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Introduction: Antimicrobial resistance (AMR) is a global health problem that

requires early and e�ective treatments to prevent the indiscriminate use of

antimicrobial drugs and the outcome of infections. Mass Spectrometry (MS),

and more particularly MALDI-TOF, have been widely adopted by routine clinical

microbiology laboratories to identify bacterial species and detect AMR. The

analysis of AMR with deep learning is still recent, and most models depend on

filters and preprocessing techniques manually applied on spectra.

Methods: This study propose a deep neural network, MSDeepAMR, to learn

from raw mass spectra to predict AMR. MSDeepAMR model was implemented

for Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus under

di�erent antibiotic resistance profiles. Additionally, a transfer learning test was

performed to study the benefits of adapting the previously trained models to

external data.

Results: MSDeepAMR models showed a good classification performance to

detect antibiotic resistance. The AUROC of the model was above 0.83 in most

cases studied, improving the results of previous investigations by over 10%. The

adapted models improved the AUROC by up to 20% when compared to a model

trained only with external data.

Discussion: This study demonstrate the potential of the MSDeepAMR model

to predict antibiotic resistance and their use on external MS data. This allow

the extrapolation of the MSDeepAMR model to de used in di�erent laboratories

that need to study AMR and do not have the capacity for an extensive

sample collection.

KEYWORDS

MALDI-TOF, deep learning, antibiotic resistance, Escherichia coli, Klebsiella

pneumoniae, Staphylococcus aureus, transfer learning

1 Introduction

Antimicrobial resistance (AMR) has become one of the most urgent global public

health problems (O’Neill, 2016), whose current growth leads to an estimate of an annual

death toll of more than ten million annually by 2050, and a cost of approximately 100

trillion USD worldwide (Brogan and Mossialos, 2016; O’Neill, 2016). In general, AMR

is the process by which bacteria can survive exposure to antibiotics that, under normal

conditions, would be deadly or stop their growth. According to a Nature report (“The

Antibiotic Alarm”), antibiotics have been consistently and heavily over-prescribed by

doctors worldwide for decades (Nature, 2013). Besides, the indiscriminate use of antibiotics

in livestock (Li et al., 2018; Hickman et al., 2021), and the environmental factors that
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favor the distribution of resistant genes (Lin et al., 2021) have

directly contributed to the development of antibiotic resistance.

Antibiotic-resistant mechanisms can be either intrinsic or

acquired. In the former, structural or functional characteristics of

the bacteria allow them to resist a particular antibiotic. In the

latter, bacteria develop resistance to an antibiotic through different

mechanisms: (i) minimization of the intracellular concentrations

of an antibiotic as a result of poor penetration into the bacterium

or as a result of antibiotic efflux; (ii) modification of the antibiotic

target by genetic mutation or post-translational modification of

the target; and (iii) inactivation of the antibiotic by hydrolysis or

modification (Blair et al., 2014).

Regarding AMR detection, the antibiotic sensitivity test

(AST) is key in clinical treatments. Testing for antibiotic

resistance/susceptibility is typically based on measuring the

bacterial growth in the presence of that antibiotic, which takes up to

72 h to obtain results. Hence, new, rapid, and effective techniques

are needed to address these challenges.

1.1 Mass spectrometry

Mass spectrometry (MS) is a technique that measures the

mass/charge ratio (m/z) of the atoms or molecules of a sample, after

ionizing them. The potential of MS lies in its ability to measure the

exact mass of these molecules and to obtain information from the

ion fragments of the analyte. MALDI-TOF MS (Matrix-Assisted

Laser Desorption/Ionization Time-Of-Flight Mass Spectrometer)

is one of the most used techniques in this field (Tanaka et al.,

1988). It corresponds to a Desorption Ionization System with Laser

Assistance by a Matrix, coupled with the ion analyzer TOF (Time

of Flight). MS has had a significant impact in clinical microbiology,

allowing for quick identification of bacteria from an intact cell

or a whole cell Peptide Mass Fingerprint (PMF) (Singhal et al.,

2015). It provides higher accuracy, rapidity, and cost-effectiveness

than conventional methods used in microbiology, yielding results

in minutes rather than hours (Singhal et al., 2015). This technique

has also shown better resolution and reproducibility than gel-based

protein or DNA fingerprint techniques (Fenselau and Demirev,

2001; Lay, 2001). The discovery of suitable matrices and the

use of whole/intact cells for recording the PMF of bacteria in

the mass range of 2–20 kDa, followed by databases for bacterial

identification, has made MALDI-TOF MS an excellent alternative

for this area. Specifically, “MALDI Biotyper,” developed by Bruker

Daltonics, has been considered as a platform to operate and analyze

samples with a simple extraction/preparation method (Seng et al.,

2009). Since MALDI received regulatory approval from the Food

& Drug Administration (FDA) of the United States in 2013, it

has been available worldwide for routine identification of cultured

bacteria from human specimens (in vitro diagnosis). MALDI-

TOF MS has rapidly become a reference method for identifying

a wide range of microorganisms. Its application for detecting

microorganisms such as bacteria has also been widely established,

reducing turnaround time and simplifying workflows in clinical

microbiology laboratories (Patel, 2015; Welker et al., 2019; Oviaño

and Rodríguez-Sánchez, 2021).

These advantages highlight MALDI-TOF MS as a fast, reliable

method to identify AMR (Florio et al., 2020), which allows

a rapid antibiogram in <3 h. The methodology for bacterial

resistance detection consists of incubatingmicroorganismswith the

antibiotic, then centrifugation is performed, and the supernatant

obtained is analyzed using MALDI-TOF.

A bacteria is considered to be resistant when an enzyme that

degrades the antibiotic [such as carbapenemases and extended-

spectrum beta-lactamases (March-Rosselló, 2017)] is detected in

its spectrum. On the one hand, the peak corresponding to the

mass/charge of the antibiotic disappears. On the other hand, new

peaks appear in the spectrum, corresponding to metabolites related

to the rupture of the antibiotic. Only the antibiotic peak can

be seen in the case of a susceptible (i.e., non-resistant) bacteria.

The sensitivity of this experimental technique is close to 100%,

which means this method can be used on grown colonies, isolation

plates (Lasserre et al., 2015), and grown blood culture bottles from

patients (Oviaño et al., 2014). Several methods have been proposed

to analyze MALDI-TOF spectra for subspecies discrimination.

