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Introduction: pH is one of the important factors affecting the growth and 
performance of microorganisms.

Methods: We studied the pH response and plant growth-promoting (PGP) 
ability of Rhizopus delemar using cultivation experiments and transcriptomics, 
and verified the expression profiles using quantitative real-time PCR.

Results: pH affected the growth and PGP properties of R. delemar. At pH 7, the 
growth rate of R. delemar was rapid, whereas pH 4 and 8 inhibited mycelial 
growth and PGP ability, respectively. In the pot experiment, the plant height was 
the highest at pH 7, 56  cm, and the lowest at pH 4 and pH 5, 46.6  cm and 47  cm, 
respectively. Enzyme activities were highest at pH 6 to pH 7. Enzyme activities 
were highest at pH 6 to pH 7. Among the 1,629 differentially expressed genes 
(DEGs), 1,033 genes were up-regulated and 596 were down-regulated. A total 
of 1,623 DEGs were annotated to carbohydrate-active enzyme coding genes.

Discussion: The PGP characteristics, e.g., Phosphorus solubilization ability, of R. 
delemar were strongest at pH 7. The results provide useful information regarding 
the molecular mechanism of R. delemar pH response.
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1 Introduction

The fungus Rhizopus delemar (R. delemar) in the phylum Zygomycota is widely ustilized 
in industrial production due to its broad metabolic capacity. R. delemar is employed in ethanol 
production from starchy substrates and in the synthesis of organic acids such as lactic and 
fumaric acid from starch, cellulose, and hemicellulose (Zhou et al., 2011; Odoni et al., 2017). 
In addition, R. delemar strains exhibit plant growth promoting (PGP) and plant disease-
suppressing abilities, which hold promise for sustainable agricultural applications (Zhang 
et al., 2022).
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The PGP abilities of fungi include secreting organic acids to 
dissolve insoluble minerals and facilitate plant nutrient absorption, 
including nitrogen and phosphorus (Whitelaw et al., 1999). Moreover, 
PGP fungi may promote plant growth via phytohormone production, 
stress alleviation and suppression of pathogenic microorganisms 
(Hashem et  al., 2019). These PGP abilities are governed by the 
organism’s genetic makeup. Notably, three PGP Aspergillus strains 
closely related to A. puulaauensis and A. sydowii in Ascomycota were 
found to carry more carbohydrate-active enzyme (CAZymes) genes, 
small secreted protein (SSPs) genes, and gene clusters encoding indole 
metabolism compared to pathogenic Aspergillus strains (Jing et al., 
2022). To our knowledge, little attention has been given to exploring 
the PGP properties and related genes in zygomycetes.

Microorganisms exhibit sensitivity to environmental pH due to 
direct contact with the surroundings (Selvig et al., 2011). Fungi 
demonstrate adaptability to a wide pH range, maintaining homeostasis 
under acidic and alkaline conditions. For example, A. nidulans 
displays growth across pH 2.5 to 9.0 (Caddick et  al., 1986). 
Environmental pH influences enzyme activities, thereby affecting 
microbial metabolism. In addition, pH affects cell membranes, 
enzyme-substrate affinity, and substrate absorption by microorganisms 
(Li et  al., 2019). Microorganisms regulate gene expression to 
coordinate metabolic reactions in response to environmental 
conditions (Wilson et  al., 2017), with specific gene expression 
modulated by environmental pH (Manteau et  al., 2003). Fungi 
colonize and invade fibrous plant materials, participating in cell wall 
polysaccharide degradation and fiber digestion (Hébraud and Fèvre, 
1988). Changes in pH lead to changes in the activities of glucosidase, 
cellulase and other CAZymes (Lou et al., 2013) that play key roles in 
the synthesis or decomposition of complex carbohydrates by 
degrading, modifying, and generating glycosidic bonds (Cantarel 
et al., 2009; Davies and Williams, 2016). In addition, CAZymes may 
contribute to PGP ability (Jing et  al., 2022). To the best of our 
knowledge, there are no studies on the effect of pH on 
R. delemar CAZymes.

CAZymes are categorized into six groups based on associated 
catalytic activity motifs and domains: glycosyl hydrolases (GHs), 
carbohydrate esterases (CEs), polysaccharide lyases (PLs), 
carbohydrate-binding modules (CBMs), glycosyl transferases (GTs), 
and auxiliary activities (AAs) (Várnai et al., 2014; Drula et al., 2022). 
In the R. oryzae genome, CAZymes gene composition differs from 
most ascomycetes and basidiomycetes, suggesting R. oryzae’s 
utilization of easily digestible sugars but not complex plant cell wall 
polysaccharides, aligning with its growth profile (Battaglia et  al., 
2011). However, information regarding CAZymes in R. delemar and 
the effects of pH on the R. delemar transcriptome remains scarce.

We studied the plant growth-promoting (PGP) ability of 
R. delemar using transcriptomics to elucidate the PGP mechanism and 
the role of CAZymes therein, providing a theoretical foundation for 
further agricultural applications of R. delemar.

