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Tropaeolum majus L. is a versatile edible plant that is widely explored due to its 
medicinal properties and as a key element in intercropping systems. Its growth 
could be improved by the use of biofertilizers that can enhance nutrient uptake 
by the plant or provide tolerance to different abiotic and biotic stresses. In a 
previous study, 101 endophytes isolated from T. majus roots showed more 
than three plant growth-promoting (PGP) features in vitro, such as phosphate 
mineralization/solubilization, production of siderophores, antimicrobial 
substances and indole-related compounds, and presence of the nifH gene. 
To provide sustainable alternatives for biofertilization, the genomes of two 
promising endophytes—CAPE95 and CAPE238—were sequenced to uncover 
metabolic pathways related to biofertilization. Greenhouse experiments 
were conducted with 216 seeds and 60 seedlings, half co-inoculated with 
the endophytes (treatment) and half inoculated with 1X PBS (control), and 
the impact of the co-inoculation on the plant’s bacteriome was accessed 
through 16S rRNA gene metabarcoding. The strains CAPE95 and CAPE238 
were taxonomically assigned as Bacillus thuringiensis and Paenibacillus 
polymyxa, respectively. Metabolic pathways related to the enhancement of 
nutrient availability (nitrogen fixation, sulfate-sulfur assimilation), biosynthesis 
of phytohormones (indole-3-acetic acid precursors) and antimicrobial 
substances (bacilysin, paenibacillin) were found in their genomes. The in vivo 
experiments showed that treated seeds exhibited faster germination, with a 
20.3% higher germination index than the control on the eleventh day of the 
experiment. Additionally, treated seedlings showed significantly higher plant 
height and leaf diameters (p < 0.05). The bacterial community of the treated 
plants was significantly different from that of the control plants (p < 0.001) and 
showed a higher richness and diversity of species (Chao and Shannon indexes,  
p < 0.001). A higher relative abundance of potential synergistic PGP bacteria was 
also shown in the bacteriome of the treated plants, such as Lysinibacillus and 
Geobacter. For the first time, co-inoculation of B. thuringiensis and P. polymyxa 
was shown to have great potential for application as a biofertilizer to T. majus 
plants. The bacterial consortium used here could also be explored in other plant 
species in the future.
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1 Introduction

Tropaeolum majus L. is a versatile plant originated from Latin 
America. T. majus is an edible plant that has medicinal properties and 
is commonly used for landscaping. Its leaves and flowers are usually 
consumed in salads, its seeds are pickled, and its roots can be used for 
tea consumption. T. majus is also relevant for intercropping systems 
since it is tolerant to severe drought stress, is able to improve soil 
coverage and prevent the growth of weeds on organic farms, and is 
usually cultivated in a consortium system with other crops (Golian 
et al., 2023; Mircea et al., 2023). Moreover, the plant extracts show 
great antimicrobial activity, can inhibit the growth of cancer cell lines, 
have antiadipogenic effects and have also been studied as a possibility 
for acute bronchitis treatment (Ailane et al., 2022; Vrca et al., 2022; 
Albrecht et al., 2023).

In a previous study, the root bacteriome of T. majus plants grown 
in an organic farming system was analyzed, and 236 endophytes were 
isolated from the plant roots (Dal’Rio et al., 2022). Among the isolates, 
the two strains Bacillus sp. CAPE95 and Paenibacillus sp. CAPE238 
(denoted previously as E95 and E238, respectively) showed five plant 
growth-promoting (PGP) traits in vitro. These features included 
mineralization and solubilization of phosphate, biosynthesis of 
siderophore and antimicrobial substances, production of indole-
related compounds (exclusively in the Bacillus sp. CAPE95 strain) and 
the presence of the dinitrogenase reductase subunit (nifH) encoding 
gene (exclusively in the Paenibacillus sp. CAPE238 strain).

Both Bacillus and Paenibacillus spp. are ubiquitously present in 
the environment, and they are commonly found in close association 
with plants. These genera include endospore-forming bacteria that 
may possess PGP traits, as they can enhance plant nutrient uptake, 
elicit immunity, alleviate abiotic stresses and act as biocontrol agents 
through the production of antimicrobial substances (Langendries and 
Goormachtig, 2021; Soni and Keharia, 2021). The ability of these 
genera to produce endospores gives them a better chance to colonize 
the plant and promote growth, since they can easily disperse in the 
environment and resist harsh conditions, such as salinity and drought. 
For this reason, we believe that endospore-forming bacteria are more 
appealing for the development of biofertilizers than other plant 
growth-promoting bacteria (PGPB).