Some methods focus on visual examination of the spectra to

discover strain-specific peaks (Wolters et al., 2011; Lasch et al.,

2014), while others are based on the use of ClinProTools software to

identify strain-representative peaks (Mather et al., 2016; Villarreal-

Salazar et al., 2022).

1.2 Machine learning on mass
spectrometry

The similarity between MALDI-TOF spectra of highly related

strains hinders their visual interpretation (Camoez et al., 2016).

Therefore, this analysis involves searching particular, possibly

complex patterns in large volumes of data. In this context, the

potential of artificial intelligence is very promising (Mather et al.,

2016), particularly machine learning techniques.

Machine learning (ML) allows computers to learn without

being explicitly programmed for the task at hand. The type of

problem and data this research addresses (MALDI spectra with

known information about antibiotic resistance) calls for supervised

learning algorithms, which are trained using a dataset formed

by instances (in this case, each spectrum is an instance), each

labeled with a discrete class or a real value (in this case, the

resistance/susceptibility of the bacteria). Then, a trained classifier

can predict the class of new instances. In recent years, the field of

medicine has focused on applying ML-based methods to analyze

MS data due to their potential to analyze complex data and the

ability to identify biomarkers (Olate-Olave et al., 2021; Tapia-

Castillo et al., 2021; López-Cortés et al., 2022; González et al.,

2023). Specifically,MS coupled withML techniques has beenwidely

used in different areas, including health: (i) detection/diagnosis

of diseases in humans (Drew et al., 2017), animals (López-Cortés

et al., 2017, 2019), among others; (ii) detection of pathogens such as

bacteria (Bruyne et al., 2011; Didelot et al., 2012; Dematheis et al.,

2022), fungi (Becker et al., 2014; Bolt et al., 2016); andmost recently

in (iii) AMR prediction (Florio et al., 2020; Huang et al., 2020; Weis

C. et al., 2020; Weis et al., 2022; Feucherolles et al., 2022; Wang

et al., 2022; Zhang et al., 2022; Guerrero-López et al., 2023).
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Recent studies have focused on refining species

identification (Guajardo et al., 2022) and determination of

AMR (Wang et al., 2018, 2019; Huang et al., 2020; Weis et al.,

2022). A recent systematic review (Weis C. V. et al., 2020) has

concluded that, despite the number of studies and their quality,

there are still some limitations related to poor reproducibility, a

small sample size, and a lack of external validation. In this sense,

it is necessary to persist in improving the algorithmic techniques

used when classifying antibiotic resistance, and this is reflected

in the current state of the art, where researchers account for

novel and complex classification techniques such as ensemble

models (Zhang et al., 2022) or convolutional neural networks

(CNN) (Wang et al., 2022). In this reference, a CNN architecture is

presented for the identification of Enterococcus faecium resistance

to Vancomycin, marking a promising research avenue, since CNNs

have already been shown to outperform classical ML algorithms

on data problems with high dimensionality (LeCun et al., 2015;

Lippeveld et al., 2020).

Regarding the study of AMR by using ML approaches, there

are different studies with a focus on the use of other experimental

techniques such as (i) MS (Wang et al., 2019; Delavy et al.,

2020; Huang et al., 2020); (ii) Genome sequencing (Bhattacharyya

et al., 2019; Kim et al., 2020); (iii) Infrared microscopy (Sharaha

et al., 2019); and (iv) PCR (Athamanolap et al., 2017). Specifically,

several works have been focusing on the use of MS coupled

to ML in the study of Candida albicans fluconazole resistance

detection (Delavy et al., 2020), discrimination of contagious strains

of Streptococcus (Esener et al., 2018), detection of carbapenem-

resistant Klebsiella pneumoniae (Huang et al., 2020), and rapid

classification of group B of Streptococcus serotypes (Wang et al.,

2019), among others.

These advances and the increasing prevalence of AMR

worldwide highlight the need for efficient techniques to detect

bacterial resistance to antibiotics and facilitate the pathogen-

directed clinical treatment of the infection. Thus, combining

MALDI-TOF with artificial intelligence is an excellent opportunity

for this task. It could improve the patient’s quality of life and

recovery since they would receive timely and direct treatment, also

reducing public health costs.

In terms of data availability, a recent study has generated

a public database called DRIAMS (Weis et al., 2022), with

more than 750,000 antibiotic resistance mass spectra profiles

collected in four different laboratories in Switzerland. The study

implemented three classification algorithms: logistic regression,

LightGBM (Light Gradient Boosting Machine), and a deep neural

network (multilayer perceptron). LightGBM presented the best

classification results for E. coli and S. aureus, while the multilayer

perceptron obtained the best score for K. pneumoniae. These

extensive public databases open the way for new and advanced

methodologies for AMR analysis to be investigated, as in the

present work using deep learning (DL). This methodology is

distinguished by its ability to detect new patterns in complex data

sets, but it requires a large amount of data to train the models.

In this context, transfer learning (Weiss et al., 2016) has

become a hot research topic in many fields, allowing us to

start the training from models already pre-trained on large

(often publicly available) datasets. These pre-trained models can

TABLE 1 Number of samples of each bacterium and antibiotic under

study in DRIAMS-A.

Bacteria Antibiotic Number of samples

Susceptible Resistant

E. coli

Ciprofloxacin 3.445 1.466

Ceftriaxone 3.875 1.086

Cefepime 4.051 839

Piperacillin-

tazobactam

4.449 350

Tobramycin 4.240 636

K. pneumoniae

Ciprofloxacin 2.325 513

Ceftriaxone 2.411 449

Cefepime 2.477 362

Meropenem 2.794 61

Tobramycin 2.527 319

S. aureus

Ciprofloxacin 3.141 616

Fusidic acid 3.513 253

Oxacillin 3.064 726

be fine-tuned with small datasets by laboratories with limited

sample collection and computing capacity, which can, in such

a way, take advantage of powerful models. A recent proposal

in this direction is to detect AMR using deep learning using

transfer learning based on whole genome sequence data (Ren

et al., 2022). However, to the best of our knowledge, no

transfer learning proposals have been made for AMR based on

MS techniques.