2 Materials and methods

2.1 Strain

The strain Rhizopus delemar SICAUZ-1 was isolated from corn 
(Zea mays L. var. Kangnongyu007) in Liangshan Yi Autonomous 

Region, China. The strain was maintained on potato dextrose agar 
(PDA). The partial ribosomal RNA gene sequence of R. delemar 
SICAUZ-1 is deposited in NCBI GenBank under the accession 
number ON584326. The strain was preserved in the China Center for 
Type Culture Collection under the identification number M2022700. 
The conidia of the isolates were stored at −80°C in 20% glycerol 
solution until use.

2.2 Determination of mycelial growth

To measure mycelial growth rate, mycelium was inoculated onto 
potato dextrose agar (PDA) and into 150 mL potato dextrose broth 
(PDB) medium (glucose 20 g/L, potato extract powder 300 g/L), 
followed by incubation at 28°C. Mycelial growth rate was determined 
on PDA by measuring the colony diameter every 12 h. Mycelial 
biomass was determined by growing the inoculant in PDB at 180 rpm 
for 72 h, after which the culture was filtered, and the weight of the 
mycelia was measured.

2.3 Plant growth-promoting characteristics 
of Rhizopus delemar

The inocula for the PGP ability tests were prepared by cultivating 
the strain in PDB medium at 28°C and 180 rpm until reaching the 
logarithmic phase. After the mycelium had colonized the medium 
completely within 3 days, the culture was centrifuged at 12,000 g for 
1 min, and the pellet was re-suspended to a density of 7.50 × 107 cfu/
mL in ddH2O.

In the PGP ability tests, the pH of the media was adjusted to pH 
4, 5, 6, 7, and 8 using 1 mol/L sodium hydroxide (NaOH) or 1 mol/L 
hydrochloric acid (HCl). All tests were conducted in triplicate. After 
sterilization, the pH value of the media was measured and adjusted 
when needed.

Indole-3-acetic acid (IAA) production was estimated as described 
by Joshi et al. (2021). 0.5 mL of the inoculant was inoculated into 
150 mL PDB medium with 2 mg/ mL l-tryptophan and incubated at 
150 rpm and 28°C for 72 h. After incubation, the culture was 
centrifuged at 10,000 g for 30 min, and 1 mL of the supernatant was 
mixed with 2 mL of Salkowski reagent (1 mL 0.5 M FeCl3 and 49 mL of 
35% HClO4). After incubation at room temperature for 0.5 h, the 
concentration of IAA was determined using ultraviolet–visible 
spectrophotometry (Shimadzu, CHN) at 530 nm and a 1–50 μg/mL 
IAA standard curve.

To measure phosphorus solubilization capacity, 0.4 mL of the 
inoculant was inoculated into 150 mL inorganic phosphorus liquid 
medium (Phosphate solubilizer) and incubated at 180 rpm and 28°C 
for 72 h (Johri et al., 1999), followed by centrifugation of 1 mL of the 
culture at 10,000 rpm for 10 min, and measuring water-soluble 
phosphate concentrations in the supernatant using molybdenum 
antimony resistance colorimetry.

To determine siderophore production, 0.5 mL of the inoculant 
was inoculated on chrome azurol S (CAS) agar, and the plates were 
incubated at 28°C for 2 days (Machuca et al., 2003). An orange halo 
around a colony indicated the production of siderophores and the 
diameter of the halo indicated the amount produced (Schwyn and 
Neilands, 1987).
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The in vivo PGP ability of the strain Rhizopus delemar SICAUZ-1 
on corn (Zea mays L. var. Kangnongyu007) was tested in a greenhouse 
experiment. Particle size 1 mm quartz sand was sterilized at 121°C for 
2 h. Corn seeds were washed with ddH2O and germinated in the dark 
for 2 days. The seeds were soaked for 2 h in 150 mL of the fungal 
suspension; soaking in sterile PDB served as the uninoculated control. 
Five seeds per pot were planted in plastic pots filled with 500 g of 
quartz sand. The pots were watered daily with Hoagland’s nutrient 
solution. After 45 days, the plants were carefully removed from the 
pots, the root and aboveground parts were separated and washed with 
distilled water, and dried until constant weight to determine the 
dry weight.

2.4 RNA extraction, cDNA library 
construction, and sequencing

The strain was cultivated as in the PGP tests at pH 4, 5, 6, 7, and 
8, immediately frozen in liquid nitrogen and stored at −80°C. The 
mycelia from plates were pooled and ground to powder with a pestle 
in liquid nitrogen-chilled mortars. Cells were crushed using a 
FastPrep-24 (MP Biomedical, Shanghai, China). RNA was extracted 
using the Trizol Reagent (Invitrogen Life Technologies, Carlsbad, CA, 
United States). The concentration and quality of the extracted RNA 
were determined using a NanoDrop spectrophotometer (Thermo 
Scientific, Waltham, MA, United States). The integrity of the extracted 
RNA was assessed with gel electrophoresis in 1% agarose.

