Check for updates

OPEN ACCESS

EDITED BY George Tsiamis, University of Patras, Greece

REVIEWED BY Laura Guzmán-Dávalos, University of Guadalajara, Mexico Xinli Wei, Chinese Academy of Sciences (CAS), China

*CORRESPONDENCE Tolgor Bau ⊠ junwusuo@126.com

RECEIVED 20 December 2023 ACCEPTED 18 March 2024 PUBLISHED 04 April 2024

CITATION

Zhou X-Y and Bau T (2024) Four new species of *Cystolepiota* (Agaricaceae, Agaricales) from northeastern China. *Front. Microbiol.* 15:1358612. doi: 10.3389/fmicb.2024.1358612

COPYRIGHT

© 2024 Zhou and Bau. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Four new species of *Cystolepiota* (Agaricaceae, Agaricales) from northeastern China

Xian-Yan Zhou and Tolgor Bau*

Key Laboratory of Edible Fungal Resources and Utilization (North), Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, China

Cystolepiota is a tiny lepiotaceous fungi. During our 3 years fieldwork, we found four new species of *Cystolepiota* from northeastern China. A phylogenetic study of a combined dataset of ITS+nrLSU+rpb2+tef1- α revealed that *Cystolepiota changbaishanensis* and *Cystolepiota hetieri* are sister clades; *Cystolepiota hongshiensis* belongs to *Cystolepiota seminuda* complex; *Cystolepiota luteosquamulosa* formed a clade not closely related with any other; *Cystolepiota nivalis* and *Cystolepiota* sp. (HMJAU68235) formed a sister clade. All new species are provided with descriptions, photos of the basidiomata, and colored illustrations of the microstructures. A key for the identification of *Cystolepiota* species from China is also presented.

KEYWORDS

Cystolepiota, new species, phylogeny, taxonomy, northeastern China

1 Introduction

The humus layer of the forest harbors a myriad of tiny mushrooms that often go unnoticed, including Cystolepiota Singer. The genus Cystolepiota was erected by Singer in Singer and Digilio (1952) to accommodate small lepiotaceous fungi species with epithelioid squamules and inamyloid, non-dextrinoid basidiospores. Then Singer and Clémençon (1972) divided this genus into two sections: C. sect. Pseudoamyloideae Singer and Clémençon for species showing basidiospores with dextrinoid reactions in Melzer's reagent (e.g., Cystolepiota icterina F. H. Møller ex Knudsen), and C. sect. Cystolepiota Singer with non-reactive basidiospores in Melzer's reagent [e.g., Cystolepiota fumosifolia (Murrill) Vellinga]. In addition, Bon (1993) established a new genus, Pulverolepiota Bon, which includes species with the pileus covered by squamules formed by elongated and inflated cells, lacking clamp connections, and basidiospores slowly turning red brown in Melzer's reagent [e.g., C. petasiformis (Murrill) Vellinga = Pulverolepiota petasiformis (Murrill) H. Qu, Damm and Z. W. Ge]. However, Vellinga treated this genus as a section of Cystolepiota (Vellinga and Huijser, 1998). Recently, Qu et al. (2023) found that *Pulverolepiota* formed a unique branch independent of the core members of Cystolepiota, and revived Pulverolepiota as a genus. Nevertheless, much controversy remains in the academic community regarding the boundaries of Cystolepiota.

Like *Cystolepiota*, the *Melanophyllum* Velen. (Velenovský, 1921) basidiomata pileus is also composed of loosely arranged spherical cells and hyphae. However, *Melanophyllum* has basidiomata with lamellae of a distinctive color, reddish or greenish, and it has ornamented basidiospores. Vellinga (2003) observed that *Melanophyllum*, although it has colored spores, belonged to the same evolutionary branch as *Cystolepiota*, instead of being related to *Agaricus* L., as proposed by Singer (1986). Qu et al. (2023) confirmed that *Melanophyllum* and *Cystolepiota* form a monophyletic group and that some species in the *C. seminuda* complex

also have basidiospore ornamentation. Therefore, the relationship between these two genera is difficult to define.

In addition to the well-recognized *Cystolepiota* species, several species assumed to be *Lepiota* (Pers.) Gray have pileus surface squamules composed of chains of sphaerocyst cells. Knudsen (1978) transferred sect. *Echinatae* from *Lepiota* to *Cystolepiota* because of the presence of sphaerocysts on their pileus. However, he revised this view and later treated it as *Lepiota* sect. *Echinatae* (Knudsen, 1980). Bon (1991) included these species in *Echinoderma* (Locq. ex Bon) Bon. Then, phylogenetic studies (Vellinga, 2003; Hou and Ge, 2020) have shown that *Echinoderma* is polyphyletic, species with globose to ellipsoid basidiospores are members of *Lepiota* (e.g., *Lepiota omninoflava* Y. J. Hou and Z. W. Ge), whereas those with subcylindrical spores should be placed under *Echinoderma* [e.g., *Echinoderma asperum* (Pers.) Bon].

According to the Index Fungorum (http://www.indexfungorum. org/, accessed on December 19, 2023), more than 40 Cystolepiota species have been described. However, several species have rarely been found since publication (e.g., C. constricta Singer, the type species of *Cystolepiota*). Nine *Cystolepiota* species have been recorded in China: C. adulterina F. H. Møller ex Knudsen, C. fumosifolia, C. hetieri (Boud.) Singer, C. pseudofumosifolia M. L. Xu and R. L. Zhao, C. pseudogranulosa (Berk. and Broome) Pegler, C. pseudoseminuda Y. J. Hou, H. Qu and Z. W. Ge, C. pyramidosquamulosa H. Qu and Z. W. Ge, C. seminuda (Lasch) Bon, and C. squamulosa (T. Bau and Yu Li) Zhu L. Yang (Mao et al., 1997; Bau and Li, 2004; Chou, 2010; Xu et al., 2016; Yang and Ge, 2017; Yang et al., 2019; Qu et al., 2023). Of these, C. squamulosa was a species previously discovered by our research team during a survey of species in northeastern China (Bau and Li, 2004). Before this survey, only three Cystolepiota species (C. pseudoseminuda, C. seminuda, and C. squamulosa) had been reported in northeastern China.

Through morphological and phylogenetic analyses, we identified four additional *Cystolepiota* species from northeastern China. Since the type species of *Cystolepiota*, *C. constricta*, has no available sequence in GenBank. The concept of *Cystolepiota* s.l. was used in this study to include all the species of *Cystolepiota* and *Melanophyllum* aforementioned.

2 Materials and methods

2.1 Morphological studies

Specimens were collected from northeastern China between June and September of 2021–2023. Photos of the basidiomata were taken during field collection and the macroscopic characteristics of the basidiomata were recorded, with color descriptions based on Kornerup and Wanscher (1963). Then specimens were dried using silica gel, and the specimens are currently stored in the Herbarium of Jilin Agricultural University (HMJAU). The colored illustrations are based on photos of the basidiomata in the field collection. Light microscopy (LM: Olympus CX33) was used to observe the microstructure, the samples were rehydrated in 5% KOH, and OPLENIC Pro v1.92 was utilized to measure the microstructure. Among them, in basidiospores, in the notation [n, m, p], n represents the number of basidiospores measured, of m basidiomata of pspecimens, and $a-b \times c-d$ represents the minimum – maximum value of the length×width of the basidiospores, and Q=a-b represents the minimum – maximum value of the length/width of the basidiospores, Q_v = represents the average of the length/width of the basidiospores. Descriptive terminology follows terms proposed by Vellinga (1988) and Clémençon (2012).

To know accurately whether the basidiospore's surface is ornamented or not, we treated the lamellae with gold spray after placing them on a carrier stage and observed the basidiospore surface under a scanning electron microscope (SEM: Zeiss MERLIN, EHT1-5Kv).