Biofertilizers, also known as microbial inoculants, are organic 
products composed of microorganisms that are able to colonize plants 
and promote their growth by enhancing plant nutrient uptake and 
protecting them against phytopathogens and pests. Moreover, these 
PGP microorganisms can also produce lytic enzymes that contribute 
to reducing the toxicity in soil caused by chemical fertilizers (Kour 
et al., 2020). In this context, the use of biofertilizers in medicinal plants 
has been proven to increase the quality and quantity of secondary 
metabolites that can be extracted and applied by various industries 
(Ahmad et al., 2022). For example, these metabolites can be a source 
of phytomedicines relevant for pharmaceutical industries.

To further investigate the potential application of the endophytes 
Bacillus sp. CAPE95 and Paenibacillus sp. CAPE238 as biofertilizers, 
the whole genomes of these strains were explored, leading to a 
taxonomic classification at the species level, and the metabolic 
pathways associated with biofertilization were identified. Moreover, 
the two strains were co-inoculated into T. majus seeds and seedlings 
to evaluate their biofertilization potential in vivo. The impact of the 
consortium inoculation on the plant bacteriome was assessed 
through 16S rRNA gene metabarcoding, and the enrichment of 
bacterial taxa was investigated. The results obtained in the present 
study provide evidence that the selected endophytes have great 
biotechnological potential for application in agriculture.

2 Materials and methods

2.1 Bacterial strains

The endophytes Bacillus sp. CAPE95 and Paenibacillus sp. 
CAPE238 were previously isolated from Tropaeolum majus L. surface-
sterilized roots of plants cultivated in an organic farming system in 
Nova Friburgo, Rio de Janeiro, Brazil (Dal’Rio et al., 2022). The strains 
were stored in tryptic soy broth (TSB) supplemented with 20% 
glycerol at −80°C, and to perform the DNA extraction and in vivo 
assays, the strains were reactivated in 50 mL of TSB for 24 h at 32°C 
under agitation (150 rpm).

2.2 Genomic analysis

2.2.1 DNA isolation and whole genome 
sequencing

Both strains CAPE95 and CAPE238 had their DNA isolated 
using the methods described by Rosado and Seldin (1993). The 
bacterial cultures of each strain were centrifuged (10,000 × g for 
15 min), concentrated in 5 mL of Tris-EDTA-NaCl buffer (pH = 8.0), 
treated with 500 μL of lysozyme (10 mg mL−1 for 1 h at 37°C) and 
500 μL of 10% sodium dodecyl sulfate (10 min at 37°C). The DNA 
purification process was performed as described by Seldin and 
Dubnau (1985). The concentration and purity of the DNA were 
determined using a Quibit™ 3.0 fluorometer (Thermo Fisher 
Scientific™, Waltham, MA, United  States) and a Nanodrop 
spectrophotometer (Thermo Fisher Scientific™), respectively, 
guaranteeing a total genomic DNA concentration ≥ 200 ng, in a 
sample volume ≥ 20 μL and adopting the parameters of purity of 
A260/280 = 1.8–2.0. Furthermore, the DNA from both strains was 
sent to Novogene (SAC, United States). Paired-end libraries (2 × 
150 bp) with a 350 bp insert size were constructed, and the whole 
genome was sequenced on an Illumina NovaSeq 6000 following the 
manufacturer’s recommendations.
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2.2.2 De novo genome assembly
An initial quality control step of the raw reads obtained from both 

the CAPE95 and CAPE238 genomes was performed using fastp (Chen 
et al., 2018) to remove adapters and low-quality bases. Furthermore, 
the quality of the reads was checked with FastQC (Andrews, 2010), 
and MultiQC (Ewels et al., 2016) was used to merge the results from 
both fastp and FASTQC softwares. The 150 bp paired-end reads of 
each strain were assembled using Unicycler (Illumina-only assembly 
method; Wick et al., 2017), and the quality of the assembled genomes 
was accessed using QUAST (Gurevich et al., 2013).

2.2.3 Taxonomic classification and functional 
annotation

To determine the taxonomic classification of each strain, 
GTDB-Tk v2 software (Chaumeil et  al., 2022) was used. Briefly, 
GTDB-Tk uses Prodigal (Hyatt et al., 2010) for gene calling, HMMER 
(Finn et  al., 2011) for the identification of 120 marker genes and 
alignment in the database Genome Taxonomy Database (GTDB) and 
pplacer (Matsen et al., 2010) for domain-specific tree construction. 
ANI (Average Nucleotide Identity; FastANI calculated; Jain et al., 
2018) was used for genomic distance calculations, whereas the 
threshold to be classified as the same species was mostly considered 
ANI ≥ 95% (Olm et al., 2020). The generated phylogenomic tree was 
exported to iTOL v6,1 and metadata were added.