The TruSeq RNA Sample Preparation Kit (Illumina, San Diego, 
CA, United States) was used to create sequencing libraries according 
to the manufacturer’s instructions. Briefly, mRNA in 3 μg of RNA was 
purified using poly-T-oligo-attached magnetic beads, and fragmented 
in the fragmentation buffer utilizing divalent cations at a high 
temperature. First-strand cDNA was synthesized using SuperScript II 
and random oligonucleotides, and second-strand cDNA was 
synthesized using RNase H and DNA polymerase I. Exonuclease/
polymerase activities were used to blunt the residual overhangs, and 
the enzymes were eliminated. Illumina paired-end adaptor 
oligonucleotides were ligated to prepare for hybridization after the 3′ 
ends of the DNA fragments were acetylated. The library fragments 
were purified using an AMPure XP system (Beckman Coulter, Beverly, 
CA, United States) to choose cDNA fragments of the preferred 200 bp 
length. In a 15-cycle PCR reaction, DNA fragments with ligated 
adaptors on both ends were specifically enriched using Illumina PCR 
Primer Cocktail. Products were measured using the Agilent high-
sensitivity DNA test on a Bioanalyzer 2,100 system (Agilent) and 
purified using the AMPure XP system. The sequencing was carried 
out at Shanghai Personal Biotechnology Co. Ltd. (Shanghai, China) 
using an Illumina Hiseq platform.

2.5 Transcriptome data analysis

Sequences were trimmed and filtered to remove reads with 
average quality below Q20. The filtered reads were aligned to the 
R. delemar reference genome (GCA_011763715.1_ASM1176371v1_
genomic.fna) using HISAT2 (Kim et al., 2015).

Transcripts were functionally annotated against the UniProt 
Consortium (2023), the Gene Ontology (GO) (2023), and the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2000) 
databases using BLAST (Altschul et al., 1990). The annotated genes 
were assigned to GO categories. Unigenes were subjected to KEGG 
Orthology analysis using the KOBAS 2.0 web server.1

Based on the results on the PGP properties, differential expression 
analysis was conducted using DESeq2 (Wang et  al., 2019) by 
comparing the expression at pH 7 to expression at other pH 
treatments. p-values in individual comparisons were adjusted for 
multiple testing using the procedure described by Wright (1992). 
Genes with |log2FoldChange| > 1 and p < 0.05/4 (the number of 
comparisons) were taken as differentially abundant. KEGG pathway 
enrichment analysis and GO functional enrichment analysis of 
differentially expressed genes (DEGs) were carried out using the 
KEGG biological pathway database2 and Gene Ontology3 databases, 
respectively.

2.6 Enzyme assay

The cultured fungal solution was centrifuged at 10,000 rpm for 
10 min, and the precipitate was washed with 0.9% NaCl solution cells 
3 times, suspended in phosphate buffer (100 mM, pH 7.4), treated 
with ultrasound for 5 min, centrifuged at 10,000 rpm and 4°C for 
15 min, and the supernatant was collected as the crude enzyme 
extract. Lytic polysaccharide monooxygenases, protease, endo- and 
exo-1,4-beta-glucanase, β-glucosidase, and pectin lyase activities were 
determined as previously described (Yeo et al., 2007; Songulashvili 
et al., 2008; MacDonald et al., 2016; Rueda-Mejia et al., 2021).

2.7 CAZymes annotation

Using the CAZymes Analysis Toolkit (CAT) (Park et al., 2010), 
differentially expressed genes related to carbohydrate active enzyme 
genes were annotated in the Carbohydrate Enzyme Database.4

2.8 Quantitative real-time PCR (qRT-PCR) 
validation of RNA-seq data

The expression of selected CAZymes genes were validated using 
qRT-PCR with three biological replicates and three technical replicates 
per biological replicate. Based on the results of GO and KEGG 
analysis, we selected five genes with known or predicted carbohydrate 
activity and responding to pH. qRT-PCR was carried out using a 
CFX96 Real-Time System (BIO-RAD) according to the manufacturer’s 
instructions, and SYBR green as the fluorescent dye (Libert et al., 
2015). The primers used are listed in Supplementary Table S1. Internal 
Transcribed Spacer was used as the internal control gene. Genes were 
considered differentially expressed when fold change ≥1.5 or ≤ 0.667 
and p ≤ 0.05.

1 http://kobas.cbi.pku.edu.cn/

2 https://www.kegg.jp/kegg/

3 http://www.geneontology.org/

4 http://www.cazy.org
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2.9 Statistical analyses

Differences in PGP properties and qPCR expression levels 
between treatments were tested using analysis of variance (ANOVA) 
and Tukey post hoc test in SPSS 23.0. Differences were considered 
statistically significant at p < 0.05. Before the tests, the normality of 
distribution and homogeneity of variance were tested.