Our research proposes a complete and novel methodology

based on deep learning (DL) and transfer learning for directly

analyzing raw MS data to identify antibiotic resistance in three

different bacterial species. The use of raw MS data implies a

significant reduction of the typical preprocessing (smoothing,

baseline correction, peak picking, among others) made with

MS data. The dataset for our study was constructed based on

DRIAMS (Weis et al., 2022). The bacteria with the highest number

of samples and clinical relevance were included: Escherichia coli,

Klebsiella pneumoniae, and Staphylococcus aureus. The set of

antibiotics studied for the identification of resistance is detailed in

Table 1. First, the data set was formed from the raw mass spectra.

Next, the MSDeepAMR model was trained and tested to obtain

an area under the receiver-operating characteristic (AUROC). In

total, 13 models of antibiotic resistance were implemented with

results of AUROC > 0.80 in most of the cases studied, showing a

10% improvement over the state-of-the-art. Then, transfer learning

was applied to evaluate our models in external databases to

study whether laboratories with a lower sample collection capacity

can use these models. Our results demonstrate that performing

transfer learning substantially improves the evaluation of the

model on external data. TheMSDeepAMRmodel generally showed

excellent results for classifying antibiotic resistance in different

bacterial species.
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Finally, as was mentioned in previous paragraphs, conventional

methods for antibiotic sensitivity tests (AST) take up to 72 h

to obtain results. In this way, our approach (MSDeepAMR) can

significantly reduce the time in the part of the AST, implying to

the health industry a decrease in public costs and an improvement

in patients’ quality of life. Besides, this research opens the door to

integrating MSDeepAMRwithin the MALDI-TOF device to enable

on-the-fly AMR detection due to the network classifying the raw

data directly without manual preprocessing.

Considering the proposed methodology and the obtained

results, the article’s contributions are as follows:

• A systematic and reproducible methodology for antibiotic

resistance detection is proposed based on deep neural

networks and transfer learning, achieving state-of-the-art

results.

• The MSDeepAMR model architecture has been evaluated in

several scenarios, demonstrating its ability to predict antibiotic

resistance in E. coli, K. pneumoniae, and S. aureus against

different types of antibiotics.

• The proposed methodology performs transfer learning to

evaluate reproducibility on external datasets, a pioneering

study within the context of MS, highlighting the model

improvement and its successful adaptation to external data.

The rest of the paper is structured as follows. Section 2 details

the proposed MSDeepAMR methodology, describing experiment

settings, transfer learning evaluation, and ablation study. Section 3

presents the results of the conducted experiments. Section 4

discusses the obtained results. Finally, concluding remarks on the

study and future works are stated in Section 5.

2 Materials and methods

This study implements a DL architecture to identify antibiotic

resistance in different bacterial species from raw MS data. As

detailed in Figure 1, the first step corresponds to the dataset

construction from DRIAMS (Weis et al., 2022), chosen due to its

high number of samples. The second step is the extraction of the

bacterial data to be used in the present study. In the third step,

binned mass spectra are computed to obtain vectors of the same

length. Finally, data splitting is performed to train and test the

proposed architecture.

2.1 Datasets

In the present study, we used the public database

DRIAMS (Weis et al., 2022), which has about 300,000 mass

spectra of different types of bacteria with more than 750,000

antibiotic resistance profiles. This database consists of four

sub-collections (DRIAMS-A, DRIAMS-B, DRIAMS-C, and

DRIAMS-D) corresponding to the different clinical laboratories

where the samples were collected. DRIAMS-A has the largest

number of samples and, therefore, was used to implement and

train the MSDeepAMR model, while the remaining ones were

used for external testing and transfer learning. Initially, the dataset

included 803 different types of bacterial and fungal pathogens.

However, given the high number of samples required to train

deep neural networks, the following bacteria were selected due

to their relevance according to the World Health Organization

(WHO) (Asokan et al., 2019) and to their number of samples:

Escherichia coli (n = 5, 000), Klebsiella pneumoniae (n = 2, 800),

and Staphylococcus aureus (n = 3, 800). These bacteria are on the

list of priority pathogens presented by WHO. Table 1 details the

number of samples for each class of bacteria and antibiotics under

study. Our neural network was trained with raw mass spectra

data. A bin size of 3 Da in the range of 2,000 to 20,000 Da was

applied. This binning produces a fixed-length vector suitable for

the DL algorithms.

2.2 Deep learning

This study proposes a deep-learning approach for identifying E.

coli, K. pneumoniae, and S. aureus bacterial species with resistance

to different types of antibiotics (Table 1). Thus, the input data

corresponds to the rawMS data represented by a total binned vector

of 6,000 features. In contrast, the output corresponds to identifying

the resistance (class 1 label) or susceptibility (class 0 label) of the

given sample to the studied antibiotic.

2.2.1 Model implementation: MSDeepAMR
The MSDeepAMR model was applied to 13 different study

cases (Table 1), which includes three of the most clinically

relevant bacteria and the most commonly used antibiotics to treat

them: E. coli (ciprofloxacin, ceftriaxone, cefepime, piperacillin-T.,

tobramycin), K. pneumoniae (ciprofloxacin, ceftriaxone, cefepime,

meropenem, tobramycin), and S. aureus (ciprofloxacin, fusidic

acid, oxacillin). In order to find a structure that would perform

well in all the study cases, we took as a starting point the

architecture presented in Wang et al. (2022). The architecture of

the model was optimized based on the bacteria-antibiotic pair

with the highest number of samples (E. coli-ceftriaxone), for which

a hyperparameter grid search was performed. Subsequently, this

architecture was applied to the rest of the bacteria-antibiotic pairs,

and each one was optimized in the same way until the final

architecture was reached. In this way, the final architecture contains

the following parameters:

• The number of convolutional layers (1 to 5).

• The number of filters and kernels for each convolutional layer

(filters: 32–256 with a step of 32, kernels: 3–19 with a step

of 1).

• The number of fully connected layers (1 to 5).

• The number of neurons within each fully connected layer

(32–256 with a step of 32).