Moreover, as species assignments within the Bacillus cereus group 
can be intricate (Carroll et al., 2022), the Bacillus cereus cgMLST (core 
genome multilocus sequence typing; Tourasse et al., 2023) and rMLST 
(ribosomal multilocus sequence typing; Jolley et al., 2018) tools—
available at PubMLST2—were also used for more accurate 
classification of the CAPE95 strain.

The software Anvi’o (Eren et al., 2021) was used for functional 
annotation via the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database for genes and metabolic pathways (Release 107.0, 
July 1, 2023; Kanehisa et  al., 2023). Comparatively, functional 
annotation was also performed with Prokka (Seemann, 2014), and the 
results were analyzed using UniProt UGENE (Okonechnikov 
et al., 2012).

2.3 Greenhouse in vivo experiments

2.3.1 Seed germination test
The reactivated strains CAPE95 and CAPE238 were grown in TSB 

with the addition of 1.5% agar (TSA) to confirm their purity by colony 
morphology visualization and through the Gram staining technique. 
Moreover, 200 mL of sterile TSB was inoculated with 1% of the 
previous growth of each strain and incubated under the same 
conditions as those described in section 2.1. Subsequently, the optical 
density of each bacterial culture was adjusted to 108 CFU mL−1 
(OD600 = ~1.0), and the cells were centrifuged for 15 min at 8,000 rpm. 
The supernatant was discarded, the cell pellet of each strain was 
resuspended in 200 mL of 1X sterile phosphate-buffered saline (PBS), 
and the suspensions of each strain were mixed to obtain the 
consortium. To inoculate the seeds, 100 mL of the consortium 

1 https://itol.embl.de

2 https://pubmlst.org/

suspension was added to 900 mL of sterile 1X PBS, yielding a 
suspension of 107 CFU mL−1.

In the greenhouse located at UFRJ, Rio de Janeiro, Brazil 
(22°50′28″S, 43°14′5″W), 1.2 L pots containing 1 L of Carolina soil 
substrate were added with half of the suggested concentration of the 
fertilizer Forth Cote 14-14-14 (2.5 g L−1). Each pot was sown with 
three T. majus seeds, and each seed was superficially inoculated with 
a Pasteur Pipet with 2 mL of the treatment or the control (sterile 1X 
PBS). Afterwards, the pots were distributed into four blocks, each 
containing control (n = 9) and treatment (n = 9), totaling 36 vases for 
each condition (control or treatment), with 108 seeds for each 
condition. Seed germination of T. majus usually occurs between 10 
and 20 days; therefore, the experiment was conducted for 21 days. The 
pots were irrigated 3 times a day for 3 min. The germination index of 
the seeds was calculated for each condition (control and inoculated 
with the two strains) by dividing the number of total germinated seeds 
by the total number of seeds (108 for each condition).

2.3.2 Seedling growth promotion test
The consortium suspension was prepared as described previously, 

except that the suspension was maintained at 108 CFU mL−1 
(OD600 = ~1.0). In the greenhouse, 30 days after the seeds were sown, 
seedlings were thinned to obtain only one per vase. This time, three 
blocks were established, maintaining only the seedlings that showed 
satisfactory growth (i.e., those that showed similar heights and 
numbers of healthy leaves) for 30 days. These seedlings were then 
redistributed to either the treatment or control, keeping the same 
initial condition of each plant, and maintaining 10 replicates for each 
condition (treatment or control) in three different blocks (a total of 30 
replicates per condition).

The treatment (CAPE95 + CAPE238) and the control (sterile 1X 
PBS) were inoculated by foliar spray (approximately 10 mL per plant). 
The experiment was set for 21 days, and plant parameters were 
registered through time—number of healthy leaves, percentage of 
chlorosis, average leaf diameter and plant height. The average leaf 
diameter was calculated using the average diameter of five different 
leaves of each replicate, and the chlorosis percentage was calculated by 
the number of yellowing leaves divided by the total number of leaves 
and multiplied by 100. The metrics were measured 7, 14, and 21 days 
after inoculation.

2.4 16S rRNA gene metabarcoding

2.4.1 Total DNA isolation from Tropaeolum majus 
roots

At the end of the experiment in the greenhouse (~60 days after 
sowing the seeds), three replicates of each condition (treatment or 
control) from each of the three blocks were sampled, totaling nine 
plants for the control and nine plants for the treatment. Each plant was 
carefully removed from the pots to avoid disrupting the thinner roots, 
and they were placed in sterile plastic bags and immediately 
transported to the laboratory.

The aerial part of the plant was cut with sterile scissors, and the 
roots were shaken to remove the loosely attached soil. Ten grams of 
roots with adhered soil from each of the 18 plants were weighed and 
homogenized with 5 mL of sterile distilled water in a sterilized mortar 
and pestle, in which they were macerated to obtain an extract of 
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rhizosphere and endophytic bacteria. DNA extraction was performed 
as described in Dal’Rio et al. (2022).

