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Bifidobacterium longum subsp. longum UABl-14™ is an important probiotic strain 
that was found to support digestive health. Here we present the development 
and validation of real-time PCR methods for strain-specific identification and 
enumeration of this important strain. The identification method was evaluated 
for specificity using 22 target samples and 30 non-target samples. All target 
samples successfully amplified, while no amplification was observed from 
any non-target samples including other B. longum strains. The identification 
method was evaluated for sensitivity using three DNA dilution series and the 
limit of detection was 2  pg. of DNA. Coupled with a viability dye, the method 
was further validated for quantitative use to enumerate viable cells of UABl-14. 
The viability dye treatment (PMAxx) was optimized, and a final concentration of 
50 μM was found as an effective concentration to inactivate DNA in dead cells 
from reacting in PCR. The reaction efficiency, linear dynamic range, repeatability, 
and reproducibility were also evaluated. The reaction efficiency was determined 
to be 97.2, 95.2, and 95.0% with R2 values of 99%, in three replicates. The linear 
dynamic range was 1.3  ×  102 to 1.3  ×  105 genomes. The relative standard deviation 
(RSD%) for repeatability ranged from 0.03 to 2.80, and for reproducibility ranged 
from 0.04 to 2.18. The ability of the validated enumeration method to monitor 
cell counts during shelf life was evaluated by determining the viable counts and 
total counts of strain UABl-14  in 18 multi-strain finished products. The viable 
counts were lower than label claims in seven products tested post-expiration 
and were higher than label claims in products tested pre-expiration, with a slight 
decrease in viable counts below label claim in three samples that were tested 
2–3 months pre-expiration. Interestingly, the total counts of strain UABl-14 
were consistently higher than label claims in all 18 products. Thus, the method 
enables strain-specific stability monitoring in finished products during shelf life, 
which can be difficult or impossible to achieve using the standard plate count 
method. The validated methods allow for simultaneous and cost-effective 
identification and enumeration of strain UABl-14 and represent an advancement 
in the quality control and quality assurance of probiotics.
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Introduction

Probiotics are defined as “live microorganisms that, when 
administered in adequate amounts, confer a health benefit on the host” 
(Hill et al., 2014). Delivering the correct probiotic strains at the correct 
dose of viable cells is essential to achieve their health benefits (Tripathi 
and Giri, 2014; Kolaček et al., 2017; Sánchez et al., 2017). However, 
several studies reported variable rates of non-compliance in probiotic 
products, more specifically, failure of probiotic products to meet 
declared strain contents and/or viable counts (Morovic et al., 2016; 
Shehata and Newmaster, 2020a,b). Thus, reliable, and accurate methods 
for probiotic strain identification and viable count determination are 
essential for probiotic authentication and quality assessment.

PCR based methods are widely used for probiotic identification 
including species-specific and strain-specific methods (Morovic et al., 
2016; Kim et al., 2020; Shehata et al., 2021a,b; Kim et al., 2022). For 
probiotic enumeration, plate count methods are currently the most 
commonly used methods for probiotic quantification (Davis, 2014; 
Weitzel et  al., 2021; Boyte et  al., 2023), however, other culture-
independent methods such as flow cytometry and PCR based methods 
are also emerging for probiotic enumeration (Boyte et al., 2023).

Plate count methods have several limitations such as the low 
specificity, i.e., inability to enumerate individual strains in multi-strain 
blends as these methods enable enumeration at the genus level or 
species level only if using selective growth media. This is a huge 
limitation since the health benefits of probiotics are strain specific 
(Klein et  al., 2010; Sánchez et  al., 2017; Mcfarland et  al., 2018). 
Furthermore, plate count methods are culture-dependent methods 
which measure viability as cultivability, and thus these methods do not 
detect cells that exist in a viable but non culturable (VBNC) state 
(Wilkinson, 2018; Gorsuch et al., 2019; Wendel, 2022).

