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Background: Androgenetic alopecia (AGA) is the most common type of

androgen-associated hair loss. Previous studies have indicated an association

between the gut microbiota and AGA. To delve deeper, we executed a two-

sample Mendelian randomization (MR) analysis to investigate the potential

causal relationship between the gut microbiota and AGA.

Methods: A two-sample MR investigation was utilized to delve into the intricate

interplay between gut microbiota and AGA. Information regarding 211 gut

microbial taxa was sourced from the MiBioGen consortium. The summary

statistics of the genome-wide association studies (GWAS) for AGA were obtained

from the FinnGen biobank, which included 195 cases and 201,019 controls.

Various analytical approaches, including Inverse Variance Weighting (IVW),

Weighted Median, MR-Egger, Weighted Mode, and Simple Mode were employed

to evaluate the causal impact of gut microbiota on AGA. Sensitivity analyses were

subsequently conducted to affirm the robustness of the findings.

Results: A two-sample MR investigation unveiled the genus Olsenella,

genus Ruminococcaceae UCG-004, and genus Ruminococcaceae UCG-

010 were identified as risk factors associated with AGA. In contrast, the

family Acidaminococcaceae and genus Anaerofilum, along with the genus

Ruminiclostridium 9, demonstrated a protective effect. The sensitivity analyses

provided additional assurance that the findings of the current study were less

susceptible to the influence of confounding variables and biases.

Conclusion: The MR study has established a link between specific gut

microbiota and AGA, offering evidence for the identification of more precisely

targeted probiotics. This discovery has the potential to aid in the prevention,

control, and reversal of AGA progression.
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Introduction

Male Pattern Hair Loss (MPHL) and Female Pattern Hair Loss
(FPHL) also referred to as Androgenetic alopecia (AGA) stand out
as the most prevalent form of hair loss, impacting a substantial
portion of the population. It is estimated that by the age of 70, at
least 80% of men and 50% of women experience AGA (Devjani
et al., 2023). AGA is marked by the gradual miniaturization of
hair follicles, resulting in hair loss (Trüeb, 2002). Dealing with
alopecia is a challenging and time-consuming process. Individuals
experiencing hair loss often suffer from a diminished quality of
life, including reduced self-confidence and heightened feelings of
depression (Lee et al., 2002; Yeo et al., 2014; Marks et al., 2019).
Consequently, the effective management of hair loss plays a crucial
role in improving people’s overall wellbeing. To enhance our ability
to prevent and treat AGA effectively, it is essential to acquire a
more comprehensive understanding of the underlying mechanisms
that contribute to its development. Nevertheless, the precise cause
behind the escalating incidence rate of AGA has yet to be fully
elucidated.

Numerous factors influence the initiation and progression
of AGA, the interaction of endocrine factors and genetic
predisposition is one of the primary factors (Lolli et al., 2017).
Studies have confirmed that a range of external factors, such
as metabolism, psychological changes, environmental exposure,
dietary intake, and microorganisms, can have adverse effects on
the lifespan of hair (Lai et al., 2013; Phillips et al., 2017; Ho et al.,
2019; Suzuki et al., 2021). Recently, there is a study has shown
that gut microbiota also is an essential factor in the development
of AGA (Jung et al., 2022). However, in research related to AGA,
there is a relatively limited study on the specific role of the gut
microbiome in AGA. The conventional observational study is
susceptible to the impact of numerous potential factors, including
lifestyle and socioeconomic status, during the implementation
process, rendering it prone to biases. Hence, we examined existing
summary data from the results of genome-wide association studies
(GWAS) to investigate the influence of gut microbiota on AGA.

Genome-wide association studies with large sample sizes has
revealed some single nucleotide polymorphisms (SNPs) correlated
with both AGA and gut microbiota (Wang et al., 2019). Mendelian
randomization (MR) is a method that employs genetic variants
linked to a hypothesized risk factor as proxies to ascertain the causal
impact of that exposure on a specific outcome (Birney, 2022). In this
study, we evaluated the causal effects of gut microbiota and AGA
using a two-sample MR study design. Our results demonstrated
a potential causal association between specific gut microbiota
and AGA.