2.4.2 Metabarcoding sequencing and analysis
The total DNA extracted from the roots of eighteen T. majus 

plants (treatment and control) was sent to Novogene (Sacramento, 
CA, United States) and sequenced using the Illumina NovaSeq 6000 
platform. The pair of primers 799F (5′-AACMGGATTAGATAC 
CCKG-3′) and 1193R (5′-ACGTCATCCCCACCTTCC-3′) for 
regions V5-V6-V7 of the rrs gene, encoding the 16S rRNA gene 
(Beckers et al., 2016), was added with barcodes to amplify fragments 
of approximately 394 bp. Paired-end sequencing libraries (2 × 250 bp) 
were constructed. After sequencing, the raw reads were filtered by 
removing primers and barcodes to obtain high-quality sequences. The 
sequences obtained from the 18 samples were analyzed with Mothur 
v.1.48.0 (Schloss et  al., 2009), following the standard operating 
procedure described by Kozich et al. (2013), accessed in June 2023.3

The results were exported to PAST 4.02 (Hammer et al., 2001), 
where boxplots were constructed for alpha-diversity analysis and a 
nonmetric multidimensional scaling (NMDS) analysis was performed 
for beta-diversity using the Bray Curtis dissimilarity index. To explore 
the differential relative abundance of taxa, heat trees were constructed 
using the metacoder package (Foster et  al., 2017) from RStudio 
version 2023.06.0 + 421 (RStudio Team, 2020) and the core 
bacteriome—the most abundant bacterial taxa common in all 
replicates of each condition—was accessed using the tool 
MicrobiomeAnalyst 2.0 (Lu et al., 2023).

2.5 Statistical analyses

PAST 4.02 software (Hammer et al., 2001) was used to perform 
the statistical analyses of the greenhouse experiments and the 
metabarcoding analysis. For the greenhouse experiments, the plant 
growth parameters measured were initially checked for normality 
(Shapiro–Wilk normality test, p > 0.05) and homoscedasticity 
(Levene’s test, p > 0.05), so a two-way ANOVA could be performed, 
considering the influences of the conditions (treatment and control) 
and the influence of the different blocks. Significant differences were 
considered assuming degrees of freedom of 10% (p < 0.1), 5% (p < 0.05) 
and 1% (p < 0.01). The metabarcoding diversity indexes were analyzed 
as described by Dal’Rio et al. (2022). For the relative abundance of 
taxa, the Wilcoxon test was used (p < 0.05) in the software RStudio 
version 2023.06.0 + 421 (RStudio Team, 2020).

3 Results

3.1 Genome analyses

3.1.1 Taxonomic assignment of the strains 
CAPE95 and CAPE238

The genome sequences of both strains are deposited in the 
GenBank database under the accession numbers JAWPHG000000000 

3 https://mothur.org/wiki/miseq_sop/

(CAPE95) and JAWPHF000000000 (CAPE238) in BioProject 
PRJNA1033832. The genome of strain CAPE238 has 5,767,258 bp, 
with a G + C content of 45.53% and a total of 5,138 coding DNA 
sequences (CDS). The genome of strain CAPE95 has 5,655,448 bp, 
with a G + C content of 34.85% and 5,537 coding DNA sequences 
(CDS). The full report of the assembly of the two genomes is provided 
in Supplementary Table S1.

The whole genomes of both strains were used to infer a more 
definitive taxonomic classification at the species level (Figure  1). 
Taxonomic assignment was initially performed using the software 
GTDB-Tk, which uses the Genome Taxonomy Database (GTDB) to 
identify 120 marker genes in the genome, infer and align the translated 
proteins in the database and construct the phylogenetic analysis. The 
results showed that the CAPE238 strain is closely related to 
Paenibacillus polymyxa, with an ANI value of 98.8% (above the 95% 
ANI threshold for the same species assumption; Figure 1A).

The CAPE95 strain was closely related to the Bacillus cereus group; 
however, the ANI values were not sufficient for classification at the 
species level using this method (Figure 1B). The CAPE95 strain was 
closely related to Bacillus thuringiensis, B. cereus and B. bombysepticus 
and exhibited an ANI > 95% (Figure  1B). To confirm the strain’s 
identity, both the cgMLST and rMLST tools were used, and showed 
that CAPE95 shares 100% similarity with Bacillus thuringiensis. 
Therefore, the targeted strains were reliably identified taxonomically 
as Bacillus thuringiensis (CAPE95) and Paenibacillus polymyxa 
(CAPE238).