3 Results

3.1 The effect of pH on Rhizopus delemar 
growth and PGP capacity

The mycelium biomass and growth rate were highest at pH 7, 
followed by pH 6 and pH 5 (p < 0.05) (Figure 1; Table 1). The mycelium 
biomass was lowest at pH 4 and the growth rate at pH 4 and pH 8 
(p < 0.05). The IAA concentration ranged from 10.0 to 10.4 μg/mL, and 
the phosphate solubilization from 4.17 to 6.36 μg/mL; both were 
highest at pH 7. Based on the halo diameters, siderophore production 
was highest at pH 7, followed by pH 6, pH 8, pH 5, and pH 4 (p < 0.05) 
(Table 1).

In the pot experiment, plant height and shoot weight were highest 
at pH 7 and lowest at pH 4 and pH 5 (p < 0.05) (Figure 2; Table 2). 
Intriguingly, roots were longest at pH 8, followed by pH 7 and 5, pH 
6, and pH 4, whereas the number of roots was greatest at pH 5 to pH 
7, followed by pH 8, and pH 4 (p < 0.05). Leaf area, fresh and dry root 
weight and dry shoot weight were biggest at pH 7 and smallest at pH 
4 (p < 0.05).

3.2 Rhizopus delemar gene expression 
under different pH treatments

Approximately 94% of the reads passed the quality filtering, and 
approximately 96% of the filtered reads were mapped to the R. delemar 
genome. We obtained about 4.2, 4.0, 4.3, and 4.4 million reads for the 
different pH treatment R. delemar, and 4.7 million reads for the pH 7 
(Supplementary Table S2). Within the replicates, the correlation in 
gene expression varied from 0.86 to 0.98 (Figure 3). In total, 1,629 
DEGs were detected between the pH 7 and the other pH values 
(|log2FoldChange|>1) (Figures 4,5; Supplementary Table S1). In the 
comparisons, the number of unique DEGs ranged from 593 in the pH 
4 vs. pH 7 to 46 in the pH 6 vs. pH 7; most of the DEGs at pH4 and 
pH 5 were up-regulated genes compared to pH 7 (Figure 4).

At pH 4 vs. pH 7, 567 and 343 genes were significantly upregulated 
and downregulated, respectively. Upregulated genes included serine/
threonine-protein kinase PAK 1 (G6F53_003097), 5′-nucleotidase 
doman-containing protein (G6F53_003201), transforming growth 
factor-beta-induced protein (G6F53_007702), ABC transporter G 
family member (G6F53_007454), peptidoglycan-N-acetylglucosamine 
deacetylase (G6F53_000518), alpha-mannosidase (G6F53_007010), 
chitin synthase (G6F53_007011); downregulated genes included 
12-oxophytodienoate reductase (G6F53_002340), and cAMP-
dependent protein kinase (G6F53_000024), nucleolar MIF4G 
domain-containing protein (G6F53_004769). At pH 5 vs. pH 7, 220 
and 29 genes were significantly upregulated and downregulated, 
respectively. Upregulated genes included hypothetical proteins 

(G6F53_002001), mesaconyl-C (4)-CoA hydratase (G6F53_000105), 
and 5′-nucleotidase domain-containing protein (G6F53_003201); 
downregulated genes included transposable element Tc1 transposase 
(G6F53_013486) and hypothetical protein (G6F53_000790). At pH 6 
vs. pH 7, 78 and 88 genes were significantly upregulated and 
downregulated, respectively. Upregulated genes included tigger 
transposable element-derived protein (G6F53_006194, 
G6F53_002255) and ammonium transporter (G6F53_000650); 
downregulated genes included proton-coupled amino acid transporter 
(G6F53_002419) and chitinase (G6F53_001950). At pH 8 vs. pH 7, 
168 and 136 genes were significantly upregulated and downregulated, 
respectively. Upregulated genes included transposable element Tc1 
transposase (G6F53_013294) and hypothetical proteins; 
downregulated genes included trimethylguanosine synthase 
(G6F53_011806) and iron transport multicopper oxidase 
(G6F53_000791).

3.2.1 Go enrichment analysis of DEGs of Rhizopus 
delemar

At pH 4 vs. pH 7, DEGs were classified into 839 molecular 
function (MF), 602 cell component (CC), and 5,426 biological process 
(BP) terms (Figure 6A; Supplementary Table S2). At pH 5 vs. 7, the 
DEGs were classified into 386 MFs, 298 CCs, and 2,676 BPs 
(Figure 6B). Ammonia assimilation cycle, nitrogen utilization, and 
glutamate biosynthetic process were enriched. At pH 6 vs. 7, the DEGs 
were classified into 376 MFs, 267 CCs, and 2,456 BPs (Figure 6C). 
Ribosome biogenesis, rRNA metabolic process, and rRNA processing 
were enriched. At pH 8 vs. 7, the DEGs were classified into 495 MFs, 
397 CCs, and 2,972 BPs (Figure 6D).