In addition, Congo red was used to stain the structures for better observation. To determine whether the basidiospores wall was amyloid or not, Melzer's reagent was employed. Cresyl blue was used to detect the metachromatic reaction, while cotton blue revealed whether the basidiospores were cyanophilous.

2.2 Phylogenetic studies

DNA was extracted from dried specimens using the NuClean PlantGen DNA kit (CWBIO, Beijing, China). In PCR amplification, the primer pairs ITS1F/ITS (White et al., 1990; Gardes and Bruns, 1993), LR0R/LR5 (Vilgalys and Hester, 1990; Rehner and Samuels, 1994), 6F/RPB2-7.1R (Matheny, 2005), and EF1-983F/EF1-1567R (Rehner and Buckley, 2005) were used to amplify the sequences of four DNA regions, ITS, nrLSU, rpb2, and tef1- α , respectively. The PCR procedures followed Hou and Ge (2020): pre-denaturation at 94°C for 5 min, followed by 94°C for 50 s, annealing for 50 s, LSU and tef1- α at 50°C, ITS at 52°C, rpb2 at 55°C, extension at 72°C for 1 min, and 35 cycles. The PCR products were purified and sequenced by Sangon Biotech Co., Ltd. (Shanghai, China). The newly generated sequences were deposited in GenBank.¹

The phylogenetic analysis included the available sequences of Cystolepiota and its closely related genera Melanophyllum, Pulverolepiota, Echinoderma, and Lepiota, according to Sánchez-García et al. (2020) study, Coprinus comatus (O. F. Müll.) Pers. and Cop. sterquilinus (Fr.) Fr. were selected as the outgroups. Finally, the analyzed matrix contains 179 ITS sequences, 54 nrLSU sequences, 30 rpb2 sequences, and 26 tef1- α sequences, which are listed in Table 1. Multiple sequences were compared using MAFFT v7.110 (Katoh et al., 2019), and the resulting alignments were manually checked and optimized in MEGA v7.0.26 (Kumar et al., 2016). Gap sites were removed with trimAl (Capella-Gutiérrez et al., 2009) using "-automated1" command. ModelFinder (Kalyaanamoorthy et al., 2017) was used to select the best-fit model using AIC criterion. A maximum-likelihood (ML) analysis was performed using raxmlGUI v2.0 with GTRGAMMAI as the model of evolution, and branch support was estimated over 1,000 bootstrap partitions (BP) with the rapid bootstrap option (Edler et al., 2021). Bayesian Inference phylogenies were inferred using MrBayes v3.2.6 (Ronquist et al., 2012) under partition model (2 parallel runs, 21,772,200 generations), in which the initial 25% of sampled data were discarded as burn-in. All phylogenetic graph results are exported for viewing in Figtree v1.4.3 (Rambaut, 2016).

¹ https://www.ncbi.nlm.nih.gov

TABLE 1 GenBank accession numbers, geographical origins, and voucher numbers of taxa used for the phylogenetic analyses.

Tayon	Country	Vouchor	Genbank accession number					
	Country	voucner	ITS	LSU	rpb2	tef1-α		
Coprinus comatus	USA	iNat:65426592	MW989737	-	-	-		
Coprinus comatus	Poland	CCM14	JQ901445	-	-	-		
Coprinus sterquilinus	South Korea	18089	OM809735	-	-	-		
Cystolepiota bucknallii	Italy	G Zecchin 490	JF907979	-	-	-		
Cystolepiota bucknallii	Netherlands	ecv 1761	AY176458	-	-	-		
Cystolepiota changbaishanensis	China	HMJAU68222	OR947164	-	PP465921	PP465905		
Cystolepiota changbaishanensis	China	HMJAU68223	OR947165	OR947176	-	PP465906		
Cystolepiota changbaishanensis	China	HMJAU68224	OR947166 OR947177		-	PP465907		
Cystolepiota changbaishanensis	China	HMJAU68225	OR947167	OR947178	-	PP465908		
Cystolepiota changbaishanensis	China	HMJAU68221	OR947168	OR947179	-	-		
Cystolepiota changbaishanensis	China	HMJAU68226	OR947169	-	-	-		
Cystolepiota changbaishanensis	China	HMJAU68227	OR947170	-	-	-		
Cystolepiota changbaishanensis	China	HMJAU68228	OR947171	-	-	-		
Cystolepiota changbaishanensis	China	HMJAU68229	OR947172	-	-	-		
Cystolepiota changbaishanensis	China	HMJAU68230	OR947173	-	-	-		
Cystolepiota changbaishanensis	China	HMJAU68231	OR947174	-	-	-		
Cystolepiota changbaishanensis	China	HMJAU68232	OR947175	-	-	-		
Cystolepiota changbaishanensis	China	KUN HKAS 78850	MN810142	MN810103	MN820978	MN820918		
Cystolepiota cystophora	Costa Rica	DUKE-JJ87	U85332	U85297	-	-		
Cystolepiota fumosifolia	USA	MICH18884	U85333	-	-	-		
Cystolepiota fumosifolia	USA	ecv 3278	EF121817	-	-	-		
Cystolepiota hetieri	Netherlands	ecv 2237	AY176459	-	-	-		
Cystolepiota hetieri	Italy	782	JF907982	-	-	-		
Cystolepiota hetieri	China	420526MF0093	MG694259	-	-	-		
Cystolepiota hetieri	China	KUN HKAS 53554	MN810143	MN810102	MN820977	MN820917		
Cystolepiota hetieri	China	KUN HKAS 84189	MN810139	MN810094	MN820976	MN820916		
Cystolepiota hetieri	Canada	HRL0772	MH979434	-	-	-		
Cystolepiota hetieri	Canada	HRL1277	MH979438	-	-	-		
Cystolepiota hongshiensis	China	HMJAU68202	OR947184	OR960530	PP465915	PP465901		
Cystolepiota hongshiensis	China	HMJAU68203	OR947185	OR960531	PP465916	PP465903		
Cystolepiota hongshiensis	China	HMJAU68204	OR947186	OR960532	PP465918	PP465904		
Cystolepiota hongshiensis	China	HMJAU68205	OR947187	OR960533	PP465917	-		
Cystolepiota hongshiensis	China	HMJAU68206	OR947188	-	-	-		
Cystolepiota hongshiensis	China	HMJAU68207	OR947189	-	-	-		
Cystolepiota hongshiensis	China	HMJAU68208	OR947190	-	-	-		
Cystolepiota hongshiensis	China	HMJAU68209	OR947191	-	-	-		
Cystolepiota hongshiensis	China	HMJAU68210	OR947192	-	-	-		
Cystolepiota hongshiensis	China	HMJAU68211	OR947193	-	-	-		
Cystolepiota hongshiensis	China	HMJAU68212	OR947194	-	-	-		
Cystolepiota hongshiensis	China	HMJAU68213	OR947195	-	-	-		
Cystolepiota hongshiensis	China	HMJAU68214	OR947196	-	-	-		
Cystolepiota hongshiensis	China	HMJAU68215	OR947197	-	-	-		
Cystolepiota hongshiensis	China	HMJAU68216	OR947198	-	-	-		