Materials and methods

Study design

To explore the interaction between gut microbiota and AGA,
we designated gut microbiota as the exposure variable, with AGA
considered as outcomes. The MR study (Evans and Davey Smith,
2015) adhered to three crucial assumptions: (1) Instrumental
variables (IVs) chosen from datasets were connected to the

exposure variable; (2) they were independent of any unknown
confounders related to the exposure; and (3) they exclusively
influenced outcomes through exposure pathways (Davey Smith and
Hemani, 2014). SNPs were employed as valid IVs in the MR study
to assess the bidirectional causal relationship between the exposure
and the outcome. The comprehensive flowchart for this MR study
is illustrated in Figure 1.

Data sources

Instrumental variables (IVs) for investigating the correlation
between human genetic variants and the composition of the gut
microbiome were identified from a GWAS dataset within the global
collaborative project MiBioGen (Kurilshikov et al., 2021). This
extensive, multi-ethnic GWAS involved the coordination of 16S
ribosomal RNA gene sequencing profiles and genotyping data from
18,340 participants. A total of 211 taxa, comprising 131 genera, 35
families, 20 orders, 16 classes, and 9 phyla, were encompassed in
the analysis (Kurilshikov et al., 2021; Cui et al., 2023). The dataset
for AGA included 201,214 European participants sourced from the
freely accessible website FinnGen biobank.1 The specific has been
placed in the Supplementary Table 4.

Instrument variable selection

We implemented a set of criteria to carefully select eligible
genetic IVs:(1) Significance Threshold: Due to the limited
number of IVs meeting the genome-wide significance threshold
(p < 5 × 10−8) (Kurilshikov et al., 2021; Herbert et al., 2022),
we opted for a relatively less stringent threshold (p < 1 × 10−5)
based on previous research (Cui et al., 2023; Dai et al., 2023;
Liu et al., 2023; Xiao et al., 2023). This less stringent threshold
was selected to identify potential sets of variants that are likely to
be enriched for association, allowing for a more comprehensive
assessment and exploration of results. (2) Clumping Procedure:
A clumping procedure was executed (R2 < 0.001, clumping
distance = 10,000 kb) to eliminate variants in strong linkage
disequilibrium (LD). This step ensured the independence of
each SNP in our selection. (3) To mitigate bias stemming
from weak IVs, it was deemed necessary to ensure that the
F-statistic surpassed a threshold of 10. This threshold helps
assess the strength of the instruments and provides confidence
in the instrumental variable analysis results (Ardissino et al.,
2024).

Assessment and diagnostic criteria for
AGA

Clinical manifestations vary between genders. Males experience
frontotemporal recession and vertex loss, while females retain
the frontal hairline, with hair loss more uniformly across the
frontal region post-hairline. Gender-atypical patterns can occur.

1 https://r9.finngen.fi/
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FIGURE 1

Comprehensive flowchart of study.

Assessment of AGA commonly employs the Hamilton-Norwood
scale (12 degrees), and the Ludwig scale (3 stages). Diagnostic
criteria include miniaturized follicles (hair diameter <0.03 mm),
decreased terminal and anagen hairs, increased vellus and telogen
hairs, and perifollicular lymphohistiocytic inflammatory infiltrate
around the infundibulum (Alessandrini et al., 2021).