Several up-regulated genes involved in plant growth promotion 
via auxin production were identified, including: auxin-responsive 
protein SAUR78, indole-3-acetic acid-amido synthetase and protein 
RALF-like 24 precursor, which were mainly included in GO terms: 
indole-containing compound metabolic process (GO: 0042430, GO: 
0042436), positive regulation of cell growth (GO: 0030307) and 
positive regulation of cell development (GO: 0010720).

3.2.2 KEGG pathway enrichment analysis of DEGs 
of Rhizopus delemar

In the KEGG pathway enrichment analysis, the DEGs at pH 4 vs. 
7 were assigned to 286 pathways; at pH 5 vs. 7, to 55 pathways; at pH 
6 vs. 7, to 34 pathways; and at pH 8 vs. 7, to 48 pathways (Figure 7; 
Supplementary Table S3).

At pH 4 vs. 7, the eukaryotic pathway ribosome biogenesis 
(ko03008) contained 56 up-regulated genes and 37 down-regulated 
genes. Glycolysis/gluconeogenesis (ko00010) contained 2 
up-regulated genes and 5 down-regulated genes, and pyruvate 
metabolism pathway (ko00620) contained 2 up-regulated genes and 
6 down-regulated genes. At pH 5 vs. 7, the metabolism of pentose 
and glucuronate (ko00040) contained 5 up-regulated genes, the 
butanoate metabolism (ko00650) treatment contained 1 up-regulated 
gene. Alanine, the alanine, aspartate and glutamate metabolism 
(ko00250) contain 2 up-regulated genes and 2 down-regulated 
genes. At pH 6 vs. 7, among the enriched genetic information 
processing pathways, the ribosome biogenesis in the eukaryotes 
pathway (ko03008) contained seven downregulated genes, and one 
carbon pool by the folate pathway (ko00670) contained two 
downregulated genes. At pH 8 vs. 7, butyric acid metabolism 
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(ko00650) treatment contained 1 up-regulated gene, propionic acid 
metabolism pathway (ko00640) treatment contained 1 up-regulated 
gene, and fructose and mannose metabolism (ko00051) treatment 

contained 1 up-regulated gene, and alanine, aspartate and glutamate 
metabolism pathway (ko00250) contained 2 up-regulated genes and 
3 down-regulated genes.

FIGURE 1

(A) The mycelium growth of Rhizopus delemar in PDA under different pH conditions (measured every 12  h). (B) The mycelium growth of Rhizopus 
delemar PDB under different pH conditions.
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TABLE 2 The properties of corn seedlings treated with the fermentation broth of Rhizopus delemar grown at different pH conditions.

Plant 
height 
(cm)

Root 
length 
(cm)

Leaf area 
(cm2)

Root 
number

Aboveground 
fresh weight (g)

Fresh root 
weight (g)

Aboveground 
dry weight (g)

Dry root 
weight (g)

CK 44.8 ± 1.39d 15.5 ± 2.43e 48.4 ± 9.31d 9.67 ± 1.53c 2.06 ± 0.59c 0.229 ± 0.066d 0.225 ± 0.054d 0.100 ± 0.024d

pH 4 46.6 ± 2.42c 17.3 ± 1.03d 46.8 ± 3.42d 7.67 ± 0.580d 1.99 ± 0.015c 0.221 ± 0.029d 0.201 ± 0.014e 0.089 ± 0.020e

pH 5 47.0 ± 3.39c 23.1 ± 1.13b 50.8 ± 2.54d 12.7 ± 1.08a 2.26 ± 0.016c 0.251 ± 0.020c 0.234 ± 0.011c 0.104 ± 0.045d

pH 6 52.7 ± 3.31b 18.5 ± 1.09c 72.3 ± 3.31b 12.7 ± 1.04a 3.00 ± 0.017b 0.333 ± 0.019b 0.276 ± 0.012b 0.123 ± 0.045b

pH 7 56.0 ± 2.79a 23.5 ± 1.76b 85.5 ± 3.30a 12.7 ± 1.08a 3.74 ± 0.017a 0.415 ± 0.026a 0.318 ± 0.014a 0.141 ± 0.015a

pH 8 51.2 ± 3.35b 24.6 ± 1.30a 68.8 ± 3.21c 10.0 ± 1.65b 2.71 ± 0.015b 0.301 ± 0.024b 0.249 ± 0.013c 0.111 ± 0.033c

Data are mean value ± SE (n = 3). Different letters in a column denote statistically significant differences (P < 0.05).

The results implied that R. delemar gene expression was 
significantly affected by pH. Most of the DEGs were enriched in 
butyric acid metabolism, pyruvate metabolism pathway, glycolysis/ 
gluconeogenesis, propionic acid metabolism pathway and other 
CAZymes (p < 0.05).

3.3 Differentially expressed CAZymes genes

A total of 1,623 genes of R. delemar transcriptome were identified 
as CAZymes genes (Supplementary Tables S4). Among these, 454 GHs, 
108 AAs, 540 GTs, 352 CEs, 145 CBMs, and 24 PLs were identified 

(Figure 8). At pH 4 and 5 vs. 7 and at pH 7 vs. 8, 431 DEGs were related 
to CAZymes. At pH 6 vs. 7, 428 DEGs were related to CAZymes.