Тахор	Country	Vouchor	Genbank accession number					
	Country	voucher	ITS	LSU	rpb2	tef1-α		
Cystolepiota icterina	Denmark	RE0909921	AY176460	-	-	-		
Cystolepiota luteohemisphaerica	Ecuador	TL 11724	AM946477	AM946476	-	-		
Cystolepiota luteosquamulosa	China	HMJAU67711	OR233619	OR240263	PP465910	-		
Cystolepiota luteosquamulosa	China	HMJAU67807	OR584135	OR584129	PP465911	-		
Cystolepiota luteosquamulosa	China	HMJAU67808	OR584136	OR584130	PP465912	PP465900		
Cystolepiota luteosquamulosa	China	HMJAU67809	OR584137	OR584131	PP465913	PP465902		
Cystolepiota luteosquamulosa	China	HMJAU67810	OR584138	OR584132	PP465914	PP465899		
Cystolepiota luteosquamulosa	China	HMJAU69060	OR936324	-	-	-		
Cystolepiota luteosquamulosa	USA	iNAT:147467243	OR168850	-	-	-		
Cystolepiota nivalis	China	HMJAU68217	OR947145	OR947180	-	PP465909		
Cystolepiota nivalis	China	HMJAU68218	OR947146	OR947181	PP465922	-		
Cystolepiota nivalis	China	HMJAU68219	OR947147	OR947182	PP465919	-		
Cystolepiota nivalis	China	HMJAU68220	OR947148	OR947183	PP465920	-		
Cystolepiota pseudofumosifolia	China	KUN HKAS 104303	MN810150	MN810095	MN820973	MN820919		
Cystolepiota pseudofumosifolia	China	KUN HKAS 105918	MN810152	MN810108	MN820974	MN820920		
Cystolepiota pseudofumosifolia	China	KUN HKAS 84523	OP059090	-	-	-		
Cystolepiota pseudofumosifolia	China	ZRL2011054	KF804000	-	-	-		
Cystolepiota pseudofumosifolia	China	ZRL2012038	KF804001	-	-	-		
Cystolepiota pseudoseminuda	China	KUN HKAS 73969	MN810144	MN810100	MN820979	MN820925		
Cystolepiota pseudoseminuda	China	KUN HKAS 92275	MN810149	MN810101	MN820980	MN820926		
Cystolepiota pseudoseminuda	China	HMJAU68238	OR936165	-	-	-		
Cystolepiota pseudoseminuda	ninuda China HMJAU68239		OR936166	-	-	-		
Cystolepiota pseudoseminuda	China	HMJAU68240	OR936167	-	-	-		
Cystolepiota aff. pseudoseminuda	Netherlands	4-X-1989, H.A.Huijser s.n.	AY176350	-	-	-		
Cystolepiota aff. pseudoseminuda	Germany	GLM-F116532	OL898727	-	-	-		
Cystolepiota aff. pseudoseminuda	USA	RA715-2	MK213366	-	-	-		
Cystolepiota aff. pseudoseminuda	USA	iNAT:91477290	OM809356	-	-	-		
Cystolepiota pyramidalis	Laos	HNL502500	MZ574554	MZ569511	-	-		
Cystolepiota pyramidalis	Thailand	MFLU 12-1774	MZ574555	MZ569512	-	-		
Cystolepiota pyramidosquamulosa	Italy	9247	JF907983	-	-	-		
Cystolepiota pyramidosquamulosa	India	HATFD14-95	KU847887	-	-	-		
Cystolepiota pyramidosquamulosa	China	KUN HKAS 53985	OP059088	OP059068	OP104341	OP141792		
Cystolepiota cf. rosea	Italy	475	JF907978	-	-	-		
Cystolepiota cf. rosea	Italy	781	JF907981	-	-	-		
Cystolepiota cf. rosea	China	KUN HKAS 106737	OP059091	-	-	-		
Cystolepiota seminuda	Germany	GLM F042189	OL898732	-	-	-		
Cystolepiota seminuda	China	KUN HKAS 54211	OP059096	-	-	-		
Cystolepiota seminuda	China	KUN HKAS 106016	OP059097	OP059071	OP104339	OP141795		
Cystolepiota seminuda	China	KUN HKAS 106008	OP059098	-	-	-		
Cystolepiota seminuda	China	KUN HKAS 84275	OP059093	OP059072	OP104340	OP141796		
Cystolepiota seminuda	China	HMJAU68241	OR936179	-	-	-		
Cystolepiota seminuda	China	HMJAU68242	OR936180	-	-	-		
Cystolepiota seminuda	China	HMJAU68243	OR936181	-	-	-		

Tavan	Country	Vouchor	Genbank accession number					
Taxon	Country	voucher	ITS	LSU	rpb2	tef1-α		
Cystolepiota seminuda	China	HMJAU68244	OR936182	-	-	-		
Cystolepiota seminuda	China	HMJAU68245	OR936183	-	-	-		
Cystolepiota seminuda	China	HMJAU68246	OR936184	-	-	-		
Cystolepiota seminuda	China	HMJAU68247	OR936185	-	-	-		
Cystolepiota seminuda	China	HMJAU68248	OR936186	-	-	-		
Cystolepiota seminuda	China	HMJAU68249	OR936187	-	-	-		
Cystolepiota seminuda	China	HMJAU68250	OR936188	-	-	-		
Cystolepiota aff. seminuda 1	China	HMJAU68191	OR936168	-	-	-		
Cystolepiota aff. seminuda 1	China	HMJAU68192	OR936169	-	-	-		
Cystolepiota aff. seminuda 1	China	HMJAU68193	OR936170	-	-	-		
Cystolepiota aff. seminuda 1	China	HMJAU68194	OR936171	-	-	-		
Cystolepiota aff. seminuda 1	China	HMJAU68195	OR936172	-	-	-		
Cystolepiota aff. seminuda 1	China	HMJAU68196	OR936173	OR960557	-	-		
Cystolepiota aff. seminuda 2	China	HMJAU68197	OR936174	OR960558	-	-		
Cystolepiota aff. seminuda 2	China	HMJAU68198	OR936175	OR960559	-	-		
Cystolepiota aff. seminuda 2	China	HMJAU68199	OR936176	OR960560	-	-		
Cystolepiota aff. seminuda 2	China	HMJAU68200	OR936177	-	-	-		
Cystolepiota aff. seminuda 2	China	HMJAU68201	OR936178	-	-	-		
Cystolepiota aff. seminuda	USA	iNAT:35546740	OM212829	-	-	-		
Cystolepiota aff. seminuda	China	420526MF0264	MH142017	-	-	-		
Cystolepiota sp.	China	KUN HKAS 105719	MN810151	MN810109	MN820975	MN820921		
Cystolepiota sp.	USA	iNAT:92046005	OM972295	-	-	-		
<i>Cystolepiota</i> sp.	Canada	S D Russell HRL1282	MH979429	-	-	-		
Cystolepiota sp.	USA	iNAT:56783720	OM473834	-	-	-		
Cystolepiota sp.	USA	iNAT:91679566	OM972500	-	-	-		
Cystolepiota sp.	USA	iNAT:30997241	MZ293204	-	-	-		
<i>Cystolepiota</i> sp.	USA	iNAT:91488451	OM972547	-	-	-		
Cystolepiota sp.	China	KUN HKAS 56447	OP059087	-	-	-		
<i>Cystolepiota</i> sp.	USA	S D Russell HRL2161	MH979462	-	-	-		
<i>Cystolepiota</i> sp.	USA	iNAT:17334037	MK573889	-	-	-		
<i>Cystolepiota</i> sp.	China	KUN HKAS 84333	OP059086	OP059066	OP104333	OP141790		
<i>Cystolepiota</i> sp.	China	KUN HKAS 84177	OP059085	OP059067	OP104334	OP141791		
<i>Cystolepiota</i> sp.	China	KUN HKAS 70454	MN810137	MN810091	MN820972	MN820915		
Cystolepiota sp.	Germany	GLM-F107803	OL898733	-	-	-		
<i>Cystolepiota</i> sp.	Germany	GLM-F107804	OL898734	-	-	-		
<i>Cystolepiota</i> sp.	Germany	GLM-F042174	OL898731	-	-	-		
<i>Cystolepiota</i> sp.	China	KUN HKAS 84188	OP059099	-	-	-		
<i>Cystolepiota</i> sp.	USA	HRL2162	MH979463	-	-	-		
<i>Cystolepiota</i> sp.	USA	iNAT:32078885	MW018878	-	-	-		
<i>Cystolepiota</i> sp.	USA	JLF7486b	MT360313	-	-	-		
<i>Cystolepiota</i> sp.	England	K(M):141927	MZ159361	-	-	-		
<i>Cystolepiota</i> sp.	USA	iNAT:102198642	OQ871723	-	-	-		
Cystolepiota sp.	China	HMJAU68237	OR936193	-	-	-		

