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While spent mushroom substrate (SMS) has shown promise in increasing soil 
organic carbon (SOC) and improving soil quality, research on the interplay 
between SOC components and microbial community following the application 
of diverse SMS types remains scant. A laboratory soil incubation experiment was 
conducted with application of two types of SMSs from cultivation of Pleurotus 
eryngii (PE) and Agaricus bisporus (AB), each at three application rates (3, 5.5, and 
8%). Advanced techniques, including solid-state 13C nuclear magnetic resonance 
(NMR) and high-throughput sequencing, were employed to investigate on 
SOC fractions and chemical structure, microbial community composition 
and functionality. Compared to SMS-AB, SMS-PE application increased the 
relative abundances of carbohydrate carbon and O-alkyl C in SOC. In addition, 
SMS-PE application increased the relative abundance of the bacterial phylum 
Proteobacteria and those of the fungal phyla Basidiomycota and Ascomycota. 
The relative abundances of cellulose-degrading bacterial (e.g., Flavisolibacter 
and Agromyces) and fungal genera (e.g., Myceliophthora, Thermomyces, 
and Conocybe) were increased as well. The application of SMS-AB increased 
the aromaticity index of SOC, the relative abundance of aromatic C, and the 
contents of humic acid and heavy fraction organic carbon. In addition, SMS-
AB application significantly increased the relative abundances of the bacterial 
phyla Firmicutes and Actinobacteria. Notably, the genera Actinomadura, 
Ilumatobacter, and Bacillus, which were positively correlated with humic acid, 
experienced an increase in relative abundance. Functional prediction revealed 
that SMS-PE application elevated carbohydrate metabolism and reduced the 
prevalence of fungal pathogens, particularly Fusarium. The application of high-
rate SMS-AB (8%) enhanced bacterial amino acid metabolism and the relative 
abundances of plant pathogenic fungi. Our research provides strategies for 
utilizing SMS to enrich soil organic carbon and fortify soil health, facilitating the 
achievement of sustainable soil management.
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1 Introduction

Soil organic carbon (SOC) regulates crucial soil processes and is 
vital for sustaining productivity in agricultural ecosystems (Kan et al., 
2022). Organic fertilization enhances SOC accumulation, promoting 
sustainable crop production and soil health (Kalkhajeh et al., 2021; He 
et al., 2023). Soil microorganisms, the primary decomposers of SOC, 
play a pivotal role in soil nutrient cycling (Xu et al., 2021). Previous 
studies have highlighted that the incorporation of diverse organic 
materials can significantly reshape microbial community composition 
and fractionation of SOC (Li et al., 2022; Zheng et al., 2022; Shi et al., 
2023), leading to alterations in both microbial community diversity 
and function. Thus, it is important to comprehensively investigate the 
effects of different organic materials on soil microbial communities so 
as to optimize organic fertilization strategies, improve soil quality, and 
boost agricultural productivity (Li et al., 2020).

Recent research has demonstrated a strong correlation between 
SOC fractions and microbial communities (Su et al., 2020; Zhang 
et al., 2021). Microbial biomass carbon (MBC), extractable organic 
carbon, and fulvic acid (FA), which are the active components of SOC, 
mainly influence the bacterial communities, whereas the recalcitrant 
components of SOC are more closely associated with the fungal 
communities (Xiang et  al., 2017; Mayer et  al., 2021). Long-term 
biochar application was found to increase recalcitrant C and 
significantly change the fungal community structure across all soil 
depths but have little effect on the bacteria (Ma et al., 2023). Organic 
matter incorporation alters not only the fractions but also the chemical 
structure of SOC. Solid-state 13C nuclear magnetic resonance (13C 
NMR) spectroscopy is extensively utilized to investigate the chemical 
structure of SOC (Mustafa et  al., 2022). Chen et  al. (2023) 
demonstrated that the long-term wheat straw addition boosts 
carbohydrate carbon in light fractions and coarse particulate organic 
matter, altering the soil bacterial community. Conversely, corn stover 
addition increases aromatic C in both coarse and fine particulate 
organic matter, significantly changing soil fungal communities (Chen 
et al., 2023). The O-alkyl C mainly originates from easily metabolizable 
organic matter, such as cellulose and hemicellulose (Preston, 1996; 
Christensen, 2020), while aromatic C represents recalcitrant C 
compounds that largely determine the structural stability of SOC. A 
27-year field experiment showed that long-term manure application 
increased the aromatic fraction of SOC and the relative abundances 
of Acidobacteria and Actinobacteria (Li et al., 2018). Baumann et al. 
(2009) demonstrated that soil microbial communities were influenced 
by the content of aromatic C and O-alkyl C after the addition of wheat 
straw and eucalyptus residue, respectively. Although extensive 
research has underscored the impacts of the long-term incorporation 
of organic materials, especially crop residues, on SOC fractions and 
the microbial community during decomposition, some studies 
indicate that soil characteristics and microbial community 
composition respond swiftly to fertilization management changes. For 
instance, notable increases in microbial biomass and activity are often 
observed shortly after organic fertilization (Lazcano et al., 2013; Ren 
et  al., 2021). The influence of short-term application of organic 
material on soil microbial community composition and function 
remains largely unknown, necessitating further efforts to bridge this 
knowledge gap.

Spent mushroom substrate (SMS) is a byproduct generated during 
mushroom production. Improper SMS handling can result in 

environmental issues such as air and water pollution (Leong et al., 
2022a). Therefore, there is a growing interest in the effective recovery 
and utilization of SMS. Although numerous studies have affirmed the 
potential of SMS as an effective fertilizer (Pérez-Chávez et