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Rationale: Chronic infection with Stenotrophomonas maltophilia in persons 
with cystic fibrosis (pwCF) has been linked to an increased risk of pulmonary 
exacerbations and lung function decline. We  sought to establish whether 
baseline sputum microbiome associates with risk of S. maltophilia incident 
infection and persistence in pwCF.

Methods: pwCF experiencing incident S. maltophilia infections attending the 
Calgary Adult CF Clinic from 2010–2018 were compared with S. maltophilia-
negative sex, age (+/−2  years), and birth-cohort-matched controls. Infection 
outcomes were classified as persistent (when the pathogen was recovered in 
≥50% of cultures in the subsequent year) or transient. We assessed microbial 
communities from prospectively biobanked sputum using V3-V4 16S ribosomal 
RNA (rRNA) gene sequencing, in the year preceding (Pre) (n  =  57), at (At) (n  =  22), 
and after (Post) (n  =  31) incident infection. We verified relative abundance data 
using S. maltophilia-specific qPCR and 16S rRNA-targeted qPCR to assess 
bioburden. Strains were typed using pulse-field gel electrophoresis.

Results: Twenty-five pwCF with incident S. maltophilia (56% female, median 
29  years, median FEV1 61%) with 33 total episodes were compared with 56 
uninfected pwCF controls. Demographics and clinical characteristics were 
similar between cohorts. Among those with incident S. maltophilia infection, 
sputum communities did not cluster based on infection timeline (Pre, At, Post). 
Communities differed between the infection cohort and controls (n  =  56) based 
on Shannon Diversity Index (SDI, p  =  0.04) and clustered based on Aitchison 
distance (PERMANOVA, p  =  0.01) prior to infection. At the time of incident S. 
maltophilia isolation, communities did not differ in SDI but clustered based on 
Aitchison distance (PERMANOVA, p  =  0.03) in those that ultimately developed 
persistent infection versus those that were transient. S. maltophilia abundance 
within sputum was increased in samples from patients (Pre) relative to controls, 
measuring both relative (p  =  0.004) and absolute (p  =  0.001). Furthermore, 
S. maltophilia abundance was increased in sputum at incident infection in those 
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who ultimately developed persistent infection relative to those with transient 
infection, measured relatively (p  =  0.04) or absolute (p  =  0.04), respectively.

Conclusion: Microbial community composition of CF sputum associates with 
S. maltophilia infection acquisition as well as infection outcome. Our study 
suggests sputum microbiome may serve as a surrogate for identifying infection 
risk and persistence risk.

KEYWORDS

microbiome, cystic fibrosis, bronchiectasis, emerging infections, Stenotrophomonas 
maltophilia, incident

1 Introduction

Cystic fibrosis (CF) is characterized by repeated cycles of 
infection and inflammation resulting from dysfunctional CF 
transmembrane conductance regulators and the accumulation of 
thick and sticky mucus lining the airways (Fahy and Dickey, 2010). 
Repeated and chronic airway infections result in airway 
remodeling, bronchiectasis and ultimately respiratory failure – the 
leading cause of death in persons with CF (pwCF) (Goetz and Ren, 
2019). Bacterial pathogens are the primary drivers of these 
repeated airway infections (De Vrankrijker et al., 2010); (LiPuma, 
2010). Recently, culture-independent methods have revealed that 
the airway is host to a diverse community of microorganisms – 
many not identified through standard clinical cultivation 
techniques (Dickson et al., 2020). We have previously demonstrated 
that the CF sputum microbiome may serve as a biomarker in 
predicting long-term outcomes (Acosta et al., 2018) and treatment 
response (Heirali et al., 2017, 2019, 2020).

Stenotrophomonas maltophilia is an obligate aerobic Gram-
negative capable of invading and causing chronic infection within 
the nutrient-deficient CF airway (Calza et al., 2003; Brooke, 2012). 
The prevalence of S. maltophilia infection in CF has increased from 
3% in 1999 to ~15% in recent years (Marchac et al., 2004; Capaldo 
et al., 2020). S. maltophilia is intrinsically multi-drug resistant, 
which presents challenges in treatment (Gibb and Wong, 2021). 
Chronic infection is associated with an increased risk of poor 
outcomes including pulmonary exacerbation (PEx), lung function 
decline, and progression to end-stage lung disease manifesting as 
need for life saving lung transplantation or resulting in death 
(Waters et al., 2011, 2012; Amin et al., 2020). A recent retrospective 
cross-sectional study demonstrated that incident infection 
acquisition with S. maltophilia was associated with a reduction in 
lung function (Barsky et  al., 2017). Despite observed negative 
clinical outcomes, there is a paucity of data around incident 
infections of S. maltophilia and currently represents a knowledge 
gap. We thus sought to determine if baseline sputum microbiota 
associates with susceptibility to incident airways infection and 
microbiological outcome with S. maltophilia. To our knowledge, 
this is the first study to investigate the CF airway microbiome in 
the context of incident infections with S. maltophilia exploring an 
association of the CF airway microbiome with infection acquisition 
and persistence risk.