Tavan	Country	Vouchor	Genbank accession number					
	Country	voucher	ITS	LSU	rpb2	tef1-α		
Cystolepiota sp.	China	HMJAU68234	OR936194	-	-	-		
Cystolepiota sp.	China	HMJAU68235	OR936195	-	-	-		
Cystolepiota sp.	China	HMJAU68257	OR936196	-	-	-		
Cystolepiota squamulosa	China	HMJAU68251	OR936197	-	-	-		
Cystolepiota squamulosa	China	110114MFBPC083	MW554270	-	-	-		
Cystolepiota squamulosa	China	130822MFBPC309	MW554154	-	-	-		
Cystolepiota thailandica	Thailand	MFLU 22-0017	MZ574556	MZ569513	OR122647	-		
Cystolepiota rhodella	Laos	HNL501799	MZ574551	MZ569508	-	-		
Cystolepiota rhodella	Thailand	MFLU 22-0019	MZ574552	MZ569509	MZ574090	-		
Cystolepiota rhodella	Thailand	MFLU 09-0050	MZ574553	MZ569510	-	-		
Echinoderma asperum	North Macedonia	KUN-HKAS106783	MN810133	MN810088	-	-		
Echinoderma flavidoasperum	China	KUN-HKAS 87905	MN710147	MN810098	-	-		
Echinodema hystrix	France	25-X-1998	AY176377	AY176378	-	-		
Lepiota alba	China	KUN-HKAS 90371	MN810115	MN810075	-	-		
Lepiota castanea	China	KUN-HKAS 84179	MN810119	MN810077	-	-		
Lepiota clypeolaria	China	KUN-HKAS 87248	MN810123	MN810080	-	-		
lepiota echinaceum	China	KUN-HKAS 105582	MN810155	MN810104	-	-		
Lepiota jacobi	China	KUN-HKAS 48802	MN810138	GU199356	-	-		
Lepiota magnispora	China	KUN-HKAS 61622	JN944089	JN940285	-	-		
Lepiota omninoflava	China	KUN-HKAS 106734	MN810157	MN810092	-	-		
Lepiota omninoflava	China	HMJAU68258	OR936203	-	-	-		
Lepiota subcastanea	China	HMJAU68259	OR936204	-	-	-		
Lepiota subgracilis	China	HMJAU68260	OR936205	-	-	-		
Melanophyllum eyrei	South Korea	ASIS23988	KF953546	-				
Melanophyllum eyrei	Sweden	TL6692	AY176493	-	-	-		
Melanophyllum haematospermum	England	K(M):176342	MZ159454	-	-	-		
Melanophyllum haematospermum	USA	HRL1115	MH979425	-	-	-		
Melanophyllum haematospermum	South Korea	ASIS25547	KF953545	-	-	-		
Melanophyllum haematospermum	Netherlands	ecv 2111	AY176494	-	-	-		
Melanophyllum haematospermum	Canada	HRL1807	MH979452	-	-	-		
Melanophyllum haematospermum	Italy	913	JF908498	-	-	-		
Melanophyllum haematospermum	Netherlands	ecv2249	AF391038	-	-	-		
Melanophyllum haematospermum	USA	ecv2517	AF391039	-	-	-		
Melanophyllum haematospermum	China	HMJAU68254	OR936198	-	-	-		
Melanophyllum haematospermum	China	HMJAU68253	OR936199	-	-	-		
Melanophyllum haematospermum	China	HMJAU68256	OR936200	-	-	-		
Melanophyllum sp.	South Korea	KA17-0334	MN294888	-	-	-		
Melanophyllum sp.	USA	iNAT:91685346	OM809285	-	-	-		
Melanophyllum sp.	USA	iNAT:58290738	MZ234091	-	-	-		
Melanophyllum sp.	USA	FLAS: F-62773	MN945959	-	-	-		
Melanophyllum sp.	USA	FLAS-F-61695	MH212052	-	-	-		
Melanophyllum sp.	China	HMJAU68255	OR936206	-	-	-		
Pulverolepiota oliveirae	China	KUN HKAS 124759	OP059089	OP059069	OP104336	OP141793		

Tayon	Country	Vouchor	Genbank accession number					
Taxon	Country	voucher	ITS	LSU	rpb2	tef1-α		
Pulverolepiota oliveirae	Portugal	SMPM304	KY472789	-	-	-		
Pulverolepiota petasiformis	Netherlands	ecv 1763	AF391037	-	-	-		
Pulverolepiota petasiformis	UK	ecv 1872	AF391036	-	-	-		
Pulverolepiota sp.	Hawaii	HAW: JKS140	MK412604	-	-	-		
Pulverolepiota sp.	Hawaii	HAW: JKS143	MK412600	-	-	-		
Pulverolepiota sp.	USA	S D Russell HRL1900	MH979456	-	-	-		
Pulverolepiota sp. China		HMJAU68236	OR947199	-	-	-		

New sequences generated for this study are in bold.

3 Results

3.1 Phylogenetic analyses

The ITS phylogenetic tree (Figure 1) included 154 sequences with 693 characters, and the multi-DNA regions phylogenetic tree (Figure 2) 133 sequences with 2,765 characters, including 133 ITS sequences, 54 nrLSU sequences, 30 rpb2 sequences, and 26 tef1- α sequences. BI and ML analysis resulted in a very similar topology, so the ML tree is provided in this study (Figures 1, 2). Bootstrap support (BS) values \geq 70%, and Bayesian posterior probability (PP) values \geq 0.95 are indicated on branches (BS/PP).

The four new species are distributed in different clades as follows: Cystolepiota changbaishanensis and C. hetieri are sister clades (Figure 1: BS/PP=93/-; Figure 2: BS/PP=97/1). Cystolepiota hongshiensis belongs to C. seminuda complex clade I, with a highly supported sister relationship with the clade formed by three specimens of Cystolepiota sp. (iNAT:30997241, iNAT:91488451, iNAT:91679566) (Figure 1: BS/PP = 100/0.99; Figure 2: BS/PP = 100/1). Cystolepiota nivalis and Cystolepiota sp. (HMJAU68235) also formed a sister clade (Figure 1: BS/PP=86/1); and Cystolepiota luteosquamulosa formed a clade not closely related with any other (Figure 1: BS/PP = 82/-). In addition, Cystolepiota sp. (HMJAU68234, HMJAU68235, HMJAU68257), Melanophyllum sp. (HMJAU68255), and Pulverolepiota sp. (HMJAU68236) each form an independent clade on the phylogenetic trees (Figures 1, 2), which is not described here for the moment because only one specimen is available for observation.

3.2 Taxonomy

3.2.1 *Cystolepiota changbaishanensis* T. Bau and X. Y. Zhou, sp. nov.

MycoBank number: MB 851389 (Figures 3, 4).

Diagnosis: The identifying features of *C. changbaishanensis* are that the pileus is dirty white to cream, with pulverulent, granulose or subpyramidal squamules, cream, greyish orange, light brown, brown; pileus and pileus context becoming greyish orange to brown after drying; lamellae white to cream, turn grayish orange to light brown when drying; basidiospores obscure small warts visible under SEM; and cheilocystidia lageniform to broadly lageniform.

Etymology: The species epithet "changbaishanensis" is derived from the name of the mountain where the material was collected.

Type: China, Jilin Province, Jiaohe City, Qianjin forest farm, July 23, 2022, coll. T. Bau and H. B. Song (HMJAU68224), Holotype!