Alternative enumeration methods such as flow cytometry and 
viability PCR based methods are culture-independent methods that 
measure viability beyond cultivability (ISO, 2015; Hansen et al., 2018, 
2020; Foglia et al., 2020; Kim E. et al., 2023; Ma et al., 2023; Shehata 
et al., 2023). Thus, these methods are able to count VBNC cells, hence, 
more accurate viable count determination. Additionally, PCR based 
methods can be  designed to achieve strain specific viable count 
determination (García-Cayuela et al., 2009; Kramer et al., 2009), which 
is a huge improvement from the traditional plate count methods. PCR 
methods can be used with viability dyes in what is called viability PCR 
to quantify viable cells only (Hansen et al., 2020; Shehata et al., 2023). 
PCR methods are less laborious, high throughput, and offer shorter 
time to results (~6 h). Given the advantages of PCR methods over the 
traditional plate count methods, and their wide use for probiotic 
species and strain identification, PCR methods represent an attractive 
alternative method for probiotic enumeration, as they enable 
simultaneous strain-specific qualitative and quantitative detection.

Bifidobacterium longum subsp. longum is a common bacterium in 
the gut microbiome of both infants and adults (Oki et al., 2018; Díaz 
et al., 2021), and strains of this sub species were found to have health 
benefits such as improving chronic constipation in elderly individuals 
(Takeda et al., 2023), alleviating glucose intolerance in Type 2 diabetic 
mice (Kim W. J. et al., 2023), improving cognitive functions in healthy 
elderly adults (Shi et  al., 2023), and reducing perceived stress in 
healthy adults (Boehme et al., 2023).

Strain Bifidobacterium longum subsp. longum UABl-14™ is a 
common probiotic strain in probiotic products that was found to 

support digestive health, modulate bowel functions and increase 
fibrolytic microbiota in participants with functional constipation 
when used in combination with other strains (Martoni et al., 2019). 
Here we present the development and validation of real-time PCR 
(qPCR) methods for strain specific identification and viable count 
determination of this important probiotic strain, Bifidobacterium 
longum subsp. longum UABl-14™.

Materials and methods

Reference materials and DNA extraction

In this study, 22 samples of Bifidobacterium longum subsp. longum 
strain UABl-14™ were used. Four of these samples were mono-strain 
samples and 18 were multi-strain samples acquired directly from 
manufacturers (Table  1). Additionally, reference samples from 30 
probiotic strains were included in this study as non-targets (Table 1). 
The samples were collected from various probiotic manufacturers in 
USA and Canada. DNA extraction was performed using NucleoSpin 
Food kit (740945.50, Macherey Nagel, Germany), followed by DNA 
quantification using Qubit 4.0 FLuorometer (Q33238, Life technologies).

Strain-specific real-time PCR oligo design 
and real-time PCR protocol

UABl-14 strain-specific oligos were designed to amplify a strain 
specific sequence region that was identified using the sequence-based 
comparison function in Rapid Annotation using Subsystem 
Technology (RAST) (Aziz et al., 2008; Overbeek et al., 2014; Brettin 
et al., 2015). Initially, the genome sequence of UABl-14 was compared 
to three other B. longum strain. The target sequence region identified 
from RAST was then searched on NCBI GenBank nucleotide 
collection database using the Basic Local Alignment Search Tool 
nucleotide function (BLASTn) to confirm the specificity of the 
identified target region to strain UABl-14. The oligos were designed 
using PrimerQuest Tool [Integrated DNA Technologies (IDT), 
Coralville, IA, United States] and were ordered from IDT (Table 2).