2 Methods

2.1 Participant identification and sample 
collection

PwCF attending the Calgary Adult Cystic Fibrosis Clinic 
(CACFC) are seen quarterly and during periods of PEx at which times 
they contribute to the CACFC Sputum Biobank – a prospective 
repository of over 22,000 sputum samples linked to clinical outcomes, 
approved by the regional ethics board (REB15-0854). In real-time, 
sputum samples were processed by the clinical laboratory following 
established procedures to identify CF pathogens. Sputum-derived 
pathogens were prospectively frozen in glycerol and transferred to the 
CACFC Strain Biobank. All sputum samples were maintained at 
−80°C for future analysis. These sampling procedures were consistent 
with previous sputum microbiome studies (Acosta et al., 2017, 2018; 
Heirali et al., 2017, 2019, 2020; Thornton et al., 2022).

Participants were identified based on a clinical history of 
S. maltophilia infection. Inclusion criteria for participants with 
S. maltophilia infection were: adults aged ≥18 years with a 
diagnosis of CF, the occurrence of incident infection while 
attending the CACFC between 2010 and 2018, and the availability 
of at least one sputum sample in the biobank from the year before/
at the first identification of S. maltophilia. Participants were 
excluded if they had a history of S. maltophilia infection in the 
5 years preceding the collection date and were only included after 
the 5-year mark if strain typing confirmed the occurrence of a new 
strain. Consistent with a previous study by our group (Acosta et al., 
2017), two samples in the year before infection (Pre), the sample 
at incident infection (when a new strain of S. maltophilia was first 
identified) (At) and a sample in the year after incident infection 
(Post) were assessed, where available. A control cohort was 
identified contingent on not having had S. maltophilia identified in 
their sputum, including a period of at least 2 years of observed 
culture-free status. Controls were matched 2:1 based on age 
(±2 years) and sex. Two sputum samples from each control were 
used if they were collected within 2 years to the date of each 
corresponding incident infection case. Any sputum sample that 
had been collected within 4 weeks of a change in antimicrobial 
therapy, or systemic antibiotics were not considered for the study 
on the basis of potential confounding effects (Dickson and Morris, 
2017; Noci et al., 2018).

https://doi.org/10.3389/fmicb.2024.1353145
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bowron et al. 10.3389/fmicb.2024.1353145

Frontiers in Microbiology 03 frontiersin.org

2.2 Clinical outcomes definitions

Incident infection was defined as presence of an S. maltophilia 
strain that had not previously been identified in each pwCF as 
determined by pulse field gel electrophoresis (PFGE). For purposes of 
this study infection and colonization are not differentiated, and the 
descriptor “infection” used throughout the manuscript relates to the 
recovery of S. maltophilia from CF respiratory secretions. Infections 
were classified as either transient or persistent. Persistence was defined 
when cases had at least half of their cultures (rounded up) positive for 
S. maltophilia in the year following the incident date and a minimum 
of 3 sputum samples in that year.

2.3 DNA extraction

Total genomic DNA was isolated from sputum following protocols 
as previously described (Acosta et al., 2017) and described in the 
Supplemental File.

2.4 16S rRNA amplification and sequencing

A modified protocol (see the Supplemental File) of Bartram et al. 
(2011) was used to amplify the V3-V4 region of the 16S rRNA gene 
with 3VF and V4Rmod2 (Integrated DNA Technologies, Coralville, 
Iowa, USA) primers using 96 unique barcoded primers for paired-end 
Illumina MiSeq sequencing (Illumina, Inc., San Diego, USA [RRID: 
SCR_016379]) (Caporaso et al., 2011; Whelan et al., 2014). Amplified 
DNA samples were sent to the McMaster Genome Facility (Hamilton, 
Ontario) for sequencing (Whelan et al., 2014; Lam et al., 2015). The 
raw paired-end FASTQ files generated from sequencing were then 
processed for microbial community analysis.

2.5 Microbial communities analysis

Sequence processing and downstream analysis were performed in 
R Studio (RRID: SCR_000432) (v. 1.4), R (v. 4.1.1). In brief, the 
barcoded primers and adaptor sequences were removed using 
Cutadapt (RRID: SCR_011841) (v. 1.2.1) (Martin, 2011), followed by 
filtering trimming, sample inference, alignment, and finally, taxonomy 
assignment using the Divisive Amplicon Denoising Algorithm 2 
(DADA2 [RRID: SCR_023519]) (Callahan et al., 2016).

A comparison of the taxonomic composition through the natural 
history of infection was assessed at the level of the 15 most prevalent 
ASVs to achieve <95% of read coverage (Nearing et al., 2022). As the 
distribution of read counts per amplicon were observed to 
be non-normally distributed, we conducted a chi-square goodness of 
fit test. To assess community composition, α-diversity was calculated 
using the Shannon Diversity Index (SDI) and Observed Diversity 
Index (ODI). The SDI and ODI were considered because they have 
been previously established measures that effectively assessed CF 
sputum community evenness and richness (Jost, 2006).