Description: Basidiomata small. Pileus 0.8–2.2 cm, hemispherical when young, expanding to plano-convex or applanate, slightly subumbonate with age, dirty white to cream; with pulverulent, granulose or subpyramidal squamules, dirty white to cream, greyish orange (6B2–B8), light brown (7D5–D8), brown (7E5–E8); pileus context whitish, pileus and pileus context becoming greyish orange (6B5–B7) to brown (7E6–E8) after drying. Lamellae free, white to cream, crowded, up to 0.4 cm broad, with 1–3 tiers of lamellulae, turning grayish orange (6B2–B8) to light brown (6D2–D8) when drying. Stipe $3.2-6.2 \times 0.1-0.5$ cm, subcylindrical, occasionally downward thickened; white to cream on the upper portion, subsmooth, with granulose squamules from the annular area downwards, concolorous with pileus, fragile and fugacious. Annulus white, fugacious. Odor and taste not recorded (Figures 3A–C, 4A).

Basidiospores [150,5,5] 4.6–6.0 (-6.4)×2.1–3.0 (-3.4) µm, Q = 1.63-2.54, $Q_v = 2.08$, long ellipsoid to cylindrical, hyaline, slightly thick-walled, smooth-walled under the LM, small warts visible under SEM, inamyloid, non-dextrinoid, metachromatic in cresyl blue, cyanophilous. Basidia13–20×4–7µm, clavate, 4-spored, sometimes 2-spored, greyish yellow (4C4–C6). Lamellar trama regular, greyish yellow (4C3–C7). Cheilocystidia 32–56×6–12µm, lageniform to broadly lageniform, greyish yellow (4C4–C7) to golden yellow (1B4– B8), with a long cylindrical-tortuous apex, slightly thick-walled. Pleurocystidia absent. Pileus and stipe covering an irregular epithelium composed of globose, subglobose, spheropedunculate, 10–21µm in diam., usually 2–5 cells in a string, brownish orange (5C2–C5). Clamp connections present in all structures (Figures 3D–F, 4B–E).

Habitat: Solitary, scattered or clustered on dead leaves and soil of mixed coniferous forests.

Distribution: Found only in Jilin Province, northwestern China.

Additional specimens examined: China, Jilin Province, Helong City, Xianfeng National Forest Park, August 22, 2021, coll. T. Bau and X. Wang (HMJAU68221); Jiaohe City, Qianjin forest farm, July 23, 2022, coll. T. Bau, L. Y. Zhu, W. N. Hou and H. B. Song, (HMJAU68228, HMJAU68229, HMJAU68230); Dunhua City, State forest farm, July 27, 2022, coll. T. Bau and W. N. Hou (HMJAU68225); Baishan City, Jingyu National White Bear Reserve, July 29, 2022, coll. T. Bau and L. Y. Zhu (HMJAU682310); Tonghua City, Baijifeng National Forest Park, July 8, 2023, coll. T. Bau, Q. R. Liu, Z. Q. Cheng, M. Liu and J. L. Wei (HMJAU68226, HMJAU68227, HMJAU68232, HMJAU68222, HMJAU68223).

Maximum likelihood tree based on ITS sequences. New sequences generated for this study are in bold, new species sequences generated for this study are in purple bold. Bootstrap support (BS) values \geq 70%, and Bayesian posterior probability (PP) values \geq 0.95 are indicated on branches (BS/PP). *Echinoderma asperum* and *E. flavidoasperum* are used as outgroup.

Notes: Macromorphologically, this species is similar to *C. fumosifolia*, *C. pyramidalis* and *C. pyramidosquamulosa*, because all of them present subpyramidal squamules on the pileus and stipe surface. But the lamellae of *Cystolepiota fumosifolia* usually have brown spots, and it has pleurocystidia (Vellinga, 2006). *Cystolepiota pyramidalis* has orange white to pale orange pileus, pale yellow lamellae, which turn brownish orange when touched or mature, and ellipsoid-ovoid basidiospores (Sysouphanthong et al., 2022). The lamellae of *Cystolepiota pyramidosquamulosa* are yellowish white, do not change color after drying, and do not have cystidia (Qu et al., 2023).

In the phylogenetic trees (Figures 1, 2), *Cystolepiota changbaishanensis* and *C. hetieri* are sister clades, but the lamellae of the latter's basidiomata did not change color after drying and exhibited pleurocystidia.

3.2.2 *Cystolepiota hongshiensis* T. Bau and X. Y. Zhou, sp. nov.

MycoBank number: MB 851390 (Figures 5, 6).

Diagnosis: *C. hongshiensis* is distinguished from other *Cystolepiota* species by its hemispherical to convex pileus, with granulose to warty squamules, white to cream, and rough basidiospores under SEM. Its ITS, LSU, rpb2, and tef1- α sequences are different from those of other species.

Etymology: The species epithet "hongshiensis" is derived from the name of the park where the material was collected.

Type: China, Jilin Province, Huadian City, Hongshi Township, Red Rock National Forest Park, August 27, 2023, coll. T. Bau and X. Wang (HMJAU68204), Holotype!

Description: Basidiomata small. Pileus 0.3–2.2 cm, hemispherical when young, hemispherical to convex with age, white to cream; with granulose to warty squamules, white to cream, yellowish white (4A2–A3), orange white (6A2–A3); occasionally pinkish orange (6A2–A3) on center, margin appendiculate with veil remnants when young, concolorous with pileus; pileus context white to cream. Lamellae free, white to cream, crowded, up to 0.3 cm broad, with 1–3 tiers of lamellulae. Stipe $2.1-5.3 \times 0.1-0.2$ cm, subcylindrical, slightly enlarged at base, surface white to cream on the upper portion, greyish

orange (5B2–B3) to reddish brown (8E4–E8) at base, with age gradually turning to reddish brown (8E4–E8) towards the middle and lower portion, with pulverulent to granulose squamules, concolorous with pileus, fugacious; context reddish brown (8E4–E8) at stipe base. Annulus white, fugacious. Odor and taste not recorded (Figures 5A–C, 6A).

Basidiospores [120,4,4] (-3.7) 4.4–5.9 (-6.1)×2.0–3.5 μ m, Q = 1.53-2.30, $Q_v = 1.89$, long ellipsoid, hyaline, thin-walled, smoothwalled under the LM, distinct warts visible under SEM, inamyloid, non-dextrinoid, metachromatic in cresyl blue, cyanophilous. Basidia $15-22\times5-7 \mu$ m, clavate, 4(2)-spored. Lamellar trama regular. Pleurocystidia and cheilocystidia absent. Pileus and stipe covering an irregular epithelium composed of globose to subglobose elements, $10-43 \mu$ m in diam., usually 2–5 cells forming loosely arranged chains, hyphae $1-4 \mu$ m in diam., slightly thick-walled, Clamp connections present in all structures (Figures 5D–F, 6B–D).

Habitat: Solitary to scattered on dead branches and rotten leaves of mixed forest.

Distribution: Found only in Jilin Province, northwestern China.

Additional specimens examined: China, Jilin Province, Jiaohe City, Qianjin forest farm, August 25, 2022, coll. T. Bau and H. Cheng

(HMJAU68205); Jiaohe City, Hongyegu, July 31, 2023, coll. T. Bau and S. Y. Li (HMJAU68216); Huadian City, Zhaodaji Mountain National Forest Park, August 21, 2023, coll. T. Bau and X. Wang (HMJAU68207); Huadian City, Red Rock National Forest Park, August 27, 2023, coll. T. Bau, M. L. and X. Y. Zhou (HMJAU68203, HMJAU68206); August 28, 2023, coll. T. Bau, H. Cheng and X. Y. Zhou (HMJAU68202, HMJAU68212, HMJAU68215).