Each real-time PCR reaction consisted of 10 μL of 2x SensiFast 
Probes Master Mix (BIO-86020, Bioline), 1.8 μL of forward primer 
(10 μM working solution), 1.8 μL of reverse primer (10 μM working 
solution), 1.0 μl of hydrolysis probe (5 μM working solution), 1 μL of 
DNA, and up to 20 μL of molecular biology grade water. The thermal 
cycling program was denaturation for 5 min at 95°C followed by 40 
amplification cycles (for 10 s at 95°C, and for 20 s at 60°C). Positive 
controls (DNA extracted from a reference sample of UABl-14 and 
diluted to 1 ng/μl) and negative controls (No Template Controls, 
NTC) were included in each run and samples were tested in triplicate 
on Hyris bCUBE.

Evaluating the specificity and sensitivity of 
UABl-14 strain-specific assay

To evaluate the specificity of the developed method, real-time PCR 
was run using 22 target samples (4 mono-strain and 18 multi-strain 
samples) and 30 non-target samples which included closely related 
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TABLE 1 Target and non-target samples used to confirm the analytical specificity and analytical specificity results of Bifidobacterium longum subsp. 
longum UABl-14 strain-specific identification method.

Sample ID Sample type Strain Mean Cq  ±  SEM *, #

T-1 Target (Mono-strain) Bifidobacterium longum subsp. longum UABl-14 22.89 ± 0.08

T-2 Target (Mono-strain) Bifidobacterium longum subsp. longum UABl-14 22.87 ± 0.12

T-3 Target (Mono-strain) Bifidobacterium longum subsp. longum UABl-14 23.28 ± 0.07

T-4 Target (Mono-strain) Bifidobacterium longum subsp. longum UABl-14 22.47 ± 0.04

T-5 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 22.55 ± 0.02

T-6 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 25.81 ± 0.03

T-7 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 26.00 ± 0.04

T-8 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 26.14 ± 0.07

T-9 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 26.27 ± 0.14

T-10 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 25.99 ± 0.08

T-11 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 26.39 ± 0.04

T-12 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 25.17 ± 0.21

T-13 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 25.03 ± 0.23

T-14 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 26.06 ± 0.25

T-15 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 27.59 ± 0.16

T-16 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 25.80 ± 0.04

T-17 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 27.79 ± 0.05

T-18 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 24.40 ± 0.06

T-19 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 23.41 ± 0.15

T-20 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 23.47 ± 0.10

T-21 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 23.58 ± 0.02

T-22 Target (Multi-strain) Bifidobacterium longum subsp. longum UABl-14 28.16 ± 0.03

NT-1 Non-target Bifidobacterium animalis subsp. lactis Bi-07 NA

NT-2 Non-target Bifidobacterium animalis subsp. lactis UABla-12 NA

NT-3 Non-target Bifidobacterium bifidum Bb-06 NA

NT-4 Non-target Bifidobacterium bifidum HA-132 NA

NT-5 Non-target Bifidobacterium bifidum UABb-10 NA

NT-6 Non-target Bifidobacterium breve Bb-03 NA

NT-7 Non-target Bifidobacterium breve HA-129 NA

NT-8 Non-target Bifidobacterium longum subsp. infantis Bi-26 NA

NT-9 Non-target Bifidobacterium longum subsp. infantis HA-116 NA

NT-10 Non-target Bifidobacterium longum subsp. infantis R0033 NA

NT-11 Non-target Bifidobacterium longum subsp. longum Bl-05 NA

NT-12 Non-target Bifidobacterium longum subsp. longum HA-135 NA

NT-13 Non-target Bifidobacterium longum subsp. longum R0175 NA

NT-14 Non-target Lacticaseibacillus casei Lc-11 NA

NT-15 Non-target Lacticaseibacillus casei UALc-03 NA

NT-16 Non-target Lacticaseibacillus paracasei Lpc-37 NA

NT-17 Non-target Lacticaseibacillus paracasei UALpc-04 NA

NT-18 Non-target Lacticaseibacillus rhamnosus HN001 NA

NT-19 Non-target Lacticaseibacillus rhamnosus Lr-32 NA

NT-20 Non-target Lactiplantibacillus plantarum Lp-115 NA

NT-21 Non-target Lactiplantibacillus plantarum UALp-05 NA

NT-22 Non-target Lactobacillus acidophilus DDS-1 NA

(Continued)
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strains such as other Bifidobacterium longum strains (Table 1). The same 
amount of DNA was used from all target and non-target samples. All 
DNA samples were quantified using Qubit 4.0 Fluorometer, then 
diluted to 1 ng/μl in molecular biology grade water (Shehata et al., 2019).