As shown in Figure 2, our model comprises four one-

dimensional convolution layers, allowing the network to learn

to differentiate the locations of the m/z peaks. Additionally,

each convolutional block contains a batch normalization layer

to reduce the overfitting and a max-pooling layer to reduce
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FIGURE 1

Scheme of the methodology proposed for the identification of AMR. (A) MS database selection followed by an exploratory analysis of the content, (B)

Extraction of the bacteria chosen to be studied, (C) Binning of the spectra into equal-sized feature vectors to obtain a DB Adhoc for deep learning

models implementation, (D) Data split into 80% training and 20% test, stratified by both antimicrobial class and sample case number. (E) DL models

implementation: For training, ten-fold cross-validation and hyperparameters’ optimization was used, and for testing, ten-fold cross-validation was

used to evaluate the final model. (F) Model performance evaluation and comparison were made according to AUROC, AUPRC, and Balanced

Accuracy.

dimensionality and focus the attention of the CNN on the m/z

peaks in each convolution. The classification module consists of

four fully connected layers preceded by a dropout layer. The last

layer has one output neuron with a sigmoid activation, where the

output of each neuron corresponds to the probability that the

studied sample presents a resistant or susceptible profile to the

antibiotics under study. As for the parameters of the network,

the four convolutional layers contain 64, 128, 256, and 256 filters,

respectively. The kernel sizes were 17, 9, 5, and 5, and the three

fully connected layers before the output layer were composed of

256, 64, and 64 units, respectively. Mean and max pooling were

tested, after which mean pooling was selected due to the higher

AUROC and AUPRC obtained. The dropout probability was set to

0.65. For training, a maximum of 100 epochs was set in conjunction

with early stopping with patience = 4. At the same time, the

learning rate of the Adam optimizer was initialized at 10−4, with

a learning rate reduction of 0.1 when the loss function remained

unchanged.

2.3 Ablation study

An ablation study was performed to evaluate the behavior

of MSDeepAMR when different modifications were applied to

the final model. For this purpose, a comparison has been made

through a 10-fold cross-validation for each of the study cases

(Detailed in Section 2.2.1). Thus, we compared how normalization

and regularization layers improve the model performance after

the hyperparameter search grid. The evaluation considered three

different model modifications:

• Baseline model, without any normalization or regularization

layer.

• MSDeepAMR model with batch normalization after each

convolutional layer.

• MSDeepAMRfinalmodel, with batch normalization after each

convolutional layer and dropout after the first fully-connected

layer.

2.4 External test and transfer learning

Transfer learning (Pan and Yang, 2010) consists of adapting a

model trained on a “source” dataset to perform well when applied

to a “target” dataset, typically by using a few instances from the

target set to fine-tune the pre-trained model. It enables external

laboratories with little sample collection capacity to adapt complex

models—pre-trained on much larger datasets—to their specific

needs (Ebbehoj et al., 2022). The implementation of transfer

learning on MALDI-TOF data is a problem that needs to be

studied because there are only two mass spectrometry systems

that dominate the market: MALDI Biotyper System from Bruker

Daltonics and ViteK MS from Biomeriux (Dierig et al., 2015; Hou

et al., 2019). Therefore, differences between data collected by two

different laboratories with similar sample collection equipment are

expected to be limited. Thus, it would facilitate the application

of transfer learning techniques to reduce the need to train large

models from scratch.

As mentioned above, the DRIAMS database contains three

sub-collections of external data with smaller numbers of samples

(DRIAMS-B, DRIAMS-C, and DRIAMS-D) corresponding to
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FIGURE 2

MSDeepAMR architecture: four convolutional layers followed by three fully connected layers. The last layer corresponds to the Sigmoid classifier,

which indicates the probability of belonging to one of the classes.

data collected by different laboratories using the same mass

spectrometry system.

In order to evaluate the potential benefits of transfer learning

on MALDI-TOF data, this paper describes four experimental

scenarios:

• Models trained and tested only on the external datasets.

• Evaluation of the best-performingmodel trained onDRIAMS-

A when applied to the external data:

• Without transfer learning.

• Applying transfer learning, freezing the weights of the four

convolutional layers, only retraining the weights of the fully

connected layers (as shown in Figure 3).

• Applying transfer learning, retraining the weights of all

layers.

In all cases, the same 20% of the external datasets were used to

evaluate the model performances. In contrast, the remaining 80%

were used to train the models (first scenario) or fine-tune the pre-

trained model (transfer learning). An Adam optimizer was used to

avoid overfitting with a learning rate of 10−7 for 10 epochs and a

batch size of 32, sufficient for the model to fit the external data.

The implementation ofMSDeepAMR and examples of experiments

found in this article are publicly available at: https://github.com/

xlopez-ml/DL-AMR.

Furthermore, the evolution of the AUROC and AUPRC

metrics has been studied when applying transfer learning by

retraining all layers using different percentages (25%, 50%,

75%, and 100%) of the training set of the target datasets

(DRIAMS–B–C–D) to study how models are affected by

an increase of the number of samples available for the

transfer learning.

2.4.1 Feature importance analysis
In order to interpret the results obtained by the best-

performing models, the analysis of SHAP values (using

DeepExplainer) has been implemented to identify which m/z

peaks are the most important when determining antimicrobial

resistance or susceptibility. Specifically, how the most predominant

peaks in the external datasets are affected before and after applying

transfer learning will be analyzed.

2.5 Evaluation metrics

The main models trained with DRIAMS-A were implemented

with a 10-fold cross-validation to avoid overfitting. Then, the

transfer learning scenarios described in Section 2.3 were evaluated

using ten random train-test splits. Therefore, the results reported in

both cases are the mean of 10 iterations.

The metric Area Under the Receiver Operating Characteristic

Curve (AUROC) and the Area Under the Precision-Recall Curve

(AUPRC) were calculated. AUROC and AUPRC are metrics

commonly used in binary classification problems of biological

nature class (Chicco, 2017). The calculation of AUROC involves

computing the area under the ROC curve, which represents the

true positive rate or “recall” [Recall formula = (TP/TP+FN)]

versus the false positive rate (1-specificity) [Specificity formula =

(TN/TN+FP)]. This metric measures the model’s discriminative

ability, where a value of AUROC equal to 1 indicates a perfect

model. In contrast, a value of 0.5 indicates performance similar to

random guessing.

Regarding the AUPRC, this metric is calculated similarly but

based on precision [Precision formula = (TP/TP+FP)] and recall,

focusing on correctly classified positive values (minority class).