Notes: Macromorphologically, *Cystolepiota hongshiensis* and *C. pseudoseminuda*, with similar pileus surface squamules. But the latter pileus is plano-convex or applanate slightly umbonate, basidiospores (-3) 3.5-4.5 (-5) $\times 2-3$ (-3.5) μ m, Q = (-1.21) 1.24–1.85 (-2.20), $Q_m = 1.55 \pm 0.19$, ovoid to ellipsoid, the basidiospores of *C. hongshiensis* are more elongated than those of *C. pseudoseminuda* (Qu et al., 2023). In addition, there are 65 (out of 706) nucleotide differences between the ITS sequences of the holotype of *C. hongshiensis* and that of the holotype of *C. pseudoseminuda*.

3.2.3 *Cystolepiota luteosquamulosa* T. Bau and X. Y. Zhou, sp. nov.

MycoBank number: MB 849380 (Figures 7, 8).

FIGURE 3

Cystolepiota changbaishanensis. (A–C) Basidiomata, (A') dried specimen, (D) basidiospores under SEM, (E) basidiospores under LM, (F) cheilocystidia; (A,D–F) HMJAU68224 (holotype), (B) HMJAU68223, (C) HMJAU68222; bars: A–C =1 cm, E = 1 µm, F = 10 µm.

Diagnosis: *C. luteosquamulosa* is distinguished from other *Cystolepiota* species by its light yellow to greyish yellow pileus, with greyish yellow to dark yellow warty to subpyramidal squamules, light reddish brown stipe with white to light yellow floccose squamules, and pleurocystidia and cheilocystidia absent.

Etymology: "luteo-" means yellow, and "luteosquamulosa" refers to the yellow squamules on the pileus.

Type: China, Jilin province, Jiaohe City, Hongyegu, September 6, 2021, coll. T. Bau and X. Wang (HMJAU67711), Holotype!

Description: Basidiomata small. Pileus 0.8–1.4 cm, hemispherical to obtusely conical when young, expanding to plano-convex or applanate with a slightly umbonate center with age, light yellow (1A4–A8) to greyish yellow (2B5–B8), with greyish yellow (2C7–C8) to dark yellow (3C5–C8) warty to subpyramidal squamules; margin appendiculate with veil remnants when young, and then finely appendiculate, concolorous with pileus; context white, thin. Lamellae free, white to cream, crowded, 0.1–0.3 cm wide, with 1–3 tiers of lamellulae, drying brownish orange (5C2–C6). Stipe 2.5–5.6 × 0.1–0.2 cm, subcylindrical, light reddish brown (7E5–E8), with some floccose squamules, white to light yellow (1A2–A8), with conspicuous white mycelia on the base. Annulus not visible. Odor and taste not recorded (Figures 7A–C, 8A).

Basidiospores [120,4,4] 4.9–6.3 (-6.6)×(-2.0) 2.4–3.0 (-3.3) µm, Q=1.70–2.63, Q_v=2.10, long ellipsoid to cylindrical, hyaline, smoothwalled under the LM, finely punctate under SEM, inamyloid, non-dextrinoid, metachromatic in cresyl blue, cyanophilous. Basidia 15–23×4–7µm, clavate, 4-spored, sometimes 2-spored. Lamellar trama regular. Pleurocystidia and cheilocystidia absent. Squamules composed of loosely-arranged globose, subglobose, ovoid, 13–62µm in diam., rarely gourd-shaped or fusiform, 17–42×7–16µm, sometimes 2–4 cells are connected in a string, smooth-walled, slightly thick-walled, hyaline, or orange white (5A2–A3). Clamp connections present in all structures (Figures 7D–F, 8B–D).

Habitat: Solitary or scattered on dead leaves or soil of mixed forest. Distribution: Northeastern China.

Additional specimens examined: China, Jilin Province, Jiaohe City, Qianjin forest farm, July 24, 2022, coll. T. Bau and L. Y. Zhu (HMJAU67810); Dunhua City, State Forest farm, July 27, 2022, coll. T. Bau, W. N. Hou and F. Guo (HMJAU67808, HMJAU69060); Huadian City, Red Rock National Forest Park, August 28, 2023, coll. T. Bau and H. Cheng (HMJAU67807). Heilongjiang Province, Yichun

FIGURE 5

Cystolepiota hongshiensis. (A–C) Basidiomata, (D) basidiospores under SEM, (E) basidiospores under LM, (F) hyphae ends on the hymenium; (A) HMJAU68204 (holytype), (B) HMJAU68202, (C) HMJAU68207; bars: A-C = 1 cm, $E = 5 \mu\text{m}$, $F = 10 \mu\text{m}$.

City, Xing'an National Forest Park, July 25, 2023, coll. T. Bau and W. N. Hou (HMJAU67809).

Notes: Macromorphologically, both *C. luteosquamulosa* and *C. luteohemisphaerica* have yellow pileus. But in the latter, the pileus

is radially veined and micaceous-mealy, with broadly elliptical to elliptical basidiospores (Saar and Laessoe, 2008). *C. icterina* also has a yellow pileus, but it is easy to distinguish from *C. lutesquamulosa* by its pileus surface with finely floccose-farinose squamules, by its smaller $(3.5-4.5 \times 2.5 \mu m)$ and dextrinoid basidiospores and by the presence of cheilocystidia (Knudsen, 1978).

3.2.4 *Cystolepiota nivalis* T. Bau and X. Y. Zhou, sp. nov.

MycoBank number: MB 851388 (Figures 9, 10).

Diagnosis: The main distinguishing features of *C. nivalis* are the widely umbonate, white, farinose pileus, with a strongly appendiculate margin, with a farinose stipe and cystidia absent.

Etymology: "nivea" refers to snowy white pileus.

Type: China, Jilin province, Jiaohe City, Qianjin forest farm, August 25, 2023, coll. T. Bau and M. Liu (HMJAU68220), Holytype!

Description: Basidiomata small. Pileus 1.2–1.7 cm, hemispherical, then campanulate, with a broad umbo, with concolorous farinose squamules; margin appendiculate strongly farinose, concolorous with pileus; context thin, whitish. Lamellae free, crowded, white to light cream, unequal, with 1–3 tiers of lamellulae. Stipe $3.7–5.6 \times 0.1–0.2$ cm, central, subcylindrical to cylindrical, surface strongly farinose, white to cream, light brown (6D5–D8) to reddish brown (7E4–E8) towards the base. Annulus white, fugacious. Odorless, taste not recorded (Figures 9A–C, 10A).

Basidiospores [120,4,4] 3.8–4.7 (-4.9)×2.0–3.0 µm, Q=1.47-2.06 (-2.28), $Q_v=1.85$, ellipsoid to cylindrical, slightly thick-walled, smooth-walled under the LM and SEM, hyaline inamyloid, non-dextrinoid, metachromatic in cresyl blue, cyanophilous. Basidia 12–17×3.5–5 (-6) µm, clavate, 4-spored, sometimes 2-spored, hyaline. Lamellar trama regular. Pleurocystidia and cheilocystidia absent. Pileus and stipe covering composed of globose, subglobose,

FIGURE 7

Cystolepiota luteosquamulosa. (A–C) Basidiomata, (A') dried specimen, (D) basidiospores under SEM, (E) basidiospores under LM, (F) hyphae ends on the hymenium; (A,D–F) HMJAU67711 (holotype), (B) HMJAU67809, (C) HMJAU67810; bars: A–C = 1 cm.

under LM, (C) cells of the squamules, (D) basidia; bars: A = 2 cm; $B = 5 \mu$ m; $C = 30 \mu$ m; $D = 10 \mu$ m.

pyriform cells $8-36 \,\mu\text{m}$ in diam., or $9-25 \times 4-12 \,\mu\text{m}$, sometimes 2-5 cells connected in a string, thin-walled, hyaline. Clamp connections present in all structures (Figures 9D–F, 10B–D).