To evaluate the sensitivity or limit of detection (LOD), three 
10-fold dilution series of DNA, with five dilution points each were 
used. The dilutions were 10 ng/μl to 0.001 ng/μl, 5 ng/μl to 0.0005 ng/
μl and 2 ng/μlto 0.0002 ng/μl (Shehata et  al., 2019; Shehata and 
Newmaster, 2020c). Each dilution point was tested in triplicate using 
real-time PCR as described above.

Optimization of viability pre-treatments

A viability dye treatment was used to enumerate viable cells only 
(Gobert et  al., 2018). A viability dye has the ability to cross cell 
membranes of dead or membrane damaged cells only, and to irreversibly 
intercalate to DNA upon photoactivation, rendering DNA from dead or 
membrane damaged cells unreactive in PCR. Multiple concentrations 
of the viability dye were evaluated to find an effective concentration to 
inactivate DNA from dead cells as previously described (Shehata and 
Newmaster, 2021; Shehata et  al., 2023). The heat-killed cells were 
prepared by heating the cells at 95°C for 20 min. PMAxx (40069, 
Biotium Inc., Hayward, CA, United States) at final concentrations of 
0 μM, 50 μM, 100 μM, and 150 μM were tested. The cells and PMAxx 
were vortexed, followed by incubation at room temperature in the dark 
for 5 min. Tubes were then incubated in a PhAST BLUE Photoactivation 
System (GenIUL, Barcelona, Spain) for 15 min. DNA was liberated using 
bead beating in BeadBug™ prefilled tubes (Z763764, Sigma-Aldrich, St. 
Louis, MO, United States) for 5 min at 3,000 rpm (Hansen et al., 2018; 
Shehata et al., 2023). The integrity of the DNA from non-heated and 
heat-killed cells was evaluated by running the DNA from three reference 

samples T-1, T-2, and T-3 for 10 min on 2% E-gel with SYBR Safe DNA 
Gel Stain (G720802, Invitrogen), followed by visual inspection of the gel. 
E-Gel™ 1 Kb Plus DNA Ladder (10488090, Invitrogen) was used as a 
marker. The concentrations of DNA from the same samples were 
measured using Qubit 4.0 Fluorometer (Q33238, Life technologies). The 
effectiveness of the viability dye treatment in removing DNA from heat-
killed cells was then calculated based on the shift in the Cq values 
observed with the treatment (Marole et al., 2024).

Evaluating the reaction efficiency and 
precision of UABl-14 strain-specific assay

Reaction efficiency, limit of quantification (LOQ), and linear 
dynamic range were evaluated. Ten-fold serial dilutions were prepared 
from reference samples at five dilution points each. Each dilution 
point was tested in triplicate using real-time PCR as described above. 
Standard curves were established between quantification cycle (Cq) 
and log genome number. Slopes were calculated from the standard 
curves using Prism 10 (GraphPad Software, San Diego, CA, 
United States) and were used to calculate reaction efficiency (Shehata 
and Newmaster, 2021; Shehata et al., 2023).

Repeatability and reproducibility were evaluated using 3 samples 
(samples T-1, T-2, and T-3) tested at five dilutions as previously 
described (Shehata and Newmaster, 2021; Shehata et al., 2023). The 
analysis was repeated on a different day for repeatability, and on a 
different bCUBE machine for reproducibility, and the variance was 
calculated as the relative standard deviation (RSD%).

