ± 0.01 d 2.67 ± 0.34 c 5.33 ± 0.35 c 16.00 ± 1.04 cd 28.00 ± 0.64 d

B4 5.33 ± 0.64 a 6.67 ± 0.88 a 12.67 ± 0.91 a 28.67 ± 1.29 a 52.67 ± 1.29 a

B5 4.00 ± 0.22 b 5.33 ± 0.33 ab 11.33 ± 0.59 a 24.67 ± 1.44 a 40.67 ± 1.04 b

B6 2.00 ± 0.25 c 2.67 ± 0.22 c 7.33 ± 0.42 b 19.33 ± 1.04 bc 33.33 ± 0.64 c

Control 0 e 0.67 ± 0.05 d 2.00 ± 0.22 d 2.00 ± 0.18 e 3.33 ± 0.64 e

Pupae

B1 4.00 ± 0.57 b 5.33 ± 0.58 c 11.33 ± 1.04 b 24.67 ± 1.84 bc 45.33 ± 2.25 b

B2 2.00 ± 0.19 c 2.67 ± 0.34 cd 8.67 ± 0.91 bc 21.33 ± 1.55 bc 34.00 ± 2.07 c

B3 0.67 ± 0.08 d 2.00 ± 0.27 d 6.67 ± 0.60 c 18.67 ± 1.19 c 23.88 ± 1.64 d

B4 6.00 ± 0.29 a 9.33 ± 1.04 a 15.33 ± 1.84 a 34.67 ± 2.25 a 61.33 ± 3.54 a

B5 4.00 ± 0.35 ab 7.33 ± 0.66 b 12.00 ± 1.23 ab 27.33 ± 2.47 b 47.33 ± 1.93 b

B6 2.67 ± 0.32 c 4.00 ± 0.86 cd 9.33 ± 1.55 bc 23.33 ± 1.68 bc 40.00 ± 2.47 bc

Control 0 e 0 e 1.33 ± 0.09 d 1.33 ± 0.10 d 2.00 ± 0.18 e

Adult

B1 18.00 ± 1.44 b 40.00 ± 3.00 ab 58.00 ± 2.85 c 70.67 ± 3.10 ab 78.67 ± 1.04 b

B2 13.33 ± 1.04 cd 28.00 ± 3.15 c 42.67 ± 1.68 d 65.33 ± 2.16 b 71.33 ± 1.44 cd

B3 14.00 ± 1.41 c 22.00 ± 1.03 c 39.33 ± 2.32 d 60.00 ± 6.25 b 67.33 ± 1.82 d

B4 22.67 ± 1.03 a 46.67 ± 1.68 a 75.33 ± 2.33 a 80.67 ± 2.65 a 90.67 ± 1.47 a

B5 20.0 ± 1.01 ab 44.00 ± 0.91 ab 66.00 ± 2.25 b 73.33 ± 1.68 ab 80.67 ± 2.73 b

B6 10.0 ± 0.65 d 38.67 ± 2.71 b 54.00 ± 1.29 c 68.00 ± 3.06 b 76.00 ± 2.89 bc

Control 0 e 1.33 ± 0.15 d 3.33 ± 0.64 e 4.00 ± 0.19 c 5.33 ± 0.14 e

Data with the same number and letter in the same column indicate no significant difference in the Duncan’s Multiple Range Test (DMRT) test (p ≥ 0.05).

TABLE 2 LT50 of the B4 strain at different concentrations in B. dorsalis.

Stage

LT50 (day)

1.0  ×  103 conidia/
mL

1.0  ×  104 conidia/
mL

1.0  ×  105 conidia/
mL

1.0  ×  106 conidia/
mL

1.0  ×  107 conidia/
mL

Larvae 25.9 ± 1.73 a 23.7 ± 0.98 a 20.5 ± 2.31 a 14.2 ± 1.15 a 13.9 ± 0.88 a

Pupae 25.5 ± 1.17 a 22.1 ± 0.58 ab 19.7 ± 1.15 a 13.4 ± 0.35 a 12.5 ± 0.87 a

Adult 22.9 ± 0.87 a 20.1 ± 0.58 b 11.2 ± 1.73 b 7.1 ± 1.10 b 6.3 ± 0.40 b

Data with the same number and letter in the same column are not significantly different using the DMRT test (p ≥ 0.05).
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TABLE 3 Cumulative mortality and toxicity of the B4 strain against B. dorsalis in different temperatures.