The qRT-PCR gene expression levels of five CAZymes genes, 
chosen based on their biological roles, were in line with the differential 
expression detected in the transcriptomic analysis (Figure  9), 
supporting the validity of the results.

3.4 Enzyme assay

To further reveal the effect of pH on CAZymes, endo-and exo-1,4-
beta-glucanase, β-glucosidase, lytic polysaccharide monooxygenases, 

TABLE 1 The mycelium biomass, growth rate, IAA production, CAS degradation, and phosphorus solubilization capacity of Rhizopus delemar grown at 
different pH levels.

Mycelium 
biomass (g)

Mycelial growth 
rate (cm/h)

IAA production 
(μg/mL)

CAS degradation 
(cm/r)

Phosphorus 
solubilization 

capacity (μg/mL)

pH 4 7.79 ± 0.18e 0.050 ± 0.02d 10.0 ± 0.87e 0.90 ± 0.02e 5.35 ± 0.12d

pH 5 10.7 ± 0.22c 0.060 ± 0.01c 10.1 ± 0.76d 1.00 ± 0.07d 6.15 ± 0.14c

pH 6 11.5 ± 0.28b 0.045 ± 0.02b 10.3 ± 0.88b 1.30 ± 0.05b 6.23 ± 0.17b

pH 7 12.8 ± 0.27a 0.057 ± 0.01a 10.4 ± 1.04a 1.50 ± 0.08a 6.36 ± 0.18a

pH 8 9.54 ± 0.25d 0.025 ± 0.03d 10.2 ± 0.75c 1.10 ± 0.08c 4.17 ± 0.12e

Data are mean value ± SE (n = 3). Different letters in a column denote statistically significant differences (P < 0.05). CAS, Chrome azurol S; IAA, indole-3-acetic acid.

FIGURE 2

Potted plant of Rhizopus delemar corn under different pH conditions.
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pectin lyase, and protease activities were determined. Endo-and 
exo-1,4-beta-glucanase, β-glucosidase are classified under glycoside 
hydrolase (GHs) group in Carbohydrate Enzyme database 
(Wierzbicka-Woś et  al., 2019). In the transcriptomic analysis, the 
number of up-regulated GHs genes were greater than that of down-
regulated genes. The enzyme activities of β-glucosidase and endo-and 
exo-1,4-beta-glucanase were lower at pH 4 and pH 8 compared with 
pH7, indicating that the activity of hydrolases were inhibited under 
acid–base conditions. We also found that the activity of pectin lyase, 

encoded by PLs family genes, was highest at pH 7 (Figure  10; 
Supplementary Table S4).

4 Discussion

Fungi can be used to produce valuable metabolites at industrial 
scale and provide great potential for biotechnology and agriculture, 
e.g., due to plant growth promoting (PGP) abilities. The PGP 

FIGURE 3

Pearson correlation coefficient was used to represent the correlation of gene expression levels between samples.
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properties, and the related genes in zygomycetes have received 
little attention.

Generally, R. delemar grows best at a neutral pH, and the growth 
of R. delemar decreased below pH 3.5 and above pH 6.5 (Turgeman 
et al., 2016), consistent with the results of this study. pH can affect 
spore germination, transcriptional expression, and metabolism-
related pathways of fungi (Han et al., 2011; Li et al., 2019). Likewise, 
pH is expected to affect the expression of PGP properties. Similar with 
plant growth promoting bacteria (Joshi et al., 2021), the R. delemar 
PGP characteristics, e.g., Phosphorus solubilization ability, were 
strongest at pH 7 (Liu et al., 2021). Even though the production of 
organic acids lowers the pH of the culture medium, an initial low pH 
possibly inhibits the PGP abilities.

In agreement with Xu et al. (2020), the plants grew poorly at pH 
4 and pH 8. The effect on growth was possibly connected to CAZymes 
activities. The GHs families contain hydrolases such as endo-and 
exo-1,4-beta-glucanase (Mendonça et  al., 2023), which play an 
important role in the ductility of cell wall and affect plant growth and 
development. We found that although the gene expression of GHs in 
CAZymes was up-regulated under pH stress, the endo-and exo-1,4-
beta-glucanase and β-glucosidase activities were highest at pH 7. In 
addition, the better growth at pH 7 may be related to the R. delemar’s 
ability to dissolve more phosphorus at pH 7 than at pH 4 and pH 8. 
Compared with the root system, the aboveground part of the plant is 
more affected by soil phosphorus deficiency. Phosphorus deficiency 
directly inhibits plant growth by reducing enzyme activity, and 
indirectly inhibits plant growth by inhibiting leaf photosynthesis 
(Yang et al., 2022).