Assessing the ability of UABl-14 
strain-specific assay in monitoring strain 
stability in multi-strain finished products 
during shelf life

The viable counts of strain UABl-14 in 18 multi-strain finished 
products were determined using UABl-14 strain-specific assay by 
interpolation from the standard curve. The products were at different 
expiration dates with 7 products tested post-expiration and 11 
products tested pre-expiration dates. All products were stored at 
room temperature. The viable counts were compared to label claims 
of viable counts. Additionally, the total counts (viable and dead) of 
strain UABl-14 were determined using UABl-14 strain-specific assay 
but eliminating the use of PMAxx.

TABLE 1 (Continued)

Sample ID Sample type Strain Mean Cq  ±  SEM *, #

NT-23 Non-target Lactobacillus acidophilus La-14 NA

NT-24 Non-target Lactobacillus gasseri BNR17 NA

NT-25 Non-target Lactobacillus gasseri Lg-36 NA

NT-26 Non-target Lactobacillus helveticus R0052 NA

NT-27 Non-target Levilactobacillus brevis Lbr-35 NA

NT-28 Non-target Ligilactobacillus salivarius Ls-33 NA

NT-29 Non-target Limosilactobacillus reuteri 1E1 NA

NT-30 Non-target Limosilactobacillus reuteri LRC NA

*SEM: The standard error of the mean.
#NA, No amplification.

TABLE 2 Bifidobacterium longum subsp. longum UABl-14 strain-specific 
primer and probe sequences.

Primer/
probe

Sequence

Primer F 5′-CATCACACGAGAGAGCACAT-3′

Primer R 5′-CATAGAGAAGCTATCGCCGTATT-3′

Probe 5′-CGCCATCACATGTGCCAATCACAT-3′ (56-FAM and ZEN 

– 3IABkFQ)
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Statistical analysis

Prism 10 (GraphPad Software, San Diego, United States) was used 
for statistical analyses and graphical displays.

Results

Strain-specific real-time PCR oligo design

RAST identified a target sequence region in the genome sequence 
of strain UABl-14, which codes for a hypothetical protein. To confirm 
that this target sequence region was unique to strain UABl-14, the 
target sequence region was BLASTn searched on NCBI GenBank in 
December 2020 and no similarity was found to any sequence in the 
Nucleotide collection (nr/nt) database. PrimerQuest Tool was used to 
design primers and a probe to amplify a 94 bp amplicon.

Evaluating the specificity and sensitivity of 
UABl-14 strain-specific assay

To confirm the strain specificity of the method, 22 target samples 
and 30 non-target samples were tested using the developed method 
(Table 1). All target samples successfully amplified with mean Cq 
value between 22.47 and 28.16. No amplification was observed from 
any of non-target samples including other B. longum strains (Table 1).

The LOD was determined from standard curves established from 
three DNA dilution series (5 dilution points each). The LOD was 
0.002 ng of DNA or 755 copies (Figure 1).

Optimization of viability pre-treatments

The integrity of the extracted DNA was examined by running the 
DNA on a gel. DNA extracted from both non-heated and heat-killed 
cells of samples T-1, T-2, and T-3 showed high integrity (Figure 2A). The 
DNA concentrations from non-heated cells of samples T-1, T-2, and T-3 
were 7 ng/μl, 8 ng/μl, and 8 ng/μl, and from heat-killed cells were 6 ng/μl, 

7 ng/μl, and 7 ng/μl. Different concentrations of PMAxx viability dye 
(0 μM, 50 μM, 100 μM, and 150 μM) were evaluated using non-heated 
and heat-killed cells to find a concentration that achieved effective 
inactivation of DNA from dead cells. At 0 μM of PMAxx, non-heated 
and heat-killed cells showed similar Cq values (19.60 and 19.48, 
respectively). At 50 μM of PMAxx, non-heated and heat-killed cells 
showed different Cq values (20.90 and 31.29, respectively). Similar 
results were observed at 100 μM and 150 μM of PMAxx. At 100 μM of 
PMAxx, Cq values were 21.47 and 33.27 from non-heated and heat-
killed cells, respectively. At 150 μM of PMAxx, Cq values were 21.62 and 
32.49 from non-heated and heat-killed cells, respectively (Figure 2B). 
50 μM of PMAxx was effective in inactivating dead cells’ DNA from 
reacting in PCR. This viability dye treatment resulted in a significant 
shift in Cq value (11.8 cycles), achieving 99.97% removal of DNA from 
heat-killed cells.