Stage
Temp 
(°C)

Cumulative mortality (%)

LC50 (95%CL) (conidia/mL) R1.0  ×  103 
conidia/mL

0.56  ×  1011 
conidia/mL

1.0  ×  105 
conidia/mL

1.0  ×  106 
conidia/mL

1.0  ×  107 
conidia/mL

3rd instar larvae

13 0.67 ± 0.07 e 1.15 × 1011 5.33 ± 1.09 f 8.67 ± 1.08 e 10.67 ± 1.05 f 0.56 × 1011 (3. 63 × 108–0.87 × 1013) 0.9513*

16 1.33 ± 0.05 de 8.71 × 107 7.33 ± 1.32 f 10.00 ± 1.01 e 12.67 ± 1.18 f 1.15 × 1011 (3.95 × 108–3.37 × 1013) 0.9550*

19 5.33 ± 0.09 bc 4.43 × 107 16.00 ± 1.18 cd 24.67 ± 1.91 cd 39.33 ± 1.45 de 8.71 × 107 (1.52 × 107–49.88 × 107) 0.9980*

22 6.00 ± 0.68 b 0.81 × 107 19.33 ± 0.60 bc 27.33 ± 2.67 bc 42.67 ± 0.44 cd 4.43 × 107 (0.92 × 107–21.37 × 107) 0.9975*

25 8.67 ± 0.45 a 1.47 × 107 28.67 ± 0.49 a 34.67 ± 1.36 a 52.00 ± 0.59 a 0.81 × 107 (0.26 × 107–2.52 × 107) 0.9926*

28 7.33 ± 1.36 ab 2.14 × 107 23.33 ± 0.99 b 33.33 ± 1.50 a 48.00 ± 1.23 ab 1.47 × 107 (0.42 × 107–5.15 × 107) 0.9994*

31 6.00 ± 0.50 b 11.45 × 107 20.67 ± 1.36 b 31.33 ± 0.45 ab 45.33 ± 1.95 bc 2.14 × 107 (0.57 × 107–8.00 × 107) 0.9998*

34 3.33 ± 0.03 cd 6.67 ± 0.08 d 14.00 ± 1.00 de 22.67 ± 0.53 cd 34.67 ± 1.04 e 11.45 × 107 (2.03 × 107–64.57 × 107) 0.9993*

Pupae

13 0.67 ± 0.05 f 6.00 ± 0.59 f 9.33 ± 0.73 e 12.00 ± 1.54 f 14.67 ± 0.75 e 4.47 × 109 (1.43 × 108–1.39 × 1011) 0.8964*

16 2.67 ± 0.06 e 6.67 ± 0.13 f 11.33 ± 1.95 e 12.67 ± 2.09 f 16.00 ± 1.61 e 1.12 × 1011 (3.15 × 108–4.01 × 1013) 0.9515*

19 7.33 ± 0.45 c 20.00 ± 0.90 cd 31.33 ± 1.03 cd 38.00 ± 2.45 cd 43.33 ± 0.43 d 0.76 × 107 (0.24 × 107–2.43 × 107) 0.9711*

22 8.00 ± 0.59 c 22.00 ± 1.36 c 34.00 ± 0.95 bc 42.67 ± 0.45 bc 52.67 ± 1.18 c 0.34 × 107 (0.13 × 107–0.90 × 107) 0.97448

25 12.67 ± 0.94 a 33.33 ± 1.44 a 42.67 ± 1.21 a 50.00 ± 0.86 a 60.00 ± 1.23 a 0.09 × 107 (0.04 × 107–0.20 × 107) 0.9559*

28 10.67 ± 0.41 b 30.67 ± 1.12 ab 40.00 ± 2.27 a 47.33 ± 1.04 ab 57.33 ± 1.04 ab 0.14 × 107 (0.06 × 107–0.33 × 107) 0.9532*

31 10.00 ± 0.68 b 27.33 ± 1.05 b 38.67 ± 0.73 ab 46.67 ± 2.01 ab 54.00 ± 1.14 bc 0.21 × 107 (0.08 × 107–0.53 × 107) 0.9571*

34 4.67 ± 0.08 d 17.33 ± 1.06 de 27.33 ± 0.87 d 34.00 ± 1.82 de 40.00 ± 0.23 d 2.00 × 107 (0.50 × 107–7.98 × 107) 0.9454*