In line with the in vitro results, R. delemar grown at pH 7 had 
strongest PGP effect on seedlings. Although the concentration of IAA 
produced by R. delemar was not high, there were differences in the 

growth of plants. It may be that when plants are subjected to pH stress, 
the semi-permeability of the protoplast membrane disappears, and the 
cells are subjected to osmotic stress, which accelerated the process of 
the leaching of anions (Lager et al., 2010), resulting in a significant 
difference in plant height between pH 4 and pH 8. In our study, genes 
related to auxin biosynthesis and metabolism were found. These genes 
are responsible for the division, elongation and differentiation of plant 
cells and are closely related to plant growth (Matthes et al., 2019). 
Under pH stress, it may be the interaction between Auxin/Índole-3-
acetic acid (Aux/IAA) and Auxin response factor (ARF). When the 
auxin concentration is low, the repressor protein Aux / IAA forms a 
complex with the ARF protein to regulate the expression of auxin-
responsive genes and prevent them from acting as transcription 
factors (Ortiz et al., 2019), which is consistent with this study.

In this study, the identified DEGs revealed that pH influence 
R. delemar gene expression. KEGG pathway analysis showed that 
differentially expressed genes were mainly involved in ribosomal 
biogenesis of the eukaryotes pathway. The differentially expressed 
genes of ribosomal biogenesis pathway under pH stress were all down-
regulated, indicating that R. delemar was constantly producing less 
new proteins in order to adapt to pH changes. The above pathways are 
basically carbohydrate metabolism processes. It provides carbon 
source and energy for the growth and reproduction of R. delemar 
through carbohydrate metabolism.

In the GO enrichment analysis, the number of differentially 
expressed genes in BP and CC were the largest, the number of down-
regulated genes being higher than that of up-regulated genes, and the 
differentially expressed genes in ribosome biogenesis were significantly 
expressed. Ribosome biogenesis is regulated at several levels, including 
transcription of ribosomal genes and phosphorylation, methylation, 
and acetylation of constituent nucleolar factors, as well as the transport 

pH 4 vs. 7 pH 5 vs. 7

pH 6 vs. 7 pH 8 vs. 7

A B

C D

FIGURE 5

Volcanic expression distribution of DEGs in Rhizopus delemar transcriptome at different pH levels. (A) pH 4 vs. 7, (B) pH 5 vs. 7, (C) pH 6 vs. 7, (D)  
pH 8 vs. 7).
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FIGURE 6

Gene Ontology (GO) assignments of differentially expressed genes (DEGs) in Rhizopus delemar transcriptome at different pH levels. (A) pH 4 vs. 7, 
(B) pH 5 vs. 7, (C) pH 6 vs. 7, (D) pH 8 vs. 7.
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and interaction of these factors (Leary and Huang, 2001). In the 
comparison of pH 5 vs. pH 7, the GO enrichment of glutamate 
synthase metabolism was the most significant, and the glutamate 
differential gene was annotated as an acid ribosomal protein synthesis 
pathway, which indicated that the synthesis of acid protein would 
be promoted due to pH stress. Enrichment in pathways related to 
carbohydrate metabolism, transportation, catabolism, amino acid 
metabolism, and other nutrient-related processes indicates substantial 
environmental pressure due to pH changes for R. delemar.

The pH value has an important effect on pentose, glucuronic 
acid conversion, starch, and sucrose metabolism. Notably, CAZymes 
cellulase and hemicellulase play pivotal roles in cell wall 
polysaccharide hydrolysis, crucial for substrate degradation and 
microbial growth (Kala et  al., 2017). CAZymes in carbohydrate 
metabolism are important for microbial growth, development, and 
metabolism, and the accumulation of microbial nutrients can 
be assessed by studying their activities (Wang et al., 2019). Glycoside 
hydrolases (GHs) include many enzymes that can hydrolyze 
glycosidic bonds in carbohydrates or between carbohydrate and 

pH 4 vs. 7
pH 5 vs. 7

pH 6 vs. 7
pH 8 vs.7 

A B

C D

FIGURE 7

KEGG pathway enrichment analysis of differentially expressed genes (DEGs) in Rhizopus delemar transcriptome at different pH levels. (A) pH 4 vs. 7, 
(B) pH 5 vs. 7, (C) pH 6 vs. 7, (D) pH 8 vs. 7. KEGG, Kyoto Encyclopedia of Genes and Genomes.