Evaluating the reaction efficiency and 
precision of UABl-14 strain-specific assay

Reaction efficiency of the UABl-14 strain-specific assay was 
determined to be 97.2, 95.2, and 95.0% with R2 values of 99% and p 
value of 0.0004, 0.0005, and 0.0005 in three replicates (Figure 3). The 
linear dynamic range was 1.3 × 102 to 1.3 × 105 genomes (Figure 3).

Repeatability and reproducibility were evaluated using 3 samples 
tested at five dilutions. The RSD% for repeatability ranged from 0.71 
to 2.36, 0.03 to 1.51, and 0.43 to 2.80, and RSD% for reproducibility 
ranged from 0.06 to 0.61, 0.10 to 1.20, and 0.04 to 2.18 for the 3 
samples (Figure 4).

Assessing the ability of UABl-14 
strain-specific assay in monitoring strain 
stability In multi-strain finished products 
during storage

The viable counts of strain UABl-14 were determined in 18 multi-
strain finished products at different expiration dates. The viable counts 
were lower than label claims in all 7 products tested post expiration 
dates (Figure 5). The viable counts were higher than label claims in 
products tested pre-expiration dates except for samples that were 
within 3 months to expiration (Figure 5). Interestingly, the total counts 
(viable and dead) of strain UABl-14 were consistently higher than 
label claims in all 18 products (Figure 6).

Discussion

Probiotics are sold in food format such as fermented food products 
as well as in pharmaceutical dosage forms such as capsules and tablets 
as natural health products or dietary supplements (Health Canada, 
2003). The global probiotic market size is growing rapidly, valued at 
USD 58.17 billion in 2021, and anticipated to reach USD 111.21 billion 
in 2030 (Grand-View-Research-Inc, 2022). With the expanding market 
size, multiple reports have shown failure of probiotic products to meet 
label claims, observed as strain substitution, missing strains, presence 
of undeclared strains or lower viable counts compared to label claims 
during shelf life and before expiration dates (Morovic et al., 2016; Patro 

FIGURE 1

Evaluating the sensitivity of UABl-14 strain-specific assay. Three 10-
fold dilution series of DNA were used to establish standard curves. 
The LOD was 0.002  ng of DNA or 755 copies.
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FIGURE 2

Optimization of viability pre-treatments of UABl-14 strain-specific assay. (A) Agarose gel electrophoresis to examine the integrity of the DNA from 
non-heated and heat-killed cells. M is E-Gel™ 1 Kb Plus DNA ladder. Samples 1–3 are the DNA from samples T-1, T-2, and T-3 (non-heated) and 
samples 4–6 are the DNA from samples T-1, T-2, and T-3 (heat-killed). (B) PMAxx viability dye treatments at 0 μM, 50 μM, 100 μM, and 150 μM were 
evaluated. PMAxx at 50 μM was used as an effective concentration in inactivating DNA from dead cells.

FIGURE 3

Evaluating the reaction efficiency and precision of UABl-14 strain-
specific assay. Reaction efficiency of the UABl-14 strain-specific 
assay was determined to be 97.2, 95.2, and 95% with R2 values of 
99% and p value of 0.0004, 0.0005, and 0.0005 in three replicates.

et al., 2016; Kolaček et al., 2017; Shehata and Newmaster, 2020a,b). This 
label non-compliance can result in partial or complete loss of efficacy 
(Tripathi and Giri, 2014; Kolaček et al., 2017; Sánchez et al., 2017; 
Jackson et al., 2019). Thus, analytical methods that support product 

authentication via confirming label information about product content 
is extremely important (Fusco et al., 2023).