Habitat: Solitary to scattered in mixed forest.

Distribution: Found only in Jilin Province, northwestern China. Additional specimens examined: China, Jilin province, Jiaohe City, Qianjin forest farm, August 25, 2023, coll. T. Bau and H. Cheng (HMJAU68219); Huadian City, Red Rock National Forest Park, August 27, 2023, coll. T. Bau and X. Y. Zhou (HMJAU68217, HMJAU68218).

Notes: Morphologically, *P. petasiformis* also has a white pileus with an obvious umbonate, but it is easy to distinguish from *C. nivalis* by its context turns pale orange after cut, and lacks clamp connections (Vellinga and Huijser, 1998; Yang et al., 2019).

Key to species of *Cystolepiota* in China.

1. Pileus surface squamules fluorescent pink or greyish yellow
1′. Pileus and pileus surface squamules white, cream, pale pinkish, pale yellow, light yellow brown
2. Pileus surface squamules fluorescent pink
C. squamulosa
2'. Pileus surface squamules greyish yellow
C. luteosquamulosa
3. Pileus and pileus surface squamules white only
4. Lamellulae dry to greyish orange, light brown, greyish
A' Lamellules dry unchanged to growish orange light brown
4. Lamenuae dry unchanged to greyish orange, light brown,
greyish brown
5. Pieurocysticia absent.
C. changbaishanensis

FIGURE 9

Cystolepiota nivalis. (A–C) Basidiomata, (D) basidiospores under SEM, (E) basidiospores under LM, (F) hyphae ends on the hymenium; (A,D–F) HMJAU68220 (holytype), (B) HMJAU68218, (C) HMJAU68219; bars: A–C = 1 cm, E = 5 µm, F = 10 µm.

5'. Pleurocystidia present, numerous......C. fumosifolia

6. Cheilocystidia present
6'. Cheilocystidia absent
7. Pleurocystidia absent
7'. Pleurocystidia present
8. Cheilocystidia ventricose-capitate at apex, pleurocystidia rarely, occasionally clavate to fusiform
9. Basidiospores strongly dextrinoid
9'. Basidiospore inamyloid, non-dextrinoid
10. Basidiospores surface rough under SEM
10'. Basidiospores surface smooth under SEM
11. Pileus expanding to plano-convex or applanate slightly umbonate, basidiospores $(-3)3.5-4.5(-5)\times2-3$ (-3.5) µm, $Q_m = 1.55 \pm 0.19$, ovoid to ellipsoidC. pseudoseminuda 11. Pileus hemispherical to convex, without umbonate, basidiospores $(-3.7)4.4-5.7(-6.1)\times2-3.5$ µm, $Q_m = 1.89 \pm 0.02$, long ellipsoidC. hongshiensis 12. Pileus surface squamules irregular pyramidalC. pyramidosquamulosa
12'. Pileus surface squamules powdery to granulose

Cracinar	HMJAU68202			HMJAU68203			HMJAU68204			HMJAU68205			
specimen	Length	Width	Q	Length	Width	Q	Length	Width	Q	Length	Width	Q	
Average	5.303	2.803	1.902	5.02	2.682	1.881	4.772	2.561	1.871	5.421	2.838	1.923	
Min	4.84	2.28	1.609	4.43	2.35	1.531	3.72	1.98	1.591	4.65	2.2	1.598	
Max	6.09	3.3	2.295	5.86	3.19	2.175	5.21	2.99	2.106	6.1	3.49	2.277	
C. aff. seminuda 1													
	н	MJAU6819	91		HMJAU681	192	H	HMJAU68193		HMJAU68194			
Specimen	Length	Width	Q	Length	Width	Q	Length	Width	Q	Length	Width	Q	
Average	4.384	2.349	1.876	4.042	2.271	1.788	4.116	2.25	1.84	4.043	2.233	1.822	
Min	3.74	1.79	1.619	3.67	1.91	1.52	3.77	1.81	1.577	3.64	1.81	1.506	
Max	4.69	2.78	2.553	4.69	2.7	2.23	4.52	2.72	2.254	4.6	2.68	2.215	
					C. af	ff. seminue	da 2						
C	н	MJAU6819	6	н	HMJAU68197			HMJAU68198			HMJAU68199		
Specimen	Length	Width	Q	Length	Width	Q	Length	Width	Q	Length	Width	Q	
Average	4.045	2.182	1.861	4.153	2.235	1.849	4.089	2.243	1.832	4.057	2.256	1.796	
Min	3.46	1.86	1.591	3.81	1.86	1.57	3.7	1.93	1.548	3.62	1.79	1.576	
Max	4.75	2.59	2.127	5.01	2.7	2.172	4.6	2.57	2.295	4.73	2.65	2.139	
C. aff. seminuda 1	and C. aff. semi	nuda 2											
$[240/8/8] \ 3.5-4.7 \ (-5.0) \times 1.8-2.8, \ Q = 1.55-2.30, \ Q_{\rm m} = 1.83 \pm 0.03$													

TABLE 2 Average, minimum, and maximum of 30 mature spore measurements for C. hongshiensis, C. seminuda, C. aff. seminuda.

C. seminuda (Qu et al., 2023)

[160/8/7] (-3) 3.5-4.5 (-5)×(-1.5) 2-2.5 (-3) µm, Q = (-1.41) 1.46-2.15 (-2.45), $Q_m = 1.78 \pm 0.22$

4 Discussion

In both phylogenetic trees, the two species in *Melanophyllum* belong to *Cystolepiota*. Because a *Melanophyllum* (Velenovský, 1921) description was published earlier than that of *Cystolepiota* (Singer and Digilio, 1952), *Melanophyllum* should be used as the legal name for these two genera (Turland et al., 2018). However, the number of species in *Cystolepiota* is significantly higher than that in *Melanophyllum*. If merged, numerous synonyms can be produced. We thus applied *Cystolepiota* s.l. to both genera. We also found that no molecular data are available for many of the species in *Cystolepiota*. In particular, no molecular data is available for the model species *C. constricta*. For most species, the available molecular data is limited to ITS sequences. Other DNA regions (LSU, rpb2, tef1- α) have been sequenced for very few species. More detailed and comprehensive sampling is required to facilitate further studies of *Cystolepiota* s.l..

The macroscopic and microscopic characteristics of many *Cystolepiota* species overlap. Molecular data and phylogenetic analyses are thus necessary to identify *Cystolepiota* species with similar morphological features. For example, the species in *Cystolepiota seminuda* complex are morphologically similar. *Cystolepita hongshiensis* is a novel species examined in this study. Morphologically, *Cystolepita hongshiensis* and *C. pseudoseminuda* are similar, and require further characterization using molecular data and phylogenetic analyses. Among the *Cystolepiota seminuda* 2. We found no morphological

differences between them (Table 2). In two phylogenetic trees (Figures 1, 2), *C*. aff. *seminuda* 1 and *C*. aff. *seminuda* 2 are genetically distant from *C*. *seminuda*. We are thus temporarily treating it as a cryptic species.

We also found that *Cystolepiota* species morphology did not correspond to phylogeny. *Cystolepiota bucknallii*, *C. rhodella*, and *C. icterina* in *Cystolepiota* sect. *Pseudoamyloideae* did not form a clade in the phylogenetic tree. They each formed a distinct long clade. *Cystolepiota luteosquamulosa* with basidiospore ornamentation did not form a clade with other species displaying basidiospore ornamentation. These require further research.

This study describes four new species belonging to *Cystolepiota* from northeast China. They are well-supported by molecular phylogenetic and morphological evidence. Thereby enriching the species diversity of *Cystolepiota* in China. In the phylogenetic trees (Figures 1, 2), *Cystolepiota* sp. (HMJAU68234, HMJAU68235, HMJAU68257), *Melanophyllum* sp. (HMJAU68255), and *Pulverolepiota* sp. (HMJAU68236) are just one specimen. The findings of this study indicate the potential existence of undiscovered species in northeast China needs to be studied further.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.