Adult

13 1.33 ± 0.03 e 6.67 ± 0.01 f 10.00 ± 1.36 f 12.67 ± 0.58 f 16.00 ± 1.05 f 1.15 × 1010 (1.90 × 108–0.69 × 1012) 0.9238*

16 2.67 ± 0.08 e 7.33 ± 0.15 f 11.33 ± 0.59 f 14.67 ± 0.77 f 16.67 ± 1.38 f 4.54 × 1010 (2.47 × 108–0.83 × 1013) 0.9501*

19 7.33 ± 0.07 cd 13.33 ± 0.74 de 21.33 ± 0.90 e 40.67 ± 1.09 de 65.33 ± 0.74 d 0.25 × 107 (0.12 × 107–0.53 × 107) 0.9879*

22 9.33 ± 0.45 c 16.00 ± 1.81 cd 26.67 ± 0.77 d 45.33 ± 2.27 cd 72.67 ± 0.81 c 0.11 × 107 (0.06 × 107–0.20 × 107) 0.9861*

25 18.00 ± 0.82 a 26.00 ± 0.95 a 44.00 ± 0.83 a 54.67 ± 1.87 a 86.67 ± 1.21 a 0.02 × 107 (0.01 × 107–0.03 × 107) 0.9673*

28 14.00 ± 1.22 b 21.33 ± 0.58 b 35.33 ± 1.14 b 51.33 ± 1.51 ab 82.00 ± 0.95 b 0.03 × 107 (0.02 × 107–0.06 × 107) 0.9757*

31 12.67 ± 0.03 b 18.00 ± 0.73 bc 31.33 ± 0.92 c 49.33 ± 0.60 bc 76.67 ± 1.85 c 0.06 × 107 (0.03 × 107–0.11 × 107) 0.9807*

34 6.00 ± 0.04 d 10.00 ± 0.86 ef 20.00 ± 0.68 e 36.00 ± 1.25 ef 60.67 ± 0.83 e 0.44 × 107 (0.20 × 107–1.01 × 107) 0.9903*

CL, confidence limits; R, correlation index; Data with the same number and letter in the same column have P ≥ 0.05 (DMRT test); *Significant difference (P ≤ 0.05).
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of 1.0 × 109 conidia/mL. More than half the mites died by day 15 
(52%) (Table 11).

The A. japonicus oviposition in the control was higher than that 
in the B4-treated samples at the same time, while higher treatment 
concentrations resulted in greater variation in A. japonicus than in the 
control (Table 11).

4 Discussion

Currently, in the field of biological control, EPF are used to control 
insect pests and have the potential to free producers from a heavy 

TABLE 4 Effect of temperature on the growth of the B4 strain.

Temp (°C) Colony diameter (cm)

2 d 4 d 6 d 8 d 10 d

13 0.50 ± 0.02 e 0.90 ± 0.08 d 1.20 ± 0.08 e 1.90 ± 0.28 e 2.50 ± 0.18 e

16 0.70 ± 0.03 de 1.00 ± 0.08 cd 2.00 ± 0.21 d 3.10 ± 0.21 d 3.90 ± 0.22 d

19 0.90 ± 0.09 cd 1.40 ± 0.10 bc 2.50 ± 0.17 cd 4.00 ± 0.22 bc 5.20 ± 0.24 bc

22 1.10 ± 0.11 bc 1.70 ± 0.08 b 2.70 ± 0.18 bc 4.50 ± 0.20 b 5.80 ± 0.22 b

25 1.50 ± 0.14 a 2.40 ± 0.21 a 3.90 ± 0.16 a 6.90 ± 0.24 a 7.70 ± 0.27 a

28 1.40 ± 0.12 a 2.20 ± 0.11 a 3.50 ± 0.21 a 6.40 ± 0.14 a 7.00 ± 0.22 a

31 1.40 ± 0.08 ab 2.10 ± 0.17 a 3.20 ± 0.19 ab 6.30 ± 0.13 a 6.80 ± 0.16 a

34 0.80 ± 0.04 de 1.20 ± 0.09 cd 2.10 ± 0.18 d 3.80 ± 0.17 c 4.90 ± 0.24 c

Data with the same number and letter in the same column indicate no significant difference in the DMRT test (p ≥ 0.05).