B. longum subsp. longum UABl-14 is a common probiotic strain 
in probiotic products that was proven to support digestive health 

FIGURE 4

Evaluating the precision of UABl-14 strain-specific assay. 
Repeatability and reproducibility were evaluated using 3 samples 
tested at five dilutions. The RSD% for repeatability ranged from 0.71 
to 2.36, 0.03 to 1.51, and 0.43 to 2.80, and RSD% for reproducibility 
ranged from 0.06 to 0.61, 0.10 to 1.20, and 0.04 to 2.18 for the 3 
samples.
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(Martoni et al., 2019). However, to the best of our knowledge, there 
are no available methods to achieve strain-specific identification and 
enumeration of this strain. In this study, real-time PCR based methods 
for strain-specific identification and enumeration of strain UABl-14 
were developed and validated to facilitate the quality assurance of 
probiotic products that contain this strain.

A strain-specific identification and/or enumeration method 
requires robust bioinformatic analyses of genome sequences to 
confirm strain specificity, as well as extensive validation to ensure 
accurate and precise performance. Bioinformatic analyses identified 
a unique sequence region in the genome of strain UABl-14. The 
sequence region showed no similarity to any sequence in the 
Nucleotide collection database in NCBI GenBank. Primers and a 
hydrolysis probe were designed to target this unique sequence 
region. The primers and probe were validated for use in strain-
specific identification and enumeration methods. The specificity of 

the UABl-14 strain-specific assay was evaluated in qPCR where the 
assay successfully amplified all 22 target samples, which included 
mono-strain and multi-strain samples. Thirty non-target samples 
were used in specificity evaluation which included multiple strains 
of lactobacilli and Bifidobacterium, and included, other strains of 
B. longum such as Bifidobacterium longum subsp. infantis strains 
Bi-26, HA-116, and R0033 and Bifidobacterium longum subsp. 
longum strains Bl-05, HA-135, and R0175 to confirm strain level 
specificity (Table  1). No amplification was observed from any 
non-target strains. It is important to note that these non-target 
strains are commercialized probiotic strains available and common 
in the market in finished probiotic products. The results confirmed 
that the assay is strain specific to strain UABl-14 which means the 
assay will correctly identify strain UABl-14 only. The results also 
confirmed that the assay works well with both mono-strain and 
multi-strain samples.

FIGURE 5

Assessing the ability of UABl-14 strain-specific assay in monitoring strain stability in 18 multi-strain finished products during shelf life. The viable counts 
were lower than label claims in all 7 products tested post expiration dates and were higher than label claims in products tested pre-expiration dates, 
with the exception of samples that were within 3 months of expiration.

FIGURE 6

Total counts (viable and dead) and viable counts of strain UABl-14 versus label counts in 18 multi-strain finished products during shelf life. Unlike the 
viable counts of strain UABl-14, the total counts of strain UABl-14 were consistently higher than label claims in all 18 products.
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The sensitivity of the UABl-14 strain-specific assay was also 
evaluated in qPCR. Sensitivity or the LOD is the lowest amount of the 
target that an assay can detect (Bustin et al., 2009). Standard curves 
were established and the LOD was determined to be 0.002 ng of DNA 
(Figure 1). Thus, the assay proved to be highly sensitive, which means 
the assay is applicable to multi-strain blends and products in which 
strain UABl-14 is present at low abundance.