Principal Component Analysis (PCA) using CLR (Center-log ratio) 
transformation was used to determine the dissimilarity between 
samples as represented by the β-diversity in the microbiome (Gloor 
et al., 2017). To assess the dissimilarity across the natural history of 

infection, PCA was performed on Pre, At, and Post samples in the 
S. maltophilia cohort. PCA was also conducted to compare the 
pre-infection and uninfected control samples and those with persistent 
versus transient infection. Permutational multivariate analysis of 
variance (PERMANOVA) using the Aitchison distance with the adonis 
function of the vegan package (Okasanen et al., 2022) was performed to 
investigate the significance of the factors that contributed to any 
observed differences (Garcia-Nuñez et al., 2020). PCA was selected as 
it is a commonly used visualization tool that can summarize variance 
among the data (Paliy and Shankar, 2016). CLR transformation was 
conducted on account of the compositional nature of the data and 
served to capture the relationships between the features in the data. 
Thus we  can compare the abundances of features relative to other 
features (Gloor et al., 2017). This transformation has been shown to 
be suitable for multivariate analyses such as PCA (Paliy and Shankar, 
2016). The top 6 taxa influencing the PCA dissimilarity were plotted on 
the PCA plot. Taxa were filtered with a minimum prevalence of a 
proportion of 10% of all samples/reads to reduce the sensitivity to 
extremely rare taxa (Cao et  al., 2020). Permutational analysis was 
conducted using distance matrices with 1,000 permutations on 
normalized data using the CLR method (Anderson, 2001). The R 
package, DESeq2 (RRID: SCR_015687) was used for differential 
abundance analysis (DAA). DESeq2 was selected since it uses a negative 
binomial distribution, which is closely related to the observed Poisson 
Lognormal distribution of our data (Nearing et al., 2022). DAA was 
used to identify differences in the relative abundance of taxa among the 
Pre samples compared with the uninfected controls and between the 
persistent infection samples and the transient infection samples. Taxa 
were excluded if they were not observed in more than one sample 
(prevalence ≥2).

2.6 Strain-level identification

Pulse-field gel electrophoresis (PFGE) was used to identify 
incident strains of S. maltophilia and identify episodes of infection 
following previously published protocols (Parkins et al., 2014) and 
modified from Aaron et al. (2010) – full details in Supplementary File. 
PFGE was conducted for the 6 participants that had multiple episodes 
of S. maltophilia infection collected.

2.7 Absolute quantification of DNA

Quantitative PCR (qPCR) using TaqMan Fast Advanced was used 
to confirm the presence and absolute abundance of S. maltophilia 
(Fraser et al., 2019) and total-bacterial 16S rRNA (Cho et al., 2021) 
following adapted protocols (full details in the Supplementary File).

2.8 Statistical analysis

Non-parametric Wilcoxon rank-sum tests or two-tailed Fisher exact 
probability tests were performed on the comparisons of participant 
demographics and clinical characteristics (Heirali et al., 2017, 2020; Breen 
et al., 2022). A non-parametric Kruskal-Wallis test followed by the Dunn’s 
Test with the Bonferroni method to correct for multiple comparisons was 
used to compare the α-diversity of the natural history of S. maltophilia 
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infection among the Pre, At, and Post samples (Heirali et  al., 2017). 
Wilcoxon rank-sum tests were used to assess the differences in α-diversity. 
Additionally, Wilcoxon rank sum tests were used to compare the 
differences in abundance, both relative and absolute abundance between 
the case and control samples, as well as between the persistent and 
transient infection samples (Caverly et al., 2019; Heirali et al., 2020). All 
analyses were performed in R Studio (v. 1.41717), R (v. 4.1.1).

3 Results

3.1 Participant demographics

Twenty-five pwCF with 33 incident S. maltophilia infections met 
the inclusion and exclusion criteria (14 females; 11 males, median age 
29.0 years (interquartile range [IQR] 24.1–39.6), median ppFEV1 61.0 
(IQR 48.0–82.0). In the cohort, 19 pwCF (76%) had only one episode 
of S. maltophilia infection, 4 pwCF (16%) had two episodes (median 
time between episodes 2.1 years [IQR 1.8–3.0]), and 2 pwCF (8%) had 
three episodes (median time between episodes 1.7 years [IQR 1.4–1.7]). 
From the cohort, 57 pre-infection samples were collected (median 
5.1 months (IQR 2.7–6.9 months) from the date of incident 
S. maltophilia infection), 22 at-infection samples, and 31 post-infection 
samples (median 3.0 months [IQR 2.0–5.0 months]). In pwCF with first 
incident infection, median ppFEV1, as surrogate for disease severity, 
did not differ between Pre (60.0 [IQR 46.0–78.0]), At [67.0 (IQR 50.0–
85.5)], and Post (67.0 [IQR 49.0–74.3]) p = 0.658). Of the 33 incident 
infection events, 20 (60.6%) included all three time points; at least one 
pre-infection, at-infection, and post-infection, 9 (27.3%) included only 
pre-infection and post-infection, 2 (6.1%) included only at-infection 
and post-infection, and 2 (6.1%) included only pre-infection.