AUPRC is a more reliable indicator for imbalanced datasets. We

have also included the calculation of balanced precision, which

consists of the arithmetic mean of sensitivity and specificity and is

helpful in these cases. In the case of transfer learning, the metrics

chosen to evaluate the models’ performances also corresponded to

AUROC and AUPRC.

3 Results

The main objective of this study was to implement models

based on DL to develop our MSDeepAMR models that allow

for the correct classification and identification of antibiotic

resistance for different bacteria. All models were implemented

from the raw MS data to improve the current state of the

art, which was achieved with traditional machine learning
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FIGURE 3

Transfer learning: a model is trained with a database containing an extensive number of samples. This model can be used as a starting point to be

adapted to problems with similar characteristics. Transfer learning was implemented to evaluate our MSDeepAMR models on external databases. In

the first case, we freeze the weights of the convolutional layers and only retrain the fully connected layers. For the second case, we update the

weights of the entire model. R, Resistant; S, Susceptible.

algorithms (Wang et al., 2022; Weis et al., 2022; Zhang

et al., 2022). As input data, we used raw mass spectra from

the public database DRIAMS (Weis et al., 2022), selecting

bacteria with the highest number of samples with antibiotic

resistance profiles. Models were trained using DRIAMS-A and

subjected to 10-fold cross-validation. Subsequently, each model

was tested to evaluate its prediction performance using AUROC

and AUPRC.

3.1 Results of MSDeepAMR models

To evaluate the classification performance of MSDeepAMR

models, the AUROC, AUPRC, and balanced accuracy metrics

were used. Models were implemented for different bacteria-

antibiotic profiles: E. coli (ciprofloxacin, ceftriaxone, cefepime,

piperacillin-T., tobramycin), K. pneumoniae (ciprofloxacin,

ceftriaxone, cefepime, meropenem, tobramycin), and S. aureus

(ciprofloxacin, fusidic acid, oxacillin). As shown in Figure 4,

most models showed good performance (AUROC > 0.80),

whereas the models for E. coli, E. coli-Ciprofloxacin, E. coli-

Ceftriaxone, and E. coli-Cefepime showed an AUROC of 0.85,

0.87, and 0.88, respectively. On the other hand, analyzing the

antimicrobial resistance profiles in K. pneumoniae, three of the

five models implemented stand out: K. pneumoniae-Ceftriaxone,

K. pneumoniae-Cefepime, and K. pneumoniae-Meropenem,

which reach an AUROC of 0.82, 0.83, and 0.83, respectively.

Finally, for S. aureus the S. aureus-Oxacillin model stands

out with a good 0.93 AUROC. Regarding the AUROC, it

is important to mention that for the study of resistance to

Ciprofloxacin, the three bacteria presented a good performance,

as shown in Figure 4, with an AUROC of 0.85 (E. coli-

Ciprofloxacin), 0.76 (K. pneumoniae-Ciprofloxacin), and 0.85

(S. aureus-Ciprofloxacin), respectively.

Regarding the analysis of the results in the function of

the AUPRC, it can be seen how the model is affected by

the imbalance of classes in some cases. Therefore, the positive

class must be more correctly classified, corresponding to the

sample resistant to a given antibiotic. Nevertheless, our results

showed that in E.coli, the better AUPRC corresponds to 0.75 (E.

coli-Ciprofloxacin), 0.79 (E. coli-Ceftriaxone), and 0.70 (E. coli-

Cefepime). In the case of K.pneumoniae, the best AUPRC was 0.68

for K. pneumoniae-Ceftriaxone. Finally, for S. aureus the better

values of AUPRC were 0.70 (S. aureus-Ciprofloxacin) and 0.85

(S. aureus-Oxacillin).

Summarizing, regarding the global metrics of AUROC,

AUPRC, and balanced accuracy shown in Table 2, the best model

performances for each bacteria under study corresponded to E.

coli-Ceftriaxone (AUROC 0.87, AUPRC 0.79, and B. acc 0.80), K.

pneumoniae-Ceftriaxone (AUROC 0.82, AUPRC 0.68, and B. acc

0.76), and S. aureus-Oxacillin (AUROC 0.93, AUPRC 0.85, and B.

acc 0.87).

Frontiers inMicrobiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1361795
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


López-Cortés et al. 10.3389/fmicb.2024.1361795

FIGURE 4

AUROC and AUPRC curves for each of the cases studied. The value shown in the tables within the figure corresponds to the mean of the 10-fold.

About AUROC for E. coli, the best results were obtained for the antibiotics Ceftriaxone and Cefepime, while in K. pneumoniae, the best performance

was achieved with Cefepime, Meropenem, and Tobramycin, with an AUROC of 0.83. On the other hand, in S. aureus, the best result was observed for

Oxacillin. In terms of AUPRC, the highest performance in E. coli was achieved with Ceftriaxone. For K. pneumoniae, the best case was with

Ceftriaxone, and finally, in S. aureus, the highest AUPRC value was obtained with Oxacillin.
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TABLE 2 Performance results of 10-fold cross-validation in the ablation study and final MSDeepAMR model.

Bacteria Antibiotic Baseline model MSDeepAMR w/BN MSDeepAMR w/BN + DO

B. Acc AUROC AUPRC B. Acc AUROC AUPRC B. Acc AUROC AUPRC

E. coli

Ciprofloxacin 0.73± 0.03 0.84± 0.04 0.72± 0.03 0.73± 0.02 0.84± 0.04 0.73± 0.03 0.74 ± 0.01 0.85 ± 0.03 0.75 ± 0.03

Ceftriaxone 0.77± 0.02 0.87± 0.04 0.78± 0.03 0.78± 0.02 0.88± 0.05 0.78± 0.03 0.80 ± 0.01 0.87 ± 0.03 0.79 ± 0.03

Cefepime 0.75± 0.03 0.85± 0.02 0.65± 0.02 0.77± 0.03 0.87± 0.02 0.70± 0.03 0.78 ± 0.02 0.88 ± 0.02 0.70 ± 0.03

Piperacillin-T. 0.50± 0.03 0.58± 0.03 0.08± 0.04 0.50± 0.03 0.66± 0.03 0.12± 0.03 0.51 ± 0.04 0.64 ± 0.04 0.14 ± 0.05