3.1.2 Functional annotation of the genomes of 
the CAPE95 and CAPE238 strains

To identify genes and pathways that could be  related to the 
biofertilization mechanisms of the strains, metabolic predictions were 
performed. Figure  2 shows the metabolic pathways directly or 
indirectly associated with biofertilization found in both the CAPE238 
and/or CAPE95 genomes through KEGG annotation. A total of 42 
pathways were found and they were associated with at least one 
biofertilization trait. The following metabolic pathways were annotated 
in both strains’ genomes: biosynthesis of metabolites possibly related 
to induced systemic resistance (biotic stressor resistance) and/or 
induced systemic tolerance (abiotic stressor tolerance; 32.7%), 
biosynthesis of antimicrobial substances (19.2%), vitamin production 
(15.4%), nitrogen metabolism (11.5%), sulfur metabolism (9.6%), 
direct or indirect biosynthesis of phytohormones (7.7%), phosphorus 
metabolism (1.9%) and siderophore biosynthesis (1.9%) (Figure 2). 
All percentages correspond to the proportion of each metabolic 
pathway within the total number of pathways annotated.

Both strains showed pathways that could promote plant growth, 
such as the production of the vitamins pantothenate and thiamine, the 
biosynthesis of the phytohormone ethylene and the nutrient cycling 
pathways of inositol phosphate metabolism (related to phytate 
turnover), nitrification and denitrification (Figure 2). Indirectly, these 
strains could also promote growth by acting as biocontrol agents 
through the production of antimicrobial substances, such as 
polyketides (Figure 2). In contrast, the P. polymyxa CAPE238 strain 
showed the nitrogen fixation pathway, whereas B. thuringiensis 
CAPE95 had additional pathways related to antimicrobial 
biosynthesis, such as naringenin and nocardicin A (Figure 2).

Finally, Prokka annotation also provided additional information 
about genes present in both strains that could be related to salt stress 
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tolerance (degS and degU), the production of siderophores 
(bacillibactin), surfactin (srfA and srfD) and other antimicrobial 
substances (AMS), such as bacilysin in CAPE95 and the lantibiotic 
paenibacillin in CAPE238. Therefore, we suggest that the CAPE95 and 
CAPE238 strains could be applied together as a biofertilizer since they 
harbor various shared and specific mechanisms for each strain that 
should work complementarily and promote plant growth.

3.2 Tropaeolum majus biofertilization with 
the consortium Bacillus thuringiensis 
CAPE95 and Paenibacillus polymyxa 
CAPE238

A 21-day experiment was performed to evaluate the capacity of 
the CAPE95 + CAPE238 consortium (treatment) to increase the 
germination rate of T. majus seeds. The results showed that while the 
treated seeds reached the peak germination rate in 11 days, the control 
seeds continued to germinate throughout the experiment (Figure 3A). 
By the 11th day, the germination rate of the treated seeds was 20.3% 
higher than that of the control, and by the 21st day, it was 13.9% 
higher (Figure 3A). The results of this test indicate that the treated 
seeds showed a higher germination rate and had a tendency to 
germinate faster when compared to the control.

Thirty days after the seed treatment, the grown seedlings were 
reinoculated with either the treatment (CAPE95 + CAPE238) or the 
control (sterile 1X PBS), and another 21-day experiment was 

performed. The average leaf diameter was significantly higher in the 
treated plants after 7 (p < 0.1) and 14 days (p < 0.05) and maintained 
the same tendency up to 21 days (Figure 3B). Moreover, the plant 
height was significantly higher in the treated plants throughout the 
whole experiment (7 days p < 0.01; 14 days p < 0.05 and 21 days p < 0.1; 
Figure 3B). The number of healthy leaves was slightly higher and the 
percentage of chlorosis was slightly lower in the treated plants 
throughout the experiment, even though these results were not 
statistically significant (Figure 3B). Therefore, it is possible to infer that 
the treatment is able to promote T. majus growth, especially by 
increasing plant height and leaf diameter.

3.3 Impact of the consortium Bacillus 
thuringiensis CAPE95 and Paenibacillus 
polymyxa CAPE238 treatment on the root 
bacteriome of Tropaeolum majus plants

At the end of the in vivo experiments in the greenhouse, the total 
DNA was isolated from the roots of 18 T. majus plants (nine for the 
control and nine for the treatment) and sequenced via 16S rRNA gene 
metabarcoding. A total of 1,165,555 sequences were obtained, and a 
positive control showed that the sequencing had an overall error rate 
of 0.0114. Moreover, a negative control was used to remove possible 
contaminants from the sequences, which were normalized to 27,365 
per sample and resulted in a total of 722,701 sequences and 19,192 
OTUs. The rarefaction curves indicate that the number of samples was 
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enough to cover most of the local bacterial diversity, whereas the 
bacteriome of the plants treated with the consortium showed a higher 
diversity (OTU richness) when compared to the control 
(Supplementary Figure S1).