MR analysis

We utilized five extensively employed Mendelian
Randomization (MR) techniques to identify bidirectional causal
connections between exposure and outcome. These methods
include inverse variance weighting (IVW), weighted median,
MR-Egger, weighted mode, and simple mode (Bowden et al.,
2016; Hartwig et al., 2017; Liu et al., 2023). The IVW method
calculates the causal impact of the exposure on the outcome by
aggregating ratio estimates for each SNP. It was selected as the
primary method due to its capacity to offer a robust and unbiased
causal effect, especially in scenarios where no polymorphism
or heterogeneity is identified (Mounier and Kutalik, 2023).
A positive causal effect was confirmed if the IVW results were
significant (p < 0.05), and the beta values from other methods
were consistent in direction. Subsequently, we proceeded to
visually represent the outcomes derived from the five Mendelian
Randomization (MR) methods. The bidirectional causal effect
was quantified as an odds ratio (OR) computed through MR
analysis.

To enhance the robustness of our analysis regarding causality,
we employed the Bonferroni’s method to establish distinct
significance thresholds for multiple testing across various
taxonomic levels. These thresholds were determined based on
the number of bacteria within each taxonomic level. Specifically,
we set the thresholds at 1.6 × 10−3 (0.05 divided by 32) for the
family level and 4.2 × 10−4 (0.05 divided by 119) for the genus
level. P-values falling below these thresholds were considered to
indicate nominal significance (p < 0.05), suggesting potential
causal effects (Su et al., 2023). This study is reported following
the Strengthening the Reporting of Observational Studies in
Epidemiology Using Mendelian Randomization guidelines
(STROBE-MR) (Skrivankova et al., 2021).

Sensitivity analyses

Use some basic sensitivity analyses to validate the results.
Cochran’s Q statistic is employed to assess heterogeneity among IVs
(Bowden et al., 2018). A significance level of p < 0.05 was deemed
indicative of the presence of heterogeneity. MR pleiotropy residuals
and outlier analysis (MR-PRESSO) are also used to validate the
potential pleiotropy of the selected IVs and the direct effects on
outcomes. Subsequently, we apply the leave-one-out method to
exclude each SNP from the IVs and use the IVW method to assess
whether individual SNPs significantly affect the causal effect. All
the aforementioned analyses are conducted using the MR and MR-
PRESSO R packages with two-sample MR (Hemani et al., 2018;
Verbanck et al., 2018).

We utilized GWAS Catalog2 to investigate whether SNPs were
linked to potential risk factors. The factors encompass body mass
index, obesity, alcohol consumption and neuropsychiatric diseases
(Severi et al., 2003). We excluded SNPs associated with any of these
potential confounders at genome-wide significance.

Power calculation

The power calculation for the IVW estimates was conducted
using a web tool available at https://shiny.cnsgenomics.com/
mRnd/. A further explanation of power calculation can be seen in
“binary outcome derivations” in the web tool and the type I error
rate (alpha) is set at 0.05 (Brion et al., 2013). Specifically, it was
recommended to achieve a statistical power of over 80% for the
analysis (Zhong et al., 2023).

Results

MR analysis of gut microbiota on AGA

In our analysis, 62 SNPs were used as IVs for AGA. The
comprehensive characteristics of these IVs pertaining to microbial

2 https://www.ebi.ac.uk/gwas/
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FIGURE 2

The forest plot illustrates the causal effect of gut microbiota on AGA using the IVW method in MR. The error bars in the plot represent the 95%
confidence interval of the odds ratio. In the plot, the blue dots represent outcomes related to AGA, while the red dots represent outcomes
associated with AGA positivity. OR, odds ratio; MR, Mendelian randomization; IVW, inverse variance weighted.