Of the 33 S. maltophilia incident infection events, 18 (54.5%) were 
defined as persistent infections. Transient and persistent infections 
among first episode cases were similar across demographic and clinical 
characteristics including age (Wilcoxon; p = 0.851), sex (Wilcoxon; 
p = 0.089), lung function as measured by ppFEV1 (Wilcoxon; p = 0.328) 
and ppFVC (Wilcoxon; p = 0.103), BMI (Wilcoxon; p = 0.336), 
proportion homozygous for F508del (Fisher’s exact test; p = 0.102), and 
CF-related comorbidities (p > 0.05) (Table 1). There were no differences 
in trimethoprim-sulfamethoxazole susceptibilities detected between 
transient and persistent samples (p = 1) (Supplementary Table S1).

Fifty-six S. maltophilia uninfected controls were identified (20 
pwCF were matched with two controls and 5 pwCF were matched 
with one control). Where only 1 control was identified it related to the 
inability to match on basis of age/sex – generally due to outlier status.

Case and control samples measured at the first infection episode 
(n = 44) did not differ based on lung function as measured by either 
ppFEV1 (Wilcoxon; p = 0.371) or ppFVC (Wilcoxon; p = 0.103), BMI 
(Wilcoxon; p = 0.221), or on whether they were homozygous for 
F508del (Fisher’s exact test; p = 1.00). Case and controls were similar 
across CF-related co-morbidities (p > 0.05) (Table 2).

3.2 Cystic fibrosis sputum microbiome 
composition

Across the 166 sputum samples assessed, a total of 6,713,780 reads 
(69,935.21 reads/sample, IQR, 40,728 – 95,364) with a total of 1,261 

Amplicon Sequence Variants (ASVs) were identified. To assess the 
quality of the 16S sequencing, a species accumulation curve (SAC) 
analysis was performed (Supplementary Figure S1). The comparison 
of taxonomic composition through the natural history of infection 
showed the relative abundance of the 15 most prevalent ASVs 
accounted for 95.7% of the reads (Figure  1). All of the ASVs 
corresponded to taxa that have been previously identified as CF 
airway genus-level constituents: Streptococcus (27.8%), Pseudomonas 
(15.8%), Staphylococcus (14.8%), Haemophilus (7.8%), Prevotella 
(6.1%), Neisseria (5.7%), Gemella (3.8%), Granulicatella (3.6%), Rothia 
(2.0%), Porphyromonas (1.6%), Fusobacterium (1.5%), 
Stenotrophomonas (1.4%), Veillonella (1.3%), Sneathia, (1.0%), 
Prevotellamassilia (0.6%)(Stressmann et al., 2012; Surette, 2014). The 
distribution of the read counts per amplicon across samples were 
found to follow a Poisson-Lognormal distribution (p < 0.0001).

3.3 Sputum community dynamics through 
Stenotrophomonas maltophilia incident 
infection

To determine the natural history of community composition 
through S. maltophilia infection, we compared the α-diversity of the 

TABLE 1 Characteristics of cases that develop transient and persistent S. 
maltophilia infection prior to infection recorded at the first episode pre-
infection time point.

Demographics

Transient (n  =  14) Persistent (n  =  11)

Female Sex 7 (50.0%) 7 (63.6%)

Age At Infection (years) 32.0 (24.3–39.1) 28.2 (25.1–36.2)

ppFEV1 62.0 (57.0–82.0)* 56.0 (42.5–71.3)**

ppFVC 90.0 (58.0–103.0)* 66.5 (55.8–85.3)**

BMI 21.6 (19.9–23.2)* 20.3 (19.1–21.6)**

F508del/F508del 1 (7.1%) 6 (54.5%)

F508del/Other 4 (28.6%) 2 (18.2%)

Other/Other 1 (7.1%) 0 (0%)

Unknown 8 (57.1%) 3 (27.3%)

CF-related Comorbidities

Transient (n = 9) Persistent (n = 8)

Pancreatic Insufficiency 8 (88.8%) 8 (100.0%)

CF-Related Diabetes 4 (44.4%) 2 (25.0%)

CF Liver Disease 3 (33.3%) 4 (50.0%)

Distal Intestinal 

Obstructive Syndrome
3 (33.3%) 1 (12.5%)

Osteopenia/

Osteoporosis
5 (55.5%) 5 (62.5%)

Sinus Disease 7 (77.7%) 6 (75.0%)