Author contributions

X-YZ: Conceptualization, Investigation, Methodology, Writing – original draft, Writing – review & editing. TB: Conceptualization, Investigation, Methodology, Resources, Writing – review & editing.

Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research was financed by the National Natural Science Foundation of China (Project No. 32070010).

Acknowledgments

The authors are very grateful to the National Natural Science Foundation of China (Project No. 32070010) for supporting this research. The authors sincerely thank the teacher and the team for

References

Bau, T., and Li, Y. (2004). Lepiota squamulosa, a new species from China. J. Fungal Res. 2, 49–50. doi: 10.13341/j.jfr.2004.03.011

Bon, M. (1991). Les genres *Echinoderma* (Locq. ex Bon) st. nov. et Rugosomyces Raithelhuber ss. Lato. *Doc. Mycol.* 21, 61–66.

Bon, M. (1993). Famille Lepiotaceae Roze ex Overeem. Doc. Mycol. 22, 27-32.

Capella-Gutiérrez, S., Silla-Martínez, J. M., and Gabaldón, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 25, 1972–1973. doi: 10.1093/bioinformatics/btp348

Chou, W. N. (2010). Nine species of *Lepiota* sensu lato (Basidiomycotina) new to Taiwan. *Collect. Res.* 23, 1–7. doi: 10.6693/CAR.2010.23.1

Clémençon, H. (2012). *Cytology and Plectology of the Hymenomycetes. 2nd revised edition.* Stuttgart: Gebrüder Borntraeger Verlagsbuchhandlung.

Edler, D., Klein, J., Antonelli, A., and Silvestro, D. (2021). raxmlGUI 2.0: a graphical interface and toolkit for phylogenetic analyses using RAxML. *Methods Ecol. Evol.* 12, 373–377. doi: 10.1111/2041-210x.13512

Gardes, M., and Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. *Mol. Ecol.* 2, 113–118. doi: 10.1111/j.1365-294x.1993.tb00005.x

Hou, Y. J., and Ge, Z. W. (2020). New species of *Echinoderma* and *Lepiota* (Agaricaceae) from China. *Phytotaxa* 447, 221–236. doi: 10.11646/phytotaxa.447.4.1

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A., and Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods* 14, 587–589. doi: 10.1038/nmeth.4285

Katoh, K., Rozewicki, J., and Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Brief. Bioinform.* 20, 1160–1166. doi: 10.1093/bib/bbx108

Knudsen, H. (1978). Notes on *Cystolepiota* Sing. and *Lepiota* S.F. Gray. *Bot. Tidsskr.* 73, 124–136.

Knudsen, H. (1980). A revision of *Lepiota* sect. *Echinatae* and *Amyloideae* (Agaricaceae) in Europe. *Bot. Tidsskr.* 75, 121–155.

Kornerup, A., and Wanscher, J. H., (1963). *Methuen handbook of colour*. London: Eyre Methuen.

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* 33, 1870–1874. doi: 10.1093/molbev/msw054

Mao, X. L., Zhuang, J. Y., Zhuang, W. Y., Guo, Y. L., Guo, L., Zhang, X. Q., et al. (1997). Fungi of the Qinling Mountains. Beijing: China Agricultural Science and Technology Press.

Matheny, P. B. (2005). Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (*Inocybe*; Agaricales). *Mol. Phylogenet.* 35, 1–20. doi: 10.1016/j.ympev.2004.11.014

their help. The authors would also like to thank the reviewers and editors whose corrections and suggestions have enabled our work to be published.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Qu, H., Damm, U., Hou, Y. J., and Ge, Z. W. (2023). Taxonomy and phylogeny of *Cystolepiota* (Agaricaceae, Agaricales): new species, new combinations and notes on the *C. seminuda* Complex. *J. Fungi* 9:537. doi: 10.3390/jof9050537

Rambaut, A. (2016). "FigTree v1.4.3 2006–2016" in *Tree figure drawing tool* (Institute of Evolutionary Biology University of Edinburgh) Available at: https://vcru.wisc.edu/simonlab/bioinformatics/programs/figtree/README.txt

Rehner, S. A., and Buckley, E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to *Cordyceps* teleomorphs. *Mycologia* 97, 84–98. doi: 10.3852/mycologia.97.1.84

Rehner, S. A., and Samuels, G. J. (1994). Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. *Mycol. Res.* 98, 625–634. doi: 10.1016/S0953-7562(09)80409-7

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 61, 539–542. doi: 10.1093/sysbio/ sys029

Saar, I., and Laessoe, T. (2008). A re-evaluation of *Cystoderma luteohemisphaericum*. *Mycotaxon* 104, 313–320.

Sánchez-García, M., Ryberg, M., Khan, F. K., Varga, T., Nagy, L. G., and Hibbett, D. S. (2020). Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi. *Proc. Natl. Acad. Sci. U.S.A.* 117, 32528–32534. doi: 10.1073/pnas.1922539117

Singer, R. (1986). The Agaricales in modern taxonomy, 4. Koenigstein: Koeltz Scientific Books, Koenigstein.

Singer, R., and Clémençon, H. (1972). Notes on some leucosporous and rhodosporous European agarics. *Nova Hedwigia* 23, 305–351.

Singer, R., and Digilio, A. P. (1952). Pródromo de la flora agaricina Argentina. *Lilloa* 25, 5–461.

Sysouphanthong, P., Thongklang, N., Liu, Y. S., and Vellinga, E. C. (2022). Three new species of *Cystolepiota* from Laos and Thailand. *Diversity* 14:449. doi: 10.3390/d14 060449

Turland, N. J., Wiersema, J. H., Barrie, F. R., Greuter, W., Hawksworth, D. L., Herendeen, P. S., et al (2018). International code of nomenclature for algae, fungi, and plants. Nineteenth International Botanical Congress Shenzhen, China Koeltz botanical books.

Velenovský, J. (1921). České houby III. Prague: Česká botanická společnost.

Vellinga, E. C. (1988) "Glossary," in *Flora agaricina neerlandica Volume 1*. eds. C. Bas, T. W. Kuyper, M. E. Noordeloos and E. C. Vellinga (Rotterdam: AABalkema).

Vellinga, E. C. (2003). Phylogeny of *Lepiota* (Agaricaceae)—evidence from nrITS and nrLSU sequences. *Mycol. Prog.* 2, 305–322. doi: 10.1007/s11557-006-0068-x

Vellinga, E. C. (2006). Lepiotaceous fungi California, U.S.A.—4. Type studies of Lepiota fumosifolia and L. petasiformis. Mycotaxon 98, 225–232.

Vellinga, E. C., and Huijser, H. A. (1998). Notes on Cystolepiota: sections Cystolepiota and Pulverolepiota. Pers.: Mol. Phylogeny Evol. Fungi 16, 513–526.

Vilgalys, R., and Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from severa *Cryptococcus* species. *J. Bacteriol.* 172, 4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990

White, T. J., Bruns, T., Lee, S. J. W. T., and Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *PCR Protoc.* 18, 315–322. doi: 10.1016/B978-0-12-372180-8.50042-1

Xu, M. L., Li, G. J., Zhou, J. L., Bai, X. M., and Zhao, R. L. (2016). New species of *Cystolepiota* from China. *Mycology* 7, 165–170. doi: 10.1080/21501203. 2016.1239231

Yang, Z. L., and Ge, Z. (2017). Six new combinations of lepiotaceous fungi from China. *Mycosystema* 36, 542–551. doi: 10.13346/j.mycosystema.160221

Yang, Z. L., Ge, Z. W., and Liang, J. F. (2019). "Flora fungorum sinicorum" in *Fungi* lepiotoidei (Agaricaceae) (Beijing: Science Technology Press)