TABLE 5 Cumulative mortality and toxicity of the B4 strain against B. dorsalis with various humidity.

Stage RH (%)

Cumulative mortality (%)

LC50 (95%CL) (conidia/
mL)

R1.0  ×  103 
conidia/

mL

0.56  ×  1011 
conidia/mL

1.0  ×  105 
conidia/

mL

1.0  ×  106 
conidia/mL

1.0  ×  107 
conidia/mL

3rd instar 

larvae

91–100 7.33 ± 0.05 a 18.00 ± 1.19a 25.33 ± 1.20 a 38.67 ± 2.03 a 52.67 ± 0.88 a 0.60 × 106 (0.21 × 107–1.67 × 107) 0.9943*

81–90 5.33 ± 0.10 b 14.00 ± 1.14b 20.00 ± 0.49 b 31.33 ± 1.29 b 46.00 ± 2.07 b 1.89 × 107 (0.52 × 107–6.81 × 107) 0.9937*

71–80 2.00 ± 0.06 c 8.00 ± 0.48c 14.00 ± 0.98 c 23.33 ± 0.69 c 34.00 ± 1.07 c 0.73 × 108 (1.58 × 107–33.78 × 107) 0.9872*

61–70 1.33 ± 0.02 d 6.00 ± 0.35 c 11.33 ± 0.41 d 18.00 ± 0.74 d 26.00 ± 1.65 d 2.76 × 108 (3.78 × 107–200.85 × 107) 0.9794*

Pupae

91–100 12.67 ± 0.29 a 28.67 ± 2.46 a 41.33 ± 1.61 a 52.00 ± 0.98 a 63.33 ± 1.33 a 0.72 × 106 (0.04 × 107–0.14 × 107) 0.9858*

81–90 8.67 ± 0.05 b 24.00 ± 0.96 a 32.67 ± 0.82 b 44.00 ± 1.30 b 56.00 ± 1.93 b 2.55 × 106 (0.10 × 107–0.63 × 107) 0.9806*

71–80 5.33 ± 0.07 c 15.33 ± 1.47 b 24.67 ± 1.44 c 33.33 ± 1.04 c 44.67 ± 1.19 c 1.54 × 107 (0.43 × 107–5.44 × 107) 0.9839*

60–70 4.67 ± 0.16 d 10.00 ± 1.40 b 14.00 ± 0.30 d 26.00 ± 1.12 d 34.00 ± 0.69 d 1.64 × 108 (2.21 × 107–120.90 × 107) 0.9943*

Adult

91–100 16.67 ± 0.35 a 24.00 ± 0.54 a 40.67 ± 0.64 a 56.00 ± 1.75 a 89.33 ± 2.47 a 1.57 × 105 (0.01 × 107–0.02 × 107) 0.9628*

81–90 13.33 ± 0.46 b 19.33 ± 0.35 b 34.67 ± 0.35 b 50.67 ± 1.16 b 80.67 ± 2.59 b 4.14 × 105 (0.02 × 107–0.07 × 107) 0.9779*

71–80 8.67 ± 0.19 c 14.00 ± 0.52 c 26.67 ± 1.44 c 40.67 ± 1.61 c 73.33 ± 1.06 c 1.30 × 106 (0.07 × 107–0.24 × 107) 0.9788*

60–70 5.33 ± 0.10 d 7.33 ± 0.64 d 20.67 ± 1.79 d 35.33 ± 1.53 d 65.33 ± 1.75 d 3.31 × 106 (0.16 × 107–0.68 × 107) 0.9819*

CL, confidence limits; R, correlation index; Data with the same number and letter in the same column indicate no significant variation in the DMRT test (p ≥ 0.05); *Significantly different 
(P ≤ 0.05).

TABLE 6 Effect of humidity on the growth of the B4 strain.

RH 
(%)

Colony diameter (cm)

2 d 4 d 6 d 8 d 10 d

91–

100

2.00 ± 0.14 a 2.80 ± 0.22 a 3.70 ± 0.22 a 4.20 ± 0.34 a 4.90 ± 0.24 a

81–90 1.90 ± 0.21 a 2.30 ± 0.14 b 2.90 ± 0.23 b 3.40 ± 0.30 a 3.90 ± 0.20 b

71–80 1.40 ± 0.16 b 1.60 ± 0.13 c 1.90 ± 0.14 c 1.90 ± 0.07 b 2.10 ± 0.08 c

60–70 1.10 ± 0.03 b 1.20 ± 0.05 c 1.20 ± 0.05 d 1.40 ± 0.06 b 1.50 ± 0.05 d

Data with the same number and letter in the same column indicate no significant variation 
between them in the DMRT test (p ≥ 0.05).