CF-related comorbidity data was unavailable for 8 cases (5 transient cases and 3 persistent 
cases). Data are presented as either median (interquartile range) or N (%). Either Wilcoxon 
rank-sum test or Fisher-exact probability at two-tailed were performed (p > 0.05).
ppFEV1, percent predicted forced expiratory volume in 1 second; ppFVC, percent predicted 
forced vital capacity; BMI, Body mass index.
*Denotes an n of 13 due to unavailability of clinical data for 1 case.
**Denotes an n of 8 due to unavailability of clinical data for 3 cases.
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microbiome between sputum Pre (n = 57), At (n = 22), and Post 
(n = 31) incident infection. We did not find any significant differences 
among Pre, At, and Post samples as measured by either the SDI 
(Kruskal-Wallis, p = 0.63) or the ODI (Kruskal-Wallis, p = 0.42) 
(Figures  2A,B). Similar results were observed when limiting the 
analysis to just the first episode of infection and when only considering 

the first pre-infection sample (data not shown). Principal component 
analysis (PCA) was used to visualize any potential clustering patterns 
among the sputum samples corresponding to the infection stage 
(Figure 2C). Samples did not cluster by infection stage (PERMANOVA, 
p = 0.991). The strongest driver of microbial community structure was 
participant ID, the unique identifier given to each participant 
(PERMANOVA; F = 3.9, R2 = 52.2%, p = 0.001). Considering the strong 
contribution of participant ID to community structure, for each 
subsequent analysis we  additionally blocked the metadata by the 
participant and then used PERMANOVA to support each analysis 
which showed similar results. We assessed the difference in relative 
abundance of S. maltophilia at Pre, At, and Post and found significant 
differences between Pre and At (p = 6.6e-05) and At and Post 
(p = 0.0094) (Figure 2D). These differences were also observed when 
comparing the ratio of the absolute abundance of S. maltophilia to 
absolute abundance of 16S rRNA total bacterial burden between Pre 
and At (p = 0.00016) and between At and Post (p = 0.006) (Figure 2E). 
Similar results were observed when limiting the analysis to only the 
first episode of infection and when only considering the first 
pre-infection sample (data not shown).

3.4 Differences in the microbiome among 
pwCF who acquire Stenotrophomonas 
maltophilia infection

To determine if the constituents of the CF sputum microbiome differ 
between pwCF that acquire S. maltophilia infection and uninfected 
controls, we compared the α-diversity of sputum in the year preceding 
incident infection. We  observed a difference in the SDI (Wilcoxon, 
p = 0.04) (Figure 3A) but not ODI (Wilcoxon, p = 0.25) (Figure 3B). Beta-
diversity ordination was calculated by using PCA to determine clustering 
patterns between pre-infection and uninfected controls (Figure  3C). 
We  found that community structure clustered based on the cohort 
(PERMANOVA, p = 0.01). Similar results were observed when data were 
stratified by participant ID (PERMANOVA, p = 0.001). We identified the 
top  6 ASVs that contributed to this dissimilarity in clustering and 
conducted DAA with DESeq2 to identify the ASVs that differed 
(p-adjusted<0.05) between groups. We found that Haemophilus, Neisseria, 
Campylobacter, Gemella, and Staphylococcus contributed to the difference 

TABLE 2 Cohort characteristics and CF-related comorbidities of those 
with S. maltophilia incident infection and controls recorded at the first 
episode pre-infection time point.

Demographics

Control (n  =  44) Case (n  =  25)

Age At Infection (years) 28.9 (22.7–38.1) 29.0 (24.1–39.6)

ppFEV1 73.0 (50.0–92.5)* 61.0 (48.0–82.0)**

ppFVC 95.0 (71.5–102.5)* 86.0 (56.0–96.0)**

BMI (kg/m2) 22.0 (19.8–24.2)* 20.8 (19.5–22.2)**

F508del/F508del 20 (45.5%) 7 (28.0%)

F508del/Other 13 (29.5%) 6 (24.0%)

Other/Other 9 (20.5%) 1 (4.0%)

Unknown 2 (4.5%) 11 (44.0%)

CF-related Comorbidities

Control (n = 43) Case (n = 17)

Pancreatic Insufficiency 38 (88.4%) 16 (94.1%)

CF-Related Diabetes 16 (37.2%) 6 (35.3%)

CF Liver Disease 7 (16.3%) 7 (41.2%)

Distal Intestinal 

Obstructive Syndrome

8 (18.6%) 4 (23.5%)

Osteopenia/Osteoporosis 19 (44.2%) 10 (58.8%)

Sinus Disease 30 (69.8%) 13 (76.5%)

CF-related comorbidity data were unavailable for 8 cases and unavailable for 1 control.
Data are presented as either median (interquartile range) or N (%).
Either Wilcoxon rank-sum test or Fisher-exact probability at two-tailed were performed 
(p > 0.05).
ppFEV1, percent predicted forced expiratory volume in 1 second; ppFVC, percent predicted 
forced vital capacity; BMI, Body mass index.
*Denotes an n of 43 due to unavailability of clinical data for 1 control.
**Denotes an n of 21 due to unavailability of clinical data for 4 cases.