taxa were summarized in Supplementary Table 1. Notably,
all SNPs included in our analysis exhibited F-statistics greater
than 19 indicating the robustness of these instruments. Upon
reviewing the GWAS Catalog, we observed that only one SNP
exhibits pleiotropic effects, primarily linked to smoking. Previous
research indicates no significant association between AGA and
smoking (Kavadya and Mysore, 2022). Therefore, we exclude
the confounded without removing the SNP. MR analysis was
conducted to evaluate the potential causal relationship between
specific categories of gut microbiota and the occurrence of AGA.
There are 6 bacterial taxa had a correlated with AGA. According
to the IVW estimate, the genus Olsenella (OR = 1.9663, 95%
CI: 1.1245–3.4380, p = 0.0177), genus Ruminococcaceae UCG-004
(OR = 2.9609, 95% CI: 1.1504–7.6217, p = 0.0244), and genus
Ruminococcaceae UCG-010 (OR = 3.9630, 95% CI: 1.1047–14.2160,
p = 0.0346) were identified as risk factors, (Figure 2) suggesting
a potential association with decreased hair growth function. On
the other hand, the family Acidaminococcaceae (OR = 0.2105,
95% CI: 0.0696–0.6367, p = 0.0058) and genus Anaerofilum
(OR = 0.4633, 95% CI: 0.2356–0.9110, p = 0.0257), along with the
genus Ruminiclostridium 9 (OR = 0.2459, 95% CI: 0.0608–0.9955,
p = 0.0493), demonstrated a protective effect, (Figure 2) implying a
potential association with a reduced risk of AGA. Additionally, the
estimates of causal effects obtained from the weighted median, MR-
Egger, weighted mode, and simple mode methods demonstrated
magnitudes and directions that were comparable to those derived
from the previously mentioned IVW method, as detailed in
Supplementary Table 2 and Figure 3. These findings provide
insights into the specific gut microbiota components that may play
a role in the development of AGA and its potential link to AGA.

Sensitivity analysis

In the sensitivity analysis, we employed Cochran’s Q statistics
with both IVW and MR-Egger methodologies to evaluate

heterogeneity. The results indicated no significant heterogeneity
among the IVs, as evidenced by all p-values > 0.05 (Supplementary
Table 3). Furthermore, both the MR-Egger intercept and the
MR-PRESSO global test provided supporting evidence for the
absence of statistically significant directional horizontal pleiotropy
(all p-values > 0.05, Supplementary Table 3). Additionally, the
leave-one-out analysis demonstrated the lack of influential IVs as
illustrated in Figure 4.

These sensitivity analyses, encompassing Cochran’s Q statistics,
MR-Egger intercept, MR-PRESSO global test, and leave-one-out
analysis, collectively underscored the robustness of the Mendelian
Randomization findings in the two-sample analysis. Furthermore,
the presentation of the funnel plot and forest plots indicating the
reliability of the results (see Supplementary Figures 1, 2).

Discussion

Androgenetic alopecia is characterized by a progressive
thinning of hair in specific areas, influenced by genetic and
hormonal factors (Kwack et al., 2023). Prior research has hinted
at a connection between AGA and the microbiome (Jung
et al., 2022), but much remains unknown about the genetic
factors driving this relationship. We employed a bidirectional
two-sample MR analytical method, drawing data from GWAS
databases encompassing both gut microbiota and AGA. Our
inquiry delved into the intricate action of gut microbiota on
AGA, unearthing significant insights into how gut microbiota
influences AGA. Specifically, our findings spotlight the protective
role of certain microbial—such as family Acidaminococcaceae,
genus Anaerofilum, and genus Ruminiclostridium 9—in AGA.
Conversely, genera like genus Olsenella, genus Ruminococcaceae
UCG-004, and genus Ruminococcaceae UCG-010 were identified as
risk factors associated with AGA.

The human microbiota has evolved in tandem with its
host and serves as an essential component of the human body.
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FIGURE 3

Scatter plots for causal effect of gut microbiota on AGA.