Tobramycin 0.50± 0.03 0.69± 0.03 0.08± 0.04 0.52± 0.03 0.70± 0.02 0.26± 0.03 0.55 ± 0.03 0.76 ± 0.02 0.30 ± 0.04

K. pneumoniae

Ciprofloxacin 0.50± 0.03 0.50± 0.03 0.18± 0.01 0.58± 0.02 0.70± 0.02 0.45± 0.03 0.59 ± 0.03 0.76+0.02 0.53 ± 0.03

Ceftriaxone 0.73± 0.02 0.81± 0.02 0.67± 0.03 0.75± 0.01 0.82± 0.03 0.68± 0.04 0.76 ± 0.02 0.82 ± 0.01 0.68 ± 0.02

Cefepime 0.72± 0.04 0.76± 0.03 0.60± 0.04 0.69± 0.03 0.76± 0.02 0.57± 0.01 0.75 ± 0.01 0.83 ± 0.01 0.60 ± 0.03

Meropenem 0.50± 0.04 0.74± 0.03 0.12± 0.05 0.55± 0.02 0.73± 0.05 0.17± 0.04 0.55 ± 0.04 0.83 ± 0.03 0.20 ± 0.05

Tobramycin 0.63± 0.03 0.79± 0.02 0.46± 0.03 0.62± 0.02 0.78± 0.02 0.48± 0.01 0.64 ± 0.02 0.83 ± 0.03 0.54 ± 0.02

S. aureus

Ciprofloxacin 0.67± 0.03 0.81± 0.02 0.57± 0.03 0.65± 0.02 0.82± 0.01 0.58± 0.04 0.75 ± 0.01 0.85 ± 0.02 0.70 ± 0.02

Fusidic acid 0.50± 0.03 0.50± 0.04 0.06± 0.04 0.50 ± 0.02 0.67± 0.03 0.13 ± 0.04 0.48± 0.04 0.68 ± 0.03 0.10± 0.06

Oxacillin 0.79± 0.03 0.90± 0.01 0.79± 0.04 0.79± 0.03 0.91± 0.02 0.81± 0.02 0.87 ± 0.01 0.93 ± 0.02 0.85 ± 0.01

The best results for each pair of Bacteria-Antiobiotics are highlighted in bold font. The best global metric for each bacteria under study is highlighted in bold red font. B. Acc, balanced accuracy; BN, batch normalization; DO, dropout.
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3.2 Ablation study

In order to obtain the most optimal and robust model, we

evaluate the effect of batch normalization and dropout layers on the

baseline model obtained after the hyperparameter search grid. A

10-fold cross-validation was applied for each of the 13 cases under

study (Table 1). The experiments considered the following three

different scenarios: (i) Baseline model; (ii) MSDeepAMR model

with batch normalization; and (iii) MSDeepAMRmodel with batch

normalization and dropout (final model).

As shown in Table 2, adding normalization and regularization

layers improves the model’s performance in most cases under

study. Specifically, the best-performing models for each bacteria-

antibiotic correspond to E. coli-Ciprofloxacin, K. pneumoniae-

Ceftriaxone, and S. aureus-Oxacillin. Furthermore, using these

layers in scenarios (ii) and (iii) improved the metrics by 1% to 2%

and reduced the standard deviation. In other cases, when AUPRC

values are low, regularization layers can substantially improve the

model’s performance. In detail, an example of this case corresponds

to K. pneumoniae-Ciprofloxacin, where the AUPRC increases from

0.18 to 0.53 when the batch normalization and dropout layers are

applied (Table 2).

3.3 External test and transfer learning
results

The best-performingmodel was selected for each of the bacteria

studied in the previous section, namely E. coli-Ceftriaxone, K.

pneumoniae-Ceftriaxone, and S. aureus-Oxacillin. These models

were tested with the external data subcollections (DRIAMS B-C-

D). Subsequently, it was studied if implementing transfer learning

improved the adaptation of the models to the external data. Table 3

shows the number of samples available in each case, where 80% was

used for training and 20% for testing.

Tables 4–6 show the AUROC and AUPRC obtained in each

of the transfer learning experiments described above. Regarding

the E. coli-Ceftriaxone model (Table 4), the implementation of

transfer learning achieves the best results of AUROC and AUPRC,

where it is noted that DRIAMS-B had the best adaptability to the

pre-trained model reaching an AUROC of 0.943, and an AUPRC

of 0.752 in comparison to the 0.740 and 0.542 of AUROC and

AUPRC obtained by training the model from scratch. For the K.

pneumoniae-Ceftriaxone model (Table 5), the best results were also

obtained with transfer learning, except in DRIAMS-C, where the

model trained from scratch exceeded the AUROC and AUPRC

obtained in the transfer learning experiment (0.594 vs. 0.512 in

AUROC and 0.325 vs. 0.165 in AUPRC respectively). Finally, for

the S. aureus-Oxacillin model (Table 6), in both DRIAMS-B and

DRIAMS-C datasets, the transfer learning showed the best AUROC

among the three experiments performed. Besides, it should be

noted that in terms of AUPRC, the model’s training from scratch

presented better results than the tl test retraining all layers in the

DRIAMS-B dataset (0.385 vs. 0.274, respectively). Besides, when

studying the results obtained by retraining the neural network by

freezing the weights of the convolution layers, in all cases, the

results were lower than if we retrained the entire neural network.

The results of the analysis increasing the amount of target data

used for the fine-tuning are shown in Supplementary Figure S1.

DRIAMS-B was the subset that best adapted to the models trained

on DRIAMS-A, despite being the one with the smallest number of

samples available for training. On the other hand, the DRIAMS-C

and D subsets show that, despite not having obtained significant

improvements in the prediction accuracy, it improves consistently

along with the number of samples used in the model fine-tuning. In

this way, the results of this experiment show that as the percentage

of samples increases, the AUROC and AUPRC also improve,

demonstrating that a small amount of new samples can have a large

impact on the model’s performance after fine-tuning.