FIGURE 1

Comparison of the taxonomic composition of the top 15 ASVs in CF sputum through the course of incident S. maltophilia infection (n  =  25) and 
uninfected controls (n  =  56). Relative abundance was collected at the genus level for samples at pre-infection (samples  =  57; median 5.1  months from 
incident infection date [interquartile range (IQR) 2.7–6.9  months)], at-infection (samples  =  22), and post-infection (samples  =  31; median 3.0  months 
from incident infection date [IQR 2.0–5.0  months)], and control samples corresponding to case infection dates.
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in clustering in the pre-infection samples whereas Pseudomonas was a 
contributor to the clustering difference in the control samples (Figure 3C). 
Neisseria (p = 0.01), Staphylococcus (p = 0.02), Lautropia (p = 0.02), and 
Stenotrophomons (p = 0.002) genera were significantly enriched, and 
Haemophilus (p = 0.02) were diminished in cases versus controls 
(Figure  3D). Despite sputum samples collected before infection 
identification (Pre) being culture negative for S. maltophilia, we found its 
relative abundance to be  increased compared to uninfected controls 
(Figure  3E) (Wilcoxon, p = 0.0013). To support this observation, 
we confirmed the absolute abundance of S. maltophilia total 16S both at 
pre-infection and at-infection by qPCR (Figure 3F) (Wilcoxon, p = 4.1e-
05). Similar results were obtained when assessing only the first episode 
from each case.

3.5 Microbiome structure at incident 
acquisition as a function of infection 
outcome

We found that of the 33 at-infection samples, 18 (54.5%) were 
derived from outcomes that were classified as persistent. We assessed if 
the constituents of the microbiome differed between those with 
persistent versus transient infection. We did not find any difference in 
the α-diversity as measured by either SDI (p = 0.62) or ODI (p = 0.31) 
(Figures 4A,B). To determine if sputum from those with transient and 
persistent infections clustered together or separately, PCA was 
compared (Figure  4C). We  found a significant difference in the 
clustering based on the Aitchison distance of the transient and persistent 

FIGURE 2

Natural history of the CF lung microbiome through course of incident S. maltophilia infection. Samples included are case samples at 6-months to 
one-year pre-infection (n  =  57), at-infection (n  =  22), and within 1-year post-infection (n  =  31). (A) Shannon diversity index (SDI) (Kruskal-Wallis, 
p  =  0.63). (B) Observed diversity index (ODI) (Kruskal-Wallis, p  =  0.42) (C) Principal component analysis with center-log ratio (CLR) transformation; 
(PERMANOVA, p  =  0.991). (D) Relative abundance of S. maltophilia for pre-infection, at-infection, and post-infection presented in the Log10 scale 
(Kruskal-Wallis, p  =  0.00029). Significant differences were detected between pre-infection and at-infection (Wilcoxon, p  =  6.6e-05) and at-infection 
and post-infection (Wilcoxon, p  =  0.0094). (E) Absolute abundance/total 16S bacterial load for pre-infection, at-infection, and post-infection (Kruskal-
Wallis, p  =  0.00089). Significant differences in abundance were detected between pre-infection and at-infection (Wilcoxon, p  =  4.1e-05) and between 
at-infection and post-infection (Wilcoxon, p  =  4.1e-05) presented in the Log10 scale. Data points are represented as colored dots. Outlier data points 
are black and are defined as any point that were beyond 1.5 times the interquartile range.
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At samples (PERMANOVA, F = 1.7, R2 = 7.8%, p = 0.03). However, these 
results were not supported when the data were stratified by participant 
ID (see Supplementary File). The top 6 taxa that contributed to PCA 
clustering dissimilarity between infection outcome were determined. 
DESeq2 was used to establish the DAA of the ASVs that differed in 
relative abundance in samples collected at-infection based on eventual 
outcomes (Heirali et al., 2019; Cuthbertson et al., 2021). We found that 
Pseudomonas and Stenotrophomonas correlated with the difference in 

clustering in the persistent At samples whereas Fusobacterium, Neisseria, 
Prevotellamassilia, and Haemophilus were associated with the clustering 
difference in the transient group (Figure 4C). According to the DESeq2 
data, only Stenotrophomonas (p = 0.01) was significantly enriched at 
incident infection of those with persistent infection and Burkholderia 
(p = 8.8e-14) was enriched in those with transient infection (Figure 4D). 
We  assessed if the difference in the relative abundance of 
Stenotrophomonas at incident infection correlated with outcome. 

FIGURE 3

Microbiome diversity between pre-infection (n = 57) S. maltophilia sputum samples and uninfected controls (n = 56). (A) Shannon Diversity Index (SDI) 
(Wilcoxon, p = 0.04) (B) Observed Diversity Index (ODI) (Wilcoxon, p = 0.25). (C) Principal Component Analysis (PCA) with center-log ratio (CLR) 
transformation; (PERMANOVA, p = 0.01) with top 6 taxa, present in ≥10% of samples, influencing unconstrained PCA clustering. (D) Taxa with significant 
log fold changes in relative abundance between pre-infection samples and uninfected controls, detected by DESeq2 (Wald test; p-adjusted<0.05). 
(E) Relative abundance of S. maltophilia for control and pre-infection case samples presented in the Log10 scale (Wilcoxon p = 0.0013). (F) Absolute 
abundance/total 16S bacterial load for controls (n = 49) and pre-infection case samples (n = 50) presented in the Log10 scale (Wilcoxon, p = 4.1e-05). Data 
points are represented as colored dots. Outlier data points are black and are defined as any point that were beyond 1.5 times the interquartile range.
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We found those who ultimately developed persistent infection had 
higher S. maltophilia relative abundance than those with transient 
infection (Figure 4E) (Wilcoxon, p = 0.0043). This relative abundance 
was confirmed via qPCR establishing the absolute ratio of S. maltophilia 
to total 16S total bacterial load (Figure 4F) (Wilcoxon, p = 0.005). Those 
who ultimately progressed to persistent infection had higher absolute 
(normalized) bioburden of S. maltophilia at incident infection than 
those who were merely transiently infected.