Acquired at birth, the microbiota matures alongside the host and
maintains significance throughout life, impacting various bodily
functions from infancy to old age (Adak and Khan, 2019). Earlier
investigations have indicated that in individuals with AGA, both
the scalp and gut microbiomes exhibit greater complexity and
density, as reflected by elevated values of network topological
statistics such as degree centrality, vertices, and edges (Jung et al.,
2022). Two patients with alopecia universalis experienced hair
regrowth after undergoing fecal microbiota transplantation as a
treatment for recurrent Clostridioides difficile infections (Rebello
et al., 2017). Imbalanced gut microbiota, notably the proliferation
of Lactobacillus murinus, followed by biotin deficiency, constitutes
crucial factors contributing to the onset of alopecia (Hayashi
et al., 2017). The transplantation of fecal microbiota or the use
of a specific probiotic (Bifidobacterium longum HK003) obtained
from the feces of healthy individuals could potentially stimulate
hair regrowth (Lam et al., 2022). Concerning Ruminiclostridium
9, it has demonstrated its regulatory effects on lipid metabolism,
inflammation reduction, enhancement of intestinal barrier
function, weight gain reduction, and improved insulin sensitivity
in mice, effectively countering obesity development (Wang et al.,
2020). However, its specific role in AGA remains unstudied.
Further research on the effect of the family Acidaminococcaceae,
genus Anaerofilum, and genus Ruminiclostridium 9 on AGA may
guide targeted probiotic applications. Our findings suggest that

modulating the gut microbiota through probiotics could offer new
avenues for the prevention and treatment of AGA.

Ruminococcaceae is a family of bacteria that belongs to
the Bacillota (formerly known as Firmicutes) which is one of
the major bacterial phyla observed in the human microbiome.
Ruminococcaceae is known to be a significant component of the
gut microbiota and plays important roles in various physiological
processes (Hou et al., 2022). Ruminococcaceae were good
predictors of folliculitis decalvans (Moreno-Arrones et al., 2023).
Patients undergoing finasteride treatment exhibited a reduction
in Ruminococcaceae levels compared to a healthy control group
(Diviccaro et al., 2019; Borgo et al., 2021). The You-gui pill
could increasing Ruminococcaceae UCG-007 and Ruminococcaceae
UCG-010 in the intestine, thereby aiding in the treatment of
kidney-yang deficiency syndrome (Chen et al., 2019). In our
research, we identified that genus Ruminococcaceae UCG004 (with
a statistical power of 98%) and genus Ruminococcaceae UCG010
(with a statistical power of 100%) are implicated as risk factors
in association with AGA. The power levels exceeding 80% for
both underscore the reliability of the involvement of genus
Ruminococcaceae UCG004 and genus Ruminococcaceae UCG010 in
AGA. Additional investigation is required to delve into the role of
Ruminococcaceae in AGA.

The gut microbiota comprises a unique blend of various
organisms, including bacteria, viruses, archaea, protozoa, and
fungi, which interact bidirectionally with the central nervous
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FIGURE 4

Leave-one-out diagrams for causal effects of gut microbiota on AGA.

system, forming what is known as the microbiome-gut-brain
axis (Mayer, 2011; Sharon et al., 2016). This axis encompasses
immune, neural, endocrine, and metabolic pathways, with steroid
hormones playing a significant role. Thus far, the steroidogenic
capacity remains incompletely understood. However, microbial
species such as Clostridium scindens have the potential to convert
glucocorticoids into androgens (Ridlon et al., 2013; Ferreira-
Halder et al., 2017), thereby fostering the development of AGA.
Additionally, Faecalibacterium spp. is a notable producer of
butyrate (Ferreira-Halder et al., 2017), a short-chain fatty acid
that plays a crucial role in gut microbiota-brain communication
(Dalile et al., 2019) and has recently been proposed to
influence sleep modulation (Szentirmai et al., 2019). Consequently,
Faecalibacterium spp. may be a potential target for therapy
AGA. Interestingly, certain members of the human microbiota
(e.g., Bifidobacterium spp. and Lactobacillus spp.) encode genes
involved in GABA production, suggesting microbial involvement
in the production of this neurotransmitter within the gut
(Barrett et al., 2012).