3.3.1 Bacterial community diversity analyses
Alpha and beta-diversity analyses were performed to better 

understand the impact of the consortium inoculation on the root 
bacteriome of T. majus plants (Figure 4). The alpha-diversity analysis 
showed that the bacteriome of the treated plants had significantly 

higher species richness (Chao1 index, p < 0.001) and diversity 
(Shannon index, p < 0.001) when compared to the bacteriome of the 
control (Figure 4A). Moreover, the bacterial community of the control 
plants showed a higher dominance of species (Simpson index) when 
compared to the treatment, even though no significant differences 
were found (Figure 4A).

The beta-diversity was represented by NMDS, which revealed that 
the bacterial community from the treatment group differed 
significantly (PERMANOVA, p < 0.001) from that of the control 
(Figure 4B). These results indicate that the bacteriome of the treated 
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plants was significantly different from that of the control and showed 
a higher diversity and richness of bacterial species.

3.3.2 Bacterial community taxonomic structure
The bacteriome composition was accessed by taxonomically 

classifying the OTUs obtained from the sequences and calculating 
their relative abundance. The core bacteriomes of both the treated 
and control T. majus plants were dominated by the phyla 
Proteobacteria (control – 55% and treatment – 57%), 
Actinobacteria (control – 25% and treatment – 27%) and 
Firmicutes (control – 3.6% and treatment – 3.5%), with no 

significant differences in relative abundance observed between 
the treatment and control groups (Supplementary Figure S2). 
Moreover, the most abundant OTUs from the core bacteriome 
were associated with the genera Streptomyces, Rhizomicrobium, 
Devosia, and Actinoallomurus and the Xanthomonadaceae family 
(Supplementary Figures S3, S4).

To understand how the treatment impacted the T. majus plant 
bacteriome, a heat tree comparing the taxonomic abundance of taxa 
from each of the conditions (treatment and control) is shown in 
Figure 5. The heat tree was filtered to only show results with significant 
differences (Wilcoxon test, p < 0.05).
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The bacterial community of the treated plants had several taxa 
enriched in the phyla Firmicutes, Acidobacteria, Actinobacteria and 
Nitrospirae compared to those in the control. In the phylum 
Firmicutes and Bacillales order, the genera Ammoniphilus, 
Aneurinibacillus, Polycladomyces, Lysinibacillus, Tumebacillus, 
Brevibacillus, and Bacillus were significantly enriched. Moreover, in 
the phylum Acidobacteria, the subgroups Gp5, Gp10, Gp4, and Gp7 
were also enriched. In the phylum Actinobacteria, diverse taxa were 
enriched, such as the genera Arthrobacter, Actinomycetospora, and 
Instrasporangium. Finally, under the phylum Proteobacteria, several 
genera, such as Anaeromyxobacter, Microvirga, and Geobacter, were 
also enriched.

Comparatively, the bacteriome of the control plants showed 
enrichment of the phyla Chloroflexi and Planctomycetes, as well as 

the genera Litorilinea and Singulisphaera. In the Proteobacteria 
phylum, the genera Ralstonia, Alteromonas, and Brevundimonas 
were also enriched when compared to those in the treatment 
bacteriome. These results suggest that the bacterial community of 
the treated plants was enriched in taxa commonly associated with 
PGP when compared to the control, which could be  indirectly 
helping to improve the plant growth observed in the 
previous experiments.

4 Discussion

The search for biofertilizers as a way to contain the use of chemical 
fertilizers that cause great negative impacts on the health of people, 
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animals and the environment is growing worldwide. Chemical 
fertilizers can reduce soil fertility, alter the diversity of soil 
microorganisms and cause groundwater pollution. In this research, 
we evaluated the potential of two well-known plant growth-promoting 
bacteria (PGPB) to promote the growth of an underexplored 
medicinal and edible plant. To our knowledge, this is the first study 
testing the combination of Bacillus thuringiensis and Paenibacillus 
polymyxa as a biofertilizer and the first plant growth-promoting study 
of Tropaeolum majus plants.