TABLE 7 Effect of the relative soil water content on the virulence of the 
B4 strain.

Soil relative 
water content 
(%)

Adjusted mortality (%)

3rd instar larvae Pupae

90 39.08 ± 1.50 c 67.36 ± 1.90 b

80 59.49 ± 2.34 b 67.51 ± 1.82 b

70 74.09 ± 2.02 a 77.05 ± 1.23 a

60 79.21 ± 1.26 a 77.03 ± 1.38 a

50 78.51 ± 2.70 a 80.63 ± 1.68 a

40 38.04 ± 2.63 c 64.42 ± 1.54 b

Data with the same number and letter in the same column indicate no significant variation 
between them by the DMRT test (p ≥ 0.05).
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TABLE 8 Effects of different dilution ratios of chemical reagents on the 
conidial germination rate of the B4 strain.

Chemical 
agent

Conidial germination rate (%)

Lethal 
dose

Sublethal 
dose

Low 
sublethal 

dose

40% Phoxim EC 88.45 ± 2.21 bc 95.76 ± 1.22 b 96.30 ± 2.35 ab

45% Malathion EC 90.12 ± 3.15 b 95.82 ± 0.98 b 96.56 ± 0.87 ab

48% Lorsban EC 87.21 ± 1.05 cd 94.53 ± 0.49 b 95.10 ± 1.15 ab

1.8% Avermectin EC 0 e 9.21 ± 1.01 d 17.81 ± 0.55 c

10% Glyphosate AS 85.92 ± 3.10 d 91.46 ± 0.61 c 94.87 ± 2.11 b

20% Paraquat AS 86.15 ± 1.78 d 92.61 ± 1.25 c 95.13 ± 3.01 ab

Control 98.45 ± 0.43 a 98.02 ± 0.33 a 98.34 ± 0.51 a

Data with the same number and letter in the same column indicate no significant variation 
between them by the DMRT test (p ≥ 0.05).

dependence on chemical pesticides (Legaspi et al., 2000; Lovett and 
Leger, 2017). Based on B. bassiana, as one of the most effective EPFs, 
many commercial products for biological control have been developed 
(Zimmermann, 2007). In the USSR, B. bassiana products were mainly 
used to control Leptinotarsa decemlineata (Coleoptera: 
Chrysomelidae) and Cydia pomonella (Lepidoptera: Tortricidae) 

(Ferron, 1981). In China, B. bassiana is widely used to control Ostrinia 
nubilalis (Lepidoptera: Crambidae) in corn and Dendrolimus 
punctatus (Lepidoptera: Lasiocampidae) on pines (Hussey and Tinsley, 
1981). In addition, B. bassiana has been shown to have some 
pathogenicity in the laboratory against several target and non-target 
organisms, such as Alphitobius diaperinus (Coleoptera: Tenebrionidae) 
(Rohrlich et  al., 2018) and Chrysoperla externa (Neuroptera: 
Chrysopidae) (Amorim et al., 2005). The B4 strains screened in this 
study showed high virulence against each developmental stage of 
B. dorsalis and have potential for field application in the future 
biological control of B. dorsalis.

The B4 strain caused the highest mortality to adults, followed by 
pupae and larvae, while eggs were largely unsusceptible. Similar 
results have been reported for Bactrocera zonata (Mahmoud, 2009; 
Hussein et al., 2018; Usman et al., 2021) and B. cucurbitae (Hamzah 
et al., 2021). However, the virulence of larvae and pupae to B. bassiana 
in previous studies differed from that described here. In B. zonata (Gul 
et al., 2015; Hussein et al., 2018; Usman et al., 2021) and C. capitata 
(Soliman et  al., 2020) larvae were more susceptible than pupae. 
Moreover, Usman et al. (2021) and Wakil et al. (2022) found that 
B. dorsalis pupae were more susceptible than larvae, which does not 
align with our current findings. The contrasting results may be due to 
differences between the strains of B. bassiana, the method of 
application, and the age of the pupae (Rizvi et al., 2009; Beris et al., 
2013; Gul et al., 2015; Soliman et al., 2020; Shaurub, 2022). We focused 
on one- to two-day-old pupae, whereas previous research showed that 
the older the pupae, the less susceptible they are to EPF (Poprawski 
et al., 1985; Hussein et al., 2018). This may be related to the softer 
cuticle of young pupae, which allows the fungus to penetrate the 
epidermis more easily (Mora et al., 2018).