Respecting the feature importance analysis, the SHAP values

results are shown in Supplementary Figures S2–S5. SHAP values

were computed for the three best models obtained for each bacteria

under study: E. coli-ceftriaxone (Supplementary Figure S3), K.

pneumoniae-ceftriaxone (Supplementary Figure S4), and S. aureus-

oxacillin (Supplementary Figure S5). The SHAP values were

computed onDRIAMSB, C, andD in order to analyze the impact of

the most important features (m/z peaks) in the fine-tuning process.

Analyzing the results obtained on DRIAMS-A

(Supplementary Figure S2), it can be seen that the proposed

model focuses the attention on the first part of the spectrum

(2,000Da–7,000Da), which contains ions of lower mass, which

separate easily, allowing for better differentiation between spectra

of susceptible and resistant bacteria.

In the case of E. coli-Ceftriaxone, when the model is tested on

DRIAMS-B (Supplementary Figure S3A), it is observed that most

of the m/z peaks appear in the range 6,800–6,900Da, but after the

transfer learning, they become closer to those of the basemodel. It is

important to note that when transfer learning is applied, the 8,450

Da peak appears among the top 20 features, previously attributed

to antibiotic multi-resistance in Escherichia coli. For the DRIAMS-

C (Supplementary Figure S3B) and D (Supplementary Figure S3C)

cases, there are no major differences with respect to the base model,

except that for the DRIAMS-C case where some peaks in the range

(6,800–6,900 Da) also stand out, but their direct relationship with

antibiotic resistance has not been documented yet.

For the case of K. pneumoniae-Ceftriaxone, the tendency of the

base model remains similar: a large part of the most important

peaks are present in the range of 2,000–3,000 Da. However,

when testing external datasets (Supplementary Figure S4), it is

observed that these spectra focus their differentiation on the m/z

peaks 7,770–4,736–2,135–7,706 Da, which, together with other

peaks, coincide with those reported by Weis et al. (2022) which

could help to confirm their relationship with the identification of

antimicrobial resistance.

Finally, for the case of S. aureus-Oxacillin, in the base case

(DRIAMS-A, Supplementary Figure S5A), the absence of the m/z

peaks 2,414 Da (PSM-mec) and 3,006 Da (agr-positive), which

have been widely documented to be directly attributable to the

MRSA subspecies (methicillin-resistant Staphylococcus aureus),

stands out. When analyzing the SHAP values for the DRIAMS-

B dataset (Supplementary Figure S5B), the identification of peak

2,414 stands out in this case, along with the appearance of peak

4,517, also reported by Weis et al. (2022) and previously associated

with antibiotic resistance [MRSA clonal complexes (CC398)]. In

the case of DRIAMS-C (Supplementary Figure S5C), some of the
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TABLE 3 Number of samples of each bacterium and antibiotic in external datasets (DRIAMS-D did not contain samples for the case S. aureus-Oxacillin).

Dataset Bacteria Antibiotic Susceptible Resistant

DRIAMS-B

E. coli Ceftriaxone 168 45

K. pneumoniae Ceftriaxone 134 18

S. aureus Oxacillin 325 21

DRIAMS-C

E. coli Ceftriaxone 765 151

K. pneumoniae Ceftriaxone 311 55

S. aureus Oxacillin 697 41

DRIAMS-D

E. coli Ceftriaxone 1,796 198

K. pneumoniae Ceftriaxone 2,028 123

S. aureus Oxacillin - -

TABLE 4 AUROC and AUPRC external testing and transfer learning of E. coli-Ceftriaxone model trained on DRIAMS-A.

Experiment DRIAMS-B DRIAMS-C DRIAMS-D

AUROC AUPRC AUROC AURPC AUROC AUPRC

Model trained with

local data only

0.740 0.502 0.734 0.420 0.764 0.443

Test external data

without tl

0.794 0.542 0.521 0.230 0.751 0.424

Test with tl freezing

convolution layers

0.772 0.526 0.514 0.223 0.738 0.408

Test with tl

retraining all layers

0.943 0.752 0.741 0.463 0.760 0.571

The best result for each case of study is highlighted in bold font.

TABLE 5 AUROC and AUPRC external testing and transfer learning of K. pneumoniae-Ceftriaxone model trained on DRIAMS-A.

Experiment DRIAMS-B DRIAMS-C DRIAMS-D

AUROC AUPRC AUROC AURPC AUROC AUPRC

Model trained with

local data only

0.442 0.323 0.594 0.325 0.541 0.153

Test external data

without tl

0.362 0.101 0.491 0.144 0.610 0.204

Test with tl freezing

convolution layers

0.354 0.152 0.483 0.142 0.594 0.197

Test with tl

retraining all layers

0.571 0.353 0.512 0.165 0.653 0.164

The best result for each case of study is highlighted in bold font.

peaks previously associated with antibiotic resistance do not stand

out, but m/z peaks 2,411 and 2,417 Da are found, which could be

associated with peak 2,414 Da in relation to calibration differences

in the equipment used.

4 Discussion

In this study, MSDeepAMR models based on DL were

implemented in order to predict AMR. Specifically, the

MSDeepAMR model was applied on three different bacteria

with varied antibiotic resistance profiles: E. coli (ciprofloxacin,

ceftriaxone, cefepime, piperacillin-T., tobramycin), K. pneumoniae

(cefepime, ciprofloxacin, ceftriaxone, meropenem, tobramycin),

and S. aureus (oxacillin, ciprofloxacin, fusidic acid). Raw MS data

were used, and deep learning methods were applied to obtain

MSDeepAMRmodels. Out of the trained models, the best AUROC

and AUPRC metrics performances were obtained for the following

models: E. coli-Ceftriaxone, K. pneumoniae-Ceftriaxone, and S.

aureus-oxacillin (Table 2). Subsequently, these models were used

to study their adaptability to external data (Table 3). As for the

remaining models, we consider that lower performances of AUPRC

are due to the predominant class imbalance in the datasets, so

future research should focus on developing methodologies to build

robust classifiers to the predominant class imbalance in the study

of antibiotic resistance.

Table 7 show the results obtained with MSDeepAMR,

comparing our results with state-of-the-art machine learning
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TABLE 6 AUROC and AUPRC external testing and transfer learning of S. aureus-Oxacillin model trained on DRIAMS-A.