4 Discussion

Infection with S. maltophilia in pwCF has been associated with 
increased morbidity and mortality (Gajdács and Urbán, 2019). Risk 
factors among pwCF for S. maltophilia infection have been identified 
and include those with increased lung function decline (Stanojevic 
et al., 2013), and antibiotic treatments (Denton et al., 1996), specifically 
antibiotics used to treat Pseudomonas aeruginosa infections such as 

FIGURE 4

Risk of developing persistent (n  =  14) versus transient (n  =  8) S. maltophilia infection in CF. (A) Shannon Diversity Index (SDI) (Wilcoxon, p  =  0.62) 
(B) Observed Diversity Index (ODI) (Wilcoxon, p  =  0.31). (C) Principal Component Analysis (PCA) with center-log ratio (CLR) transformation; 
(PERMANOVA, p  =  0.03) and with top 6 taxa, present in ≥10% of samples, influencing unconstrained PCA clustering. (D) Taxa with significant log fold 
changes in relative abundance between transient and persistent infections, detected by DESeq2. (E) Relative abundance of S. maltophilia for transient 
and persistent at-infection case samples presented in the Log10 scale (Wilcoxon, p  =  0.0044). (F) Absolute abundance/total 16S bacterial load for 
transient (n  =  8) and persistent (n  =  11) at-infection case samples presented in the Log10 scale (Wilcoxon, p  =  0.005). Data points are represented on 
violin plots as colored dots. Outlier data points are black and are defined as any point that were beyond 1.5 times the interquartile range.
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tobramycin (Burns et  al., 1999). However, the risk of infection 
acquisition or persistence leading to chronic infection has not been 
widely explored. Research on the natural history of incident 
S. maltophilia infection and its association with the sputum 
microbiome may serve to fill this knowledge gap by helping to 
understand the changes in microbial community structure that may 
support or hinder the invasion and/or persistence of 
S. maltophilia infections.

The CF airway microbiome is known to host a diverse 
community of microorganisms that have been established as 
relatively stable within patients and so may serve as a patient-
specific tool for prognostication. Recent work using animal 
models found that the microbial communities within the lung 
can alter infection dynamics – owing to the relationship between 
the microbiome and airway infections (Duan et al., 2003; Stacy 
et al., 2016; McDaniel et al., 2020). Others have sought to identify 
the role of the CF airway microbiome as a risk factor for infection 
with other CF pathogens such as Nontuberculous mycobacteria 
(Breen et al., 2022).

We first sought to profile the CF lower airway microbiome of 
pwCF who acquired incident S. maltophilia infections using 16S allelic 
sequencing. This commonly used technique facilitated detailed 
exploration of the bacterial community of the CF respiratory 
microbiome (Cuthbertson et al., 2020; Hahn et al., 2020; Deschamp 
et  al., 2023) providing the means for a thorough analysis of the 
microbial community, including very rare constituents. After 
evaluating variations in community structure throughout the natural 
history of infection, we found no significant differences in microbial 
diversity—neither within nor between individuals with cystic fibrosis 
(pwCF)—nor in the community structure during the natural 
progression of S. maltophilia infection. Stenotrophomonas ASV did not 
associate with any other specific ASV suggesting this pathogen exists 
independently of other species. This expands on previously published 
work that has established the stability of the intra-diversity of the 
airway microbiome in pwCF (Fodor et al., 2012). This also supports 
the notion that individuals have a unique community structure that is 
relatively unperturbed by incident infection with S. maltophilia. 
We did observe significant differences in both the relative abundance 
and absolute abundance of S. maltophilia relative to the absolute 
abundance of total 16S rRNA (representing the total bacterial 
bioburden) between the Pre and At stages, as well as between the At 
and Post stages. This outcome was anticipated, given our expectation 
that S. maltophilia would be  less abundant before the onset of 
infection, more abundant at the onset, and then less abundant 
post-infection.

To understand the microbiome’s role in S. maltophilia infection 
we  used a matched cohort study design. We  did not find any 
significant differences in baseline demographics nor markers of 
clinical disease between pwCF experiencing S. maltophilia incident 
infection and the uninfected controls in our relatively modest 
cohort. We did find a significant difference in community structure 
as measured by both the SDI α-diversity and community clustering. 
We observed a significant increase in the ASVs corresponding to 
Stenotrophomonas in sputum collected prior to its first 
identification by cultured growth (i.e., these samples were culture 
negative, subsequent samples were culture positive) relative to 
controls. This may be due to the increased sensitivity of nucleic 
acid testing compared to culture data. This has been 

well-established in incident infections with P. aeruginosa in pwCF 
(Deschaght et al., 2009, 2010), and more recently, S. maltophilia 
(Rocchetti et al., 2018). In fact, an increasing body of evidence 
suggests that the microbial community analysis provides a more 
comprehensive assessment of classical CF pathogens’ role in CF 
airways than culture alone – including identifying the risk of 
disproportionate disease progression (Acosta et  al., 2018), and 
treatment response (Hansen, 2012; Waters et  al., 2013; Berdah 
et al., 2018; Mojica et al., 2022). This evidence underscores the 
advantage of nucleic acid testing and highlights the importance of 
early detection.