Temperature and humidity are the most important 
environmental factors affecting the growth and virulence of 
B. bassiana (Dorschner et al., 1991; Shaurub, 2022). Our results are 
consistent with Pan et al. (2008), who found that 25°C and 90–100% 
RH were the optimum temperature and humidity for spore 
germination and colony growth. The virulence of B. bassiana to each 
stage of B. dorsalis was optimized under these conditions. The soil 
moisture content is critical for the larval pupation and pupal 
emergence (Ekesi et al., 2003; Quesada-Moraga et al., 2006). The 
virulence of B. bassiana is the highest at a soil water content of 
50–70%, and B. bassiana may grow best under these conditions. The 
growth and infestation of B. bassiana are influenced by various 
environmental factors. Therefore, spraying chemicals in cloudy 
weather or after rain is conducive to B. bassiana germinating to 
achieve optimal control effects (Pan et al., 2014).

Combining chemical agents with EPF is a promising pest control 
option to minimize harmful chemical effects (Karthiba et al., 2010; 
Pelizza et al., 2018). Mixing B. bassiana and deltamethrin was effective 
in controlling Hyalomma anatolicum (Acari: Ixodidae) (Sun et al., 
2011). The inhibitory effect of beta cypermethrin on spore formation 
and conidial germination of B. bassiana was the lowest at the 
recommended concentration of 10%, and the mortality rate of Phauda 
flammans (Lepidoptera: Phaudidae) was significantly increased when 
B. bassiana was mixed with beta cypermethrin at the recommended 
concentration of 10% (Chen et al., 2021). However, in the current 
study, 1.8% avermectin EC showed high inhibition of the B4 strain, 
while the other agents had a relatively small effect. This indicates that 
1.8% avermectin EC should not be mixed with the B4 strain or applied 

TABLE 9 Growth inhibition rate of the B4 strain using various chemical 
agent doses.

Dose
Chemical 
agent

Dilution 
(times)

Inhibition rate (%)

5 d 10 d

Lethal 

dose

40% Phoxim EC 1,500 1.07 ± 0.01 c 1.32 ± 0.03 c

45% Malathion EC 1,500 0.71 ± 0.02 c 1.97 ± 0.01 c

48% Lorsban EC 1,000 8.21 ± 0.05 b 11.05 ± 0.71 b

1.8% Avermectin EC 3,000 75.20 ± 2.25 a 86.85 ± 2.01 a

10% Glyphosate AS 300 0.71 ± 0.02 c 4.34 ± 0.22 c

20% Paraquat AS 250 0.71 ± 0.02 c 4.21 ± 0.21 c

Sublethal 

dose

40% Phoxim EC 7,500 0.36 ± 0.05 b 0.13 ± 0.03 b

45% Malathion EC 7,500 0.36 ± 0.04 b 0.26 ± 0.03 b

48% Lorsban EC 5,000 0.71 ± 0.07 b 0.53 ± 0.04 b

1.8% Avermectin EC 15,000 71.43 ± 2.90 a 81.58 ± 2.82 a

10% Glyphosate AS 1,500 0.36 ± 0.03 b 0.53 ± 0.06 b

20% Paraquat AS 750 0.36 ± 0.05 b 0.53 ± 0.12 b

Data with the same number and letter in the same column indicate no significant variation 
between them in the DMRT test (p ≥ 0.05).

TABLE 10 Lethal effect of the B4 strain on A. cucumeris.

Density (g)
Number of predatory mites

10 d 20 d

0.5 33.13 ± 1.39 b 56.42 ± 2.11 b

2.5 29.72 ± 2.13 b 49.12 ± 0.43 c

12.5 28.96 ± 0.49 b 38.23 ± 1.11 d

Control 62.99 ± 3.90 a 114.28 ± 3.16 a

Data with the same number and letter in the same column indicate no significant variation 
between them in the DMRT test (P ≥ 0.05).
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concurrently in specific field applications. However, further research 
is needed on specific concentrations that maximize the efficacy of 
chemicals with B. bassiana against B. dorsalis.