540

24

352

108
145

454

0

100

200

300

400

500

600

GTs PLs CEs AAs CBMs GHs

N
um

bl
er

 o
f g

en
es

Function class

CAZy Function classification

FIGURE 8

The classification of differentially expressed genes (DEGs) in 
Rhizopus delemar transcriptome at different pH levels into 
carbohydrate active enzyme (CAZymes) families.

https://doi.org/10.3389/fmicb.2024.1359830
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liang et al. 10.3389/fmicb.2024.1359830

Frontiers in Microbiology 11 frontiersin.org

non-carbohydrate molecules (Gupta et  al., 2022). Among the 
CAZymes genes differentially expressed at pH 4 vs. 7, 78 and 35 
genes encoding GHs were upregulated and downregulated, 
respectively, indicating their crucial role in providing adequate 
nutrition for R. delemar. Similarly, Fuglsang et al. (2000) reported 
that the GH18 gene may be related to chitinase activity; GH18 and 
CBM24 have been reported to bind to α-1,3-mutan, a mixed linked 
glucan from Streptococcus sp. Most differentially expressed, 

carbohydrate metabolism associated genes were downregulated at 
pH 4 vs. 8, indicating that carbohydrate metabolism in R. delemar 
was affected under acidic and alkaline conditions. Moreover, 
variations in the pH response within the GH18 enzyme subfamily 
were observed, showcasing a nuanced pH-dependent regulation 
within the enzyme subtypes.

In GHs that degrade cellulose, hemicellulose, chitosan, or 
arabinogalactan, the catalytic module is typically connected with 

FIGURE 9

Validation of RNA-seq data by qRT-PCR Blue color bars represent the relative expression levels determined by qRT-PCR. Orange lines indicate the log2 
fold change based on the read count values of the RNA-seq analysis. Error bars indicate standard errors of the means (n  =  3).
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one or more non-catalytic CBM that act independently (Veneault-
Fourrey et  al., 2014). Further research is needed to investigate 
whether the presence and location of CBM24 components affect the 
expression of the GH18 gene. In this study, one CBM12, two 
CBM13, three CBM30, and two CBM50 genes were upregulated, 
while one CBM1 and one CBM13 gene were downregulated at pH 
4 vs. 7. CBM13 exhibits various sugar-binding specificities and is 
present in many CAZymes (Fujimoto, 2013). Most cellulose-
binding domains attached to cellulolytic enzymes belong to CBM1 
(Chen et al., 2014). On the cellulose surface, CBM1 enhances the 
hydrolysis of cellulose by increasing the concentration of effective 
enzymes (Takeda et al., 2015). The decrease in CBM1 expression 
may suggest that lower pH levels require fewer excessive cellulose-
degrading enzymes.

At pH 4 vs. 7, 4 CE1, 22 CE4, 3 CE8, 1 CE9, 5 CE10, and 3 CE16 
genes were upregulated, and 9 CE1 and 16 CE10 genes were 
downregulated. CE4 family is the largest in the CE family, and the 
structure of CE4 enzymes from many bacterial species has been 
determined (Aragunde et al., 2018). CE16 acts on glucuronoxylan and 
is induced by endo-β-1,4-glucanase generated fragments (Biely et al., 
2016). CE1 and CE10 family members have carboxylesterase and 
endo-1, 4-β-xylanase activity (Zhao et al., 2014) and exhibit substantial 
diversity in substrate specificity. CE10 enzymes can act on 
non-carbohydrate substrates. The CE10 α-helix facilitates binding 
with specific substrates, such as glutamic acid or aspartic acid. After 
the formation of active sites, changes in enzyme structure allow for 
varied functions (Grams and Ospina-Giraldo, 2019), potentially 
explaining the mix of up- and downregulated genes within the 
CE10 family.

GTs of catalyze glycosidic bond formation to produce glycosides, 
participating in oligosaccharide, polysaccharide, and glycoconjugate 
biosynthesis. These enzymes transfer glycosyl groups using activated 
donor glycophosphate to form glycosidic bonds with specific receptor 
molecules (Williams et al., 2008). In our study, GT2, GT15, and GT20 
were upregulated at pH 6, and GT1, GT2, GT8, and GT71 were 
downregulated. Lytic polysaccharide monooxygenases (PLs) use a 
β-elimination mechanism to split polysaccharides containing 
alduronic acid, generating unsaturated polysaccharides (El Kaoutari 
et al., 2013). In this study, pH stress potentially induced significant 
enzyme synthesis. Two or more polysaccharide utilization groups 
belonging to the PL7 family possibly promoted substrate degradation 
and synthesis. However, the specific functions of PLs remain to 
be clarified.

AAs of CAZymes are currently categorized into eight ligninolytic 
enzyme families and three lytic polysaccharide monooxygenase 
families, mainly based on amino acid sequence similarities. AAs 
include enzymes that cleave glycosidic bonds through an oxidation 
mechanism (Levasseur et al., 2013). Seven AA families were detected 
in R. delemar, including AA1, AA2, AA3, AA5, AA6, and AA7.

Consistent with the findings of Ikasari and Mitchell (1996), the 
activities of endo-and exo-1,4-beta-glucanase, β-glucosidase, lytic 
polysaccharide monooxygenases, pectin lyase, and protease in 
R. delemar remained highest at pH 6 or 7.

In conclusion, pH affected the growth and PGP properties of 
R. delemar, with the optimum pH being 7. In addition, pH affected the 
expression and activity of enzymes related to carbohydrate 
metabolism, contributing to the nutritional requirements of 
R. delemar. However, further clarification of the functions of 
differentially expressed genes is warranted.
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