The precise biological mechanisms by which microbiotas
influence AGA development remain unclear. The microbiota
plays a major role in the endocrine system by interacting with
estrogen, androgens, insulin, and other hormones (Qi et al.,
2021). The androgens are a critical factor that leads to the
gradual conversion of terminal hairs into intermediate and
vellus hairs, resulting in the gradual hair thinning and hair loss

seen in patients with AGA (Lolli et al., 2017). Different types
of gut microbiota can produce enzymes essential for androgen
metabolism, facilitating the synthesis and alteration of androgens.
The microbial-mediated degradation of testosterone has been
witnessed across various environmental contexts. For instance,
Actinobacteria and Proteobacteria possess the capability to break
down androgens (Qi et al., 2021). Additionally, Clostridium
scindens, harboring the 20α-hydroxysteroid dehydrogenase
(HSDH) enzyme in its genome, is a human gut microbe with
significant potential to convert glucocorticoids into androgens
(Ridlon et al., 2013). Meanwhile, microbiota-host communication
is primarily facilitated through secreted exosomes (Li Q.
et al., 2019). Exosomes, extracellular vesicles involved in cell
communication, homeostasis, differentiation, and organogenesis
(Li et al., 2018, 2021; Lai et al., 2022), are pivotal in hair
morphogenesis and regeneration, holding potential for alopecia
treatment (Hu et al., 2020). Plasma exosomes, originating from
host cells or gut microbiota, mediate local or remote mutual
regulation (Li Y. et al., 2019; Li et al., 2020). Intriguingly, exosomes
have been observed carrying Wnt proteins on their surface,
inducing β-catenin activation—a crucial signaling pathway in hair
morphogenesis and regeneration (Gross et al., 2012). Exosomes
from adipose-derived stem cells positively impact hair regrowth by
enhancing DPC proliferation via upregulating the Wnt/β-catenin,
TNF-α signaling pathways, and vascular endothelial
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growth factor expression (Hu et al., 2020). Further investigation is
required to explore the functions of the six microbiotas mentioned
in our article on the composition and decomposition of androgens.
Elucidating the potential biological mechanisms at microbiotas that
might influence AGA development is crucial.

Limitations

Following Bonferroni’s correction, no distinct causal
relationship between gut flora, metabolites, and the risk factors
associated with heart failure was identified. This implies that
further investigations are essential to validate and confirm the
potential relationships between these elements. The recommended
threshold for statistical power is over 80%. Notably, the power
values for genus Olsenella (93%), genus Ruminococcaceae UCG004
(98%), and genus Ruminococcaceae UCG010 (100%) all exceed
80%, thereby reinforcing the validity of our findings. However, it
is noteworthy that the overall power calculated by our research
institute is not entirely satisfactory. The power values for family
Acidaminococcaceae (29%), genus Anaerofilum (41%), and genus
Ruminiclostridium 9 (31%) fall below the 80% threshold. This
discrepancy might be attributed to the relatively small rate of
cases/controls (195/201,019) in the GWAS data for AGA. To
enhance the statistical power and obtain more accurate results
in future studies, it is advisable to consider increasing the
sample size of cases.

The systemic androgens and genetic factors are the primary
causes of AGA, various external or exogenous factors also play a
role in its development (Choi et al., 2017). Limited further studies
due to inadequate summary data for various alopecia types, lack
of stratification statistics for AGA degree, and absence of sex-
based stratification data. Several limitations of our study exist.
In conclusion, the intricate physiological mechanisms underlying
the relationship between gut microbiota and AGA extend beyond
the scope of our simplistic models. Subsequent research efforts
should focus on identifying potential mechanisms to deepen our
understanding of AGA for preventive measures.

Conclusion

Our study pioneered a two-sample MR analysis using GWAS
summary statistics to probe a potential causal connection between
gut microbiota and AGA. This analytical approach not only
holds promise for developing effective prevention and intervention
strategies for AGA but also offers innovative insights into the
underlying mechanisms of AGA through the lens of gut microbiota.
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