The combined use of EPF and arthropod natural enemies in an 
integrated pest management strategy has been previously explored 
(González-Mas et al., 2019). Several studies have examined the safety 
and efficacy of combining EPF and other biocontrol components, e.g., 
predators, parasitoids, and nematodes (Roy and Pell, 2000; Acevedo 
et al., 2007; Labbé et al., 2009; Ansari et al., 2010; Martins et al., 2014). 
Gadhave et al. (2016) indicated that B. bassiana does not affect the 
parasitoid species associated with pea leafminer. Similar results were 
obtained for Myzus persicae (Hemiptera: Aphididae) and its parasite 
Aphidius colemani (Hymenoptera: Braconidae) (Jaber and Araj, 2018). 
However, we found that the B4 strain had a constraining effect on the 
growth, development, and reproduction of A. cucumeris and 
A. japonicus populations. This is consistent with the findings by Gao 
et al. (2022) that B. bassiana was highly pathogenic to non-target 
Spodoptera frugiperda (Lepidoptera: Noctuidae). The host range of 
B. bassiana is very wide, so consideration of its effects on non-target 
species is an important factor when using EPF in integrated pest 
management (Rohrlich et al., 2018). Therefore, it is important to avoid 
releasing A. cucumeris and A. japonicus at the same time as applying 
B. bassiana in the field. Furthermore, the relatively low diversity 
within agroecosystems may influence natural enemies within 
(Schmitz, 2007; Cappa et al., 2022). Field application of the B4 strain 
should therefore consider not only the natural enemies of B. dorsalis, 
but also the protection of the natural enemies of other pest species to 
prevent significant losses within agroecosystems, indirectly 
exacerbating the environmental pollution caused by 
chemical pesticides.

5 Conclusion

B4 controls several B. dorsalis life stages, particularly under 
optimal environmental conditions for growth and virulence. We also 
provide an empirical basis for combining the B4 strain with chemicals 

and natural enemies of B. dorsalis for improved virulence in the field. 
In summary, we  provide an important practical base for the 
development of B. bassiana formulations to aid in the control of 
B. dorsalis in the field.
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TABLE 11 Effect of the B4 strain on the cumulative mortality and fecundity of A. japonicus.

Test
Concentration 
(conidia/mL)

Processing days (d)

5 10 15 20

Cumulative mortality 

(%)

1.0 × 105 2.15 ± 0.20 b 2.78 ± 0.18 b 4.20 ± 0.11 c 4.74 ± 0.51 c

1.0 × 106 3.05 ± 0.08 b 3.62 ± 0.04 b 5.22 ± 0.30 c 8.64 ± 0.36 bc

1.0 × 107 3.20 ± 0.06 b 4.40 ± 0.16 b 5.70 ± 0.65 bc 8.86 ± 0.24 bc

1.0 × 108 4.74 ± 0.23 b 5.22 ± 031 b 10.74 ± 0.62 b 18.03 ± 0.42 b

1.0 × 109 27.63 ± 1.13 a 28.53 ± 1.42 a 52.00 ± 1.80 a 61.07 ± 2.71 a

Control 2.58 ± 0.03 b 2.91 ± 0.05 b 3. 42 ± 0.27 c 3. 56 ± 0.12 c

Fecundity (eggs/female)

1.0 × 105 13.33 ± 0.36 ab 19.67 ± 0.38 a 28.00 ± 0.51 ab 80.00 ± 1.21 ab

1.0 × 106 12.00 ± 0.35 abc 17.67 ± 0.21 ab 26.67 ± 0.15 ab 78.33 ± 0.44 ab

1.0 × 107 11.67 ± 0.15 abc 16.33 ± 1.13 b 25.33 ± 0.42 ab 70.00 ± 2.45 b

1.0 × 108 11.33 ± 0.33 bc 14.00 ± 0.62 b 25.00 ± 1.02 ab 69.33 ± 3.58 b

1.0 × 109 8.67 ± 0.13 c 13.00 ± 0.22 b 24.33 ± 1.23 b 38.00 ± 1.21 c

Control 15.33 ± 0.13 a 20.67 ± 1.32 a 29.00 ± 2.13 a 85.00 ± 3.22 a

Data with the same number and letter in the same column indicate no significant variation between them in the DMRT test (p ≥ 0.05).
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