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Introduction

Arguably, one of the most exciting moments in science, and definitely in molecular

biology, is when a well-established paradigm is overturned [we use the concept “paradigm”

as defined by Kuhn (1962)]. Notable cases include, for example, the discovery that DNA

(and not proteins) as the genetic material (Avery et al., 1944), which was later confirmed

by Hershey and Chase (1952); the existence of mobile genetic elements (McClintock, 1950,

1953); the isolation of reverse transcriptases, which make DNA from an RNA template

(Baltimore, 1970; Temin and Mizutani, 1970); the finding that genes in eukaryotes (and

DNA viruses that replicate in eukaryotes) have “intervening sequences,” that is, they are not

continuous as are the vast majority of prokaryotic genes (Berget et al., 1977; Chow et al.,

1977; Jeffreys and Flavell, 1977). Perhaps needless to say, the regions that remain in the

mature RNAwere named exons and the “intervening sequences” introns in a brilliant paper

written by Gilbert (1978) a few months after this discovery. A final example, arbitrarily

chosen, is the experimental discovery that RNA (and not only proteins) can act as enzymes:

the ribozymes (Kruger et al., 1982). These RNA catalysts turned out to be very important

in the discussion of the origin of life –but will not be discussed further.

Certainly, there are several other discoveries that have changed our view of molecular

biology and molecular evolution –for reasons of space we shall not mention them, but to

the best of our knowledge, they have not changed what we usually consider as paradigms.

Awakening “giants”

According to our opinion, one of the last “shocks” to our accepted paradigms occurred

two decades ago, and it is related to viruses. Until 2003, viruses were defined as biological

entities that are obligate intracellular parasites. That is, they must replicate within living

organisms (Bacteria, Archaea or Eukaryotes), since (a) they lack an independent way of

obtaining energy, and (b) they cannot by themselves make their own proteins since they

always lack the genes coding for independent ribosomes, aminoacyl t-RNA synthetases,

elongation factors, etc. A third crucial aspect of viruses, is that they were cataloged during
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more than a century as tiny (in relation to free-living organisms),

since the virions were considered to range in size from

around 20 nm (Parvoviridae) to 300 nm (Poxviridae). Given this

assumption, one of the most used methods for isolating viruses

was (and still is) to use filters with pores typically of 200 nm to

a maximum of 450 nm. Therefore, all living cells are retained by

the filter and the only entities that go through the pores are, by

this technical approach, smaller than 200–450 nm.We should stress

that this technique was very useful and logical, since although

there are prokaryotes as small as 250 nm (for example,Mycoplasma

spp.), and therefore can pass through the pores, the vast majority

are much greater and retained by the filter; and needless to say,

eukaryotic cells are much greater with sizes that are generally in

the range of 104 to 105 nm. As a consequence, it was universally

accepted that although some exceptional prokaryotes can be very

tiny, falling in the range of the biggest virions, viruses were always

smaller than 300 nm. In other words, this size of viruses became

a paradigm, and all of us who studied virology in the last century

accepted this limited size of viruses as a dogma.

But this view changed dramatically two decades ago. Indeed,

in a paper published in 2003, a giant virus was isolated from the

amoebae Acanthamoeba polyphaga (La Scola et al., 2003). They

have an icosahedral capsid with a diameter of 500 nm, with an

overall virion diameter of ∼750 nm when including the surface

fibers (Xiao et al., 2005). This size exceeded the smallest Bacteria

and Archaea, and was named Mimivirus (“mimicking microbes”).

But the surprise was not only by the size of the virions, yet the

size of the genetic material: it was a double-stranded DNA with a

length of 1.2Mb (Raoult et al., 2004), which again exceeded the size

of the smallest parasitic and even free-living Bacteria and Archaea.

But perhaps most intriguingly, at the time its genome encoded

genes not present in other nucleocytoplasmic large DNA viruses,

or NCLDVs (Raoult et al., 2004; Iyer et al., 2006).

The discovery of the first giant virus prompted several groups

to isolate and sequence other similar viruses. And surprisingly, it

was found that some genomes of these entities, code for genes

previously found only in free-living organisms: t-RNAs, aminoacyl-

tRNA synthetases, translation factors, nucleotide synthesis, amino

acid metabolism, protein modification, lipid or polysaccharide

metabolism, DNA repair or protein folding (Raoult et al., 2004).

These genes are supposed to have been acquired by events of

horizontal gene transfer. Acquiring these genes/pathways may

allow them not to be totally dependent on their hosts, thus allowing

opposing compositional patterns to their hosts (Simón et al., 2021).

The origin and evolution of these viruses are still under debate

and no theory can be ruled out (Abrahão et al., 2017; Koonin

and Yutin, 2018). In our opinion, giant viruses arose from smaller

viruses through horizontal transfer events from their host cells,

and gene duplication events (see for example: Yutin et al., 2014;

Machado et al., 2023). Regardless of their origin, giant viruses could

be very ancient, possibly coexisting with the earliest eukaryotes.

Evidence for this is that members of the NCLDVs could infect such

disparate hosts, even though they show differences of up to an order

of magnitude in genome size (Yutin et al., 2014). Furthermore,

since some amoebae have disproportionately large genomes (up

to 100 or 200 times in size vs. human), this may indicate that

hosts and viruses are being subjected to the same mechanisms or

selective pressures.

Discussion

The diversity of giant viruses we know today is much greater.

Besides amoebas (for a review see Aherfi et al., 2016), other

protists do serve as giant virus reservoirs. Viruses exhibiting

genomes larger than 1Mb had been found in algae (Blanc-Mathieu

et al., 2021) and kinetoplastids (Deeg et al., 2018). Recently-

established viral class Megaviricetes (see ICTV Master Species

List #38 at https://ictv.global/taxonomy/) includes (up to now) 9

different viral families: Allomimiviridae, Ascoviridae, Iridoviridae,

Mamonoviridae, Marseilleviridae, Mesomimiviridae, Mimiviridae,

Phycodnaviridae, and Schizomimiviridae. Outside this classification

are the members of genera Pandoravirus (Philippe et al., 2013)

and Pithovirus (Legendre et al., 2014). Moreover, advances in

metagenomics have broadened the knowledge about other giant

viruses, even for unknown hosts (Kristensen et al., 2010; Schulz

et al., 2022). These advances have also led to the discovery of

“virophages,” or viruses that parasitize giant viruses (La Scola

et al., 2008). All known virophages are grouped into the family

Lavidaviridae (Krupovic et al., 2016).

The discovery and study of these entities has opened a new

frontier in microbiology. Indeed, the above mentioned findings

were not only surprising, but changed our opinion about the

evolution of these viruses. Some open questions are (1) since the

majority of putative genes are Orphans, how do these appear and

evolve? Are they functional? (2) These viruses evolved by the

reduction of genes from a common free-living ancestor, or they

are the result of a virus (or viruses) that acquired genes mainly by

horizontal gene transfer (as generally assumed) and duplication?

(3) Where are the origins of replications located? (4) Which is the

maximum size of a virion? (5) Which is the maximum length of

DNA in viruses?

As can be seen in this communication, when a paradigm falls,

new and crucial questions arise, in this case, for people working in

(but not limited to) virology and molecular evolution. A paradigm

has fallen... and the field is in motion. Going forward, the journey

ahead holds much to learn about giant viruses.
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