Experiment DRIAMS-B DRIAMS-C

AUROC AUPRC AUROC AURPC

Model trained with

local data only

0.683 0.385 0.654 0.075

Test external

data without tl

0.724 0.181 0.674 0.143

Test with tl freezing

convolution layers

0.717 0.175 0.642 0.281

Test with tl

retraining all layers

0.793 0.274 0.782 0.302

The best result for each case of study is highlighted in bold font.

algorithms, and specifically with the research of Weis et al. (2022).

A Wilcoxon test was applied and detected statistically significant

differences (p-value < 0.05) between our MSDeepAMR model and

the state-of-the-art results. In detail, considering that the data used

were the same, it can be seen in Table 7 that the MSDeepAMR

model improves the AUROC values obtained by an average of 13%

compared to the more traditional machine learning algorithms

implemented by Weis et al. (LightGBM for E. coli, Multi-layer

perceptron for K. pneumoniae and LightGBM for S. aureus).

As for the AUPRC, the performance of our model considerably

exceeded the results obtained in the previous research, even

doubling the AUPRC obtained in the best cases, as was the case for

E. coli-Ceftriaxone (0.79 vs. 0.30), E. coli-Cefepime (0.70 vs. 0.24),

and K. pneumoniae-Ceftriaxone (0.68 vs. 0.33).

Concerning the ablation study, it is worth mentioning that

normalization and regularization layers constitute a fundamental

part of the neural network architecture for this type of data, as

shown in Table 2; the use of these layers improved the results

obtained in most of the cases presented.

Regarding the implementation of transfer learning or domain

adaptation methodologies, we found that, although the equipment

used for sample collection in each laboratory belonged to the

Microflex Biotyper System by Bruker Daltonics product family,

adapting a pre-trained model to data from a new laboratory is not

a simple task. It is partially due to the high number of genetic

and biological factors that distinguish bacterial strains according to

their origin or slight differences in sample collection parameters.

Nevertheless, it was demonstrated by the experiments performed

that retraining all layers of a model to adjust it to data from a new

laboratory is a better starting point than training a model from

scratch. These promising results open the way for further research

on transfer learning in models that include MALDI-TOF mass

spectrometry data.

Besides, it was demonstrated that when the sample size

increases, the transfer learning results improve considerably

(Supplementary Figure S1). This implies that our methodology

enables AMR detection even when there is a very small amount of

data, although the availability of a larger number of samples can

improve the model’s performance.

Finally, it was demonstrated that when a large number of

samples (over 3,000) are available, it is possible to generate deep-

learning models with high performance in identifying resistance

or susceptibility to a given antibiotic. These models can be

used in clinical routines to quickly and efficiently identify the

optimal treatment to be implemented, avoiding the wait for

traditional bacterial cultures and the indiscriminate use of broad-

spectrum antibiotics.

5 Conclusion

This work proposes a complete methodology for antimicrobial

resistance prediction from raw mass spectrometry data. An

approach based on deep learning was applied. Deep learning is

designed to identify patterns in complex and extensive data. In

our case, MS data with their m/z peaks allow us to characterize

whether a bacterium is resistant or susceptible to an antibiotic. To

demonstrate the effectiveness of this approach, the mass spectra

of Escherichia coli, Klebsiella pneumoniae, and Staphylococcus

aureus bacteria were analyzed in concordance with their AST

profiles. The datasets were constructed based on a recently

published free database (Weis et al., 2022). Our results showed

that the implemented MSDeepAMR models were efficient and

effective for AMR prediction on this type of data. Furthermore,

our MSDeepAMR models showed better performance (AUROC)

than the state of art results (Wang et al., 2022; Weis et al.,

2022; Zhang et al., 2022). Besides, those studies are made with

traditional machine algorithms. Since deep learning models require

a significant number of samples for training, a complication for

laboratories with a low sample collection rate, the implementation

of transfer learning was studied.

Transfer learning results demonstrated that the developed

MSDeepAMR models could be used for other laboratories as

a starting point to adapt them to their data, guaranteeing the

reproducibility of our models. Besides, our results showed that

MSDeepAMR models allow the correct work of raw MS data.

The MSDeepAMR models gave good results in classification

and prediction. In addition, transfer learning will allow using

these models on new samples to provide reproducibility, which

is necessary for this area when predicting AMR in different

laboratories. Nevertheless, it is still required to continue optimizing

the methodologies for antimicrobial resistance analysis from

MALDI-TOF mass spectra and to continue contributing to the

creation of public databases from different laboratories worldwide.

Finally, one limitation is that we consider MALDI-TOF from

Bruker, which produces data with a different length dimension
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TABLE 7 MSDeepAMR performance results, comparing the present study and the previously obtained by the state of art (Weis et al.).

Bacteria Antibiotic AUROC AUPRC

MSDeepAMR Weis et al. MSDeepAMR Weis et al.

E. coli

Ciprofloxacin 0.85 0.76 0.75 0.60

Ceftriaxone 0.87 0.74 0.79 0.30

Cefepime 0.88 0.73 0.70 0.24

Piperacillin-T. 0.64 0.60 0.14 0.10

Tobramycin 0.76 0.64 0.30 0.18

K. pneumoniae

Ciprofloxacin 0.76 0.68 0.53 0.31

Ceftriaxone 0.82 0.74 0.68 0.33

Cefepime 0.83 0.76 0.60 0.31

Meropenem 0.83 0.55 0.20 0.16

Tobramycin 0.83 0.74 0.54 0.29

S.aureus

Ciprofloxacin 0.85 0.72 0.70 0.43

Fusidic acid 0.68 0.65 0.10 0.13

Oxacillin 0.93 0.80 0.85 0.49

The best result for each case of study is highlighted in bold font.

in comparison to other equipment, for example, with the

MALDI-TOF from bioMrieux. In future research, adaptations

of this methodology to inputs from other MALDI-TOF devices

may be explored, potentially opening the door to cross-device

AMR models.

In future work, MSDeepAMR within the MALDI-TOF device

could be used to enable the on-the-fly AMR detection because the

proposed network allows the classification of the raw data directly,

which is an advantage because it avoids any manual preprocessing.

In this study, three main bacteria in the DRIAMS dataset were

studied. Nevertheless, themethodology could be evaluated onmore

bacteria/antibiotic pairs. For this purpose, we published our code as

open-source to enable other researchers and practitioners to extend

this line of research.
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