The UABl-14 strain-specific assay was further validated for 
quantitative use for the enumeration of strain UABl-14. To enumerate 
viable cells only, the assay was used with PMAxx viability dye, a 
DNA-intercalating dye that inactivates DNA from dead cells. The 
viability dye treatment is known to vary between strains and thus 
optimization for each target strain is required (Kiefer et al., 2020). 
Optimization of PMAxx viability dye treatment with strain UABl-14 
showed that 50 μM of PMAxx was effective in inactivating DNA from 
dead cells from reacting in PCR, achieving 99.97% removal of DNA 
from heat-killed cells (Figure 2B). Previous studies reported optimal 
final concentrations of PMA that ranged from 25 μM to 100 μM 
(Gobert et al., 2018; Hansen et al., 2018; Scariot et al., 2018; Shehata 
and Newmaster, 2021; Shehata et al., 2023).

A very important parameter to be considered when evaluating a 
quantitative assay is the reaction efficiency, with the ideal reaction 
efficiency ranging between 90 and 110% with R2 values ≥ 0.98 
(Broeders et  al., 2014). Reaction efficiency values of the UABl-14 
strain-specific assay were 97.2, 95.2, and 95.0% and R2 value was 99% 
in all three replicates (Figure 3). The linear dynamic range covered 
four dilutions points (Figure 3). An ideal dynamic range covers 5 to 6 
dilutions, with a minimum of three dilutions (Bustin et al., 2009). 
Thus, the UABl-14 strain-specific assay has high efficiency and 
adequate linear dynamic range.

The repeatability and reproducibility of the UABl-14 strain-
specific assay were evaluated. The RSD% for repeatability using three 
samples tested at five dilutions was below 2.80, and RSD% for 
reproducibility using three samples tested at five dilutions ranged was 
below 2.18 (Figure 4). The results indicate that the UABl-14 strain-
specific assay is highly precise, since the acceptable value for 
repeatability and reproducibility is below 25% (Broeders et al., 2014).

The UABl-14 strain-specific assay was evaluated for the ability to 
monitor strain stability in multi-strain finished products during storage 
by testing 18 multi-strain finished products at different expiration dates. 
The methods showed variable viable and total (viable and dead) counts 
of strain UABl-14 in finished products tested at different expiration 
dates (Figures 5, 6). Viability of probiotic strains is expected to decline 
during storage, the decline rate varying with storage conditions such as 
temperature and moisture levels (Tripathi and Giri, 2014). Improving 
strain stability during shelf life of probiotic products is a major challenge 
in the probiotic industry (Morovic et al., 2016). Probiotic products are 
expected to meet label claims of viable count until expiration dates to 
maintain efficacy. Thus, methods that enable strain-specific monitoring 
of stability during shelf life is of great importance.

Because the probiotic products that were used in the stability 
monitoring experiment were multi-strain products, it was not possible 
to compare the viable counts to plate counts. Nonetheless, plate count 
and viability PCR measure viability differently where plate count 
methods rely on cultivability while viability PCR relies on membrane 
integrity as a measure of viability (Boyte et al., 2023). Previous studies 
have reported discrepancies in viable counts determined using culture-
dependent versus culture-independent methods, especially following 

storage (Fiore et al., 2020; Wendel, 2022; Shehata et al., 2023). This may 
be  attributed to the fact that cell cultivability declines faster than 
membrane integrity, and to the portion of cells that exist in a VBNC state 
(Foglia et al., 2020). Since VBNC cells are considered probiotics, viable 
counts determined using culture-independent methods would be more 
accurate compared to culture-dependent methods (Foglia et al., 2020).

Conclusion

The real-time PCR methods developed and validated for strain-
specific identification and viable count determination of strain 
UABl-14 are strain-specific, highly sensitive and enable the 
enumeration of VBNC cells. Thus, the methods offer a significant 
advancement in viable count determination over the traditional plate 
count method. The methods allow for simultaneous and cost-effective 
analyses, serving the dual purpose of identification and enumeration 
of strain UABl-14 in mono-strain as well as in multi-strain finished 
products to facilitate quality control measures for efficacious and 
compliant probiotic products.
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