By analyzing the genomes of the CAPE95 and CAPE238 strains, 
which are endophytes previously isolated from T. majus roots (Dal’Rio 
et al., 2022), we determined that they belonged to B. thuringiensis and 
P. polymyxa, respectively. Both species have been previously described 
as PGPB since they can colonize the soil-root interface and the 
endosphere of different plant species, produce metabolites that 
enhance plant fitness and elicit the plant innate immune response 
(Langendries and Goormachtig, 2021; Gomis-Cebolla and Berry, 
2023). Endophytic colonization by these bacteria may occur by 
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vertical or horizontal transmission, i.e., via the seed core microbiome 
throughout different generations or via recruitment from the external 
environment to the seed or plant, respectively (Langendries and 
Goormachtig, 2021; Gomis-Cebolla and Berry, 2023). Thus, T. majus 
plants may be colonized by the CAPE95 and CAPE238 strains in their 
endophytic microhabitats, which allows these PGPB to be isolated 
from external environmental stressors, such as UV light, which could 
contribute to plant growth promotion. Additionally, the ability of both 
species to colonize and promote the growth of different plant species 
at various developmental stages suggests that the application of 
B. thuringiensis CAPE95 and P. polymyxa CAPE238 as biofertilizers 
could benefit plants other than T. majus.

Both B. thuringiensis and P. polymyxa are widely explored because 
of their biotechnological potential. Strains belonging to B. thuringiensis 
are important agents for pest and phytopathogen control, especially 
because of the production of insecticidal and antimicrobial substances 
(Gomis-Cebolla and Berry, 2023). In addition to their relevance for 
agricultural applications, B. thuringiensis strains have also been 
explored due to the production of biomolecules with bioremediation 
potential, proteins with anticancer properties and clinically relevant 
antimicrobial peptides (Oliveira-Santos et al., 2023). Comparatively, 
P. polymyxa strains are distinguished biofertilizers that often show a 
variety of plant growth-promoting (PGP) traits, such as enhanced 
nutrient uptake by plants and phytohormone production, and may 
even act as biocontrol agents against phytopathogens (Langendries 
and Goormachtig, 2021). These strains may also produce secondary 
metabolites relevant for various industries, such as 2,3-butanediol and 
exopolysaccharides, which can be applied in waste management and 
agricultural, food and cosmetic industries (Langendries and 
Goormachtig, 2021). Considering the versatility of B. thuringiensis 
and P. polymyxa, genomic analysis of these strains can contribute to 
an enhanced awareness of their biotechnologically relevant molecules 
and possible applications.

After performing a genome function annotation, numerous genes 
and metabolic pathways associated with PGP were found. The 
biofertilization capacity of CAPE95 and CAPE238 relies on the 
production of metabolites that act as signaling molecules and can 
induce systemic resistance and/or tolerance in plants (Figure 2). The 
production of spermidine has been previously related to eliciting salt 
tolerance in Arabidopsis thaliana and Zea mays and can also promote 
plant growth by regulating ethylene levels in the plants (Xie et al., 
2014; Chen et al., 2017). Furthermore, gamma-aminobutyric acid 
(GABA) biosynthesis is also known to upregulate the synthesis of 
pathogenesis-related (PR) genes in plants related to systemic acquired 
resistance, which protects the plant against phytopathogens and 
nematodes (Kim et al., 2019).

With respect to plant hormone production, tryptophan is a main 
precursor for the production of auxins through tryptophan-dependent 
pathways, such as indole-3-acetic acid, which promote root elongation, 
ramification and may improve seed germination (Batista et al., 2021). 
Vitamin production is an underexplored trait that also has a role in 
plant development, and we  detected pathways related to the 
biosynthesis of pantothenate, thiamine, riboflavin and others. These 
vitamins can stimulate plant growth through different mechanisms, 
such as promoting shoot and root growth, favoring nitrogen fixation 
and increasing carbon assimilation (Palacios et al., 2014).

PGPB are also known to improve nutrient uptake by plants. In a 
previous study (Dal’Rio et al., 2022), in vitro PGPB screening tests 

revealed that the strains B. thuringiensis CAPE95 and P. polymyxa 
CAPE238 were able to produce siderophores and antimicrobial 
substances, solubilize and mineralize phosphate, while the nifH 
gene—related to nitrogen fixation capability—was detected only in the 
CAPE238 strain. Moreover, the production of indole-related 
compounds was observed only in the CAPE95 strain. We  hereby 
confirm that metabolic pathways possibly related to these traits were 
also found in the genome.

To investigate the ability of the strains to promote growth in vivo, 
a consortium of the endophytes B. thuringiensis CAPE95 and 
P. polymyxa CAPE238 was inoculated into the seeds and seedlings of 
Tropaeolum majus plants. The greenhouse experiments showed that 
the consortium CAPE95 + CAPE238 was able to accelerate seed 
germination, thus guaranteeing a higher number of germinated seeds 
when compared to the control (Figure 3). Moreover, seedlings treated 
with the consortium also showed higher plant height and leaf 
diameter, thus demonstrating that the treatment promoted plant 
growth (Figure  3). Considering that the leaves of the plant can 
be  commercialized, this is a promising result. Since T. majus is a 
perennial plant and the edible flowers are also commercialized, the 
next steps should include the analysis of the impact of the consortium 
on the number of flowers on older plants.