The secondary outcome of this work was to determine if there 
was an association between the CF lower airway microbiome 
composition at incident S. maltophilia infection and risk of 
persistence. Routine clinical parameters and demographics did 
not differentiate these two groups. We did not observe differences 
in α-diversity between cohorts at initial infection. This was 
somewhat unexpected given S. maltophilia’s association with 
clinical decline and previous studies demonstrating that pwCF 
with decreasing lung function have stable, but less diverse 
microbiomes (Goss et al., 2004; Metzger et al., 2021). However, 
we did observe clustering between samples as represented by the 
β-diversity that were associated with infection outcome. 
We found Pseudomonas, and Stenotrophomonas were drivers of 
the difference in samples from subjects that developed persistent 
infection and Fusobacterium, Neisseria, Prevotellamassilia, and 
Haemophilus drove the difference in clustering within the 
samples from those experiencing only transient infection. 
We then investigated the ASVs that differed in sputum collected 
at the actual time of incident infection between those that 
ultimately developed persistent versus transient infections. 
We found that the relative abundance of Stenotrophomonas was 
enriched in the persistent infection samples and the relative 
abundance of Burkholderia was enriched in the transient 
infection samples. We  confirmed the relative enrichment of 
S. maltophilia using qPCR. This observation may suggest that the 
initial bioburden of incident infections can influence the outcome 
of infections, which may justify early antimicrobial intervention 
to reduce the risk of progression to long-term infection, as has 
become the standard of care with P. aeruginosa early eradication 
(Casaredi et al., 2022).

While the participants in our study were not receiving highly 
effective modulator treatments (HEMT), it is important to recognize 
the profound changes in HEMT use in the last several years and its 
impact on the CF airway microbiome in future directions of this work. 
HEMT has been associated with several important changes to the 
airway microbiome including a more even distribution of individual 
bacterial species, a decrease in bacterial load, and a shift from diverse 
individual microbial communities to more similar communities 
dominated by typically healthy airway inhabitants (Man et al., 2017; 
Pallenberg et al., 2022). However, long-term impacts of HEMT on the 
airway microbiome are still largely unknown. Future considerations 
for both short-term and long-term impacts of HEMT on microbial 
composition and incident infection acquisition and persistence will 
need further investigation.

Several notable limitations to this study exist and require 
consideration. Firstly, this is a single-center, retrospective study, 
which limits the scalability of the results. Furthermore, there are 
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several confounding variables that required consideration. To 
account for these confounding variables, we developed a cohort of 
matched participants, reported their demographics and 
characteristics, and excluded sputum samples that were collected 
during new antimicrobial treatments. Our inclusion/exclusion 
criteria reduced the potential sample size, which lowered the 
overall power of the study while ensuring homogeneity. However, 
the results acquired from the species accumulation curve showed 
an appropriate sequencing depth, which suggests that the sample 
size adequately represents our expected observed diversity. This 
study assessed the respiratory microbiome in pwCF at Pre, At and 
Post incident S. maltophilia infection. However, it is important to 
note that the study did not capture the modest daily dynamic 
changes in the respiratory microbiome that have been documented 
to occur within individuals (Caverly et  al., 2019). Instead, this 
study examined patterns observed around the occurrence of 
incident S. maltophilia infection. The retrospective nature of this 
study limits our ability to generate any causal relationships among 
the data. While many studies have justified that the use of sputum 
accurately represents the lower airway microbiome (Hogan et al., 
2016; Zemanick et al., 2017; Lu et al., 2020), there is of course the 
fact that some degree of contamination from the oral flora occurs 
as sputum passes through the oral cavity before expectoration and 
sample collection. However, clinicians do not require that 
treatment models accurately capture all aspects of the in-situ 
situation (i.e., susceptibility testing is not reflective of the 
environment CF pathogens live), but rather require tools that 
better predict clinical outcomes. Indeed, there is evidence that 
microbial community analyses may correlate with clinical 
outcomes better than simple culture presence/absence (Acosta  
et al. 2018).

5 Conclusion

Herein we observed that the CF sputum microbiome – while not 
altered by incident infection with S. maltophilia – may be associated 
with infection acquisition and persistence risk. We further established 
that molecular tools are more sensitive for pathogen identification 
than classical culture-based methods, even for S. maltophilia. 
Additional research is needed to establish whether these observed 
differences in bacterial abundance contribute to the risk of either 
acquiring incident infections or developing persistent infections with 
S. maltophilia. Here, we have highlighted the potential of CF sputum 
microbiome analysis as a future clinical tool to improve infection 
diagnosis and management in pwCF.
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