The alpha and beta-diversity analyses of T. majus plants showed 
that the bacterial community of the treated plants was significantly 
different from the bacterial community of the control, whereas the 
bacterial community of the treated plants showed a higher diversity 
and richness (Figure 4). These results indicate that B. thuringiensis 
CAPE95 and P. polymyxa CAPE238 co-inoculation was able to 
enhance the functional diversity in the environment, thus impacting 
plant growth. The synergistic effects of different bacterial taxa could 
help improve nutrient availability in plants and outcompete potential 
phytopathogenic microorganisms (Wang et al., 2021).

A variety of taxa were significantly enriched in the bacteriome of 
the treated plants. Within the Proteobacteria phylum, the genera 
Microvirga, Anaeromyxobacter, and Geobacter have been previously 
described as diazotrophic bacteria (Jiménez-Gómez et  al., 2019; 
Masuda et al., 2020). The genus Nitrospira, which is in the phylum 
Nitrospirae, is related to an increase in nitrogen uptake by plants 
(Vijayan et al., 2021). Although the relationships of Acidobacteria 
subgroups (Gp4, Gp5, Gp7, Gp10) with plants are not well 
understood due to the fastidious nature of these bacteria, Kalam et al. 
(2017) reported that tomato plants treated with PGPB enhanced the 
Acidobacteria population over time and suggested that they could 
also have a role in plant growth promotion.

Within the phylum Actinobacteria, Arthrobacter is a versatile 
genus that is associated with the capacity to degrade pesticides in soil 
and promote plant growth under salt stress (Safdarian et al., 2019; 
Wang et  al., 2023). Moreover, the genera Intrasporangium and 
Actinomycetospora have both been previously described as plant 
endophytes, but their potential plant growth traits remain unexplored 
(El-Shatoury et al., 2013; Kaewkla and Franco, 2019).

Interestingly, a higher abundance of various taxa within the 
order Bacillales was observed in the bacterial community of the 
treated plants. Among the taxa enriched, the genus Lysinibacillus 
possesses insecticidal properties and can produce phytohormones 
(Pantoja-Guerra et al., 2023). Furthermore, Tumebacillus sp. could 
enhance phosphorus uptake by plants, and Brevibacillus sp. can 
promote plant growth under abiotic stresses, such as in the 
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presence of heavy metals (Vasconcellos et  al., 2021; Wani 
et al., 2023).

In contrast, the bacteriome of the control plants was enriched with 
the genera Litorilinea and Singulisphaera, which were described to 
be present in the rhizosphere of halophytes from highly saline soils 
and linked to nutrient cycling (Mukhtar et al., 2018). Moreover, the 
genus Ralstonia includes economically relevant phytopathogenic 
species, such as Ralstonia solanacearum, and its presence in the 
Tropaeolum majus root bacterial community has already been 
described previously (Dal’Rio et al., 2022). Since the plants in this 
study did not show symptoms of the disease caused by phytopathogenic 
Ralstonia –, i.e., yellowing and wilting of the leaves—the relationship 
between the Ralstonia genus and Tropaeolum majus plants remains 
unclear. To our knowledge, no commensal relationship between this 
genus and plants has been described before.

Finally, the results suggest that the CAPE95 + CAPE238 consortium 
positively impacts the Tropaeolum majus bacterial community by 
enhancing the richness and diversity of potential synergistic 
PGPB. Since the genomes of the strains harbor a variety of PGP traits, 
further studies will elucidate which metabolic pathways are enriched 
after plant treatment. Furthermore, we hope to evaluate their growth 
promoting ability in different economically relevant plant species, in the 
hopes of developing bioproducts for biofertilization in the future.

5 Conclusion

Two endophytes previously isolated from Tropaeolum majus roots 
were taxonomically assigned as Bacillus thuringiensis CAPE95 and 
Paenibacillus polymyxa CAPE238. The two strains were co-inoculated 
for the first time in T. majus, and they were able to accelerate and 
increase seed germination and promote T. majus seedling growth. 
Genome mining of these strains revealed that they showed different 
plant growth-related genes and metabolic pathways, such as those 
involved in the biosynthesis of metabolites that elicit plant immunity 
against biotic and abiotic stresses. The bacterial community of plants 
treated with the consortium was significantly different from the 
bacteriome of the control and showed a higher diversity and richness 
of bacterial species. Moreover, consortium inoculation increased the 
diversity of other potential PGPB in the Tropaeolum majus bacteriome. 
The data presented here demonstrate that the bacterial consortium has 
great potential for application as a biofertilizer in T. majus and that its 
use could be further extended to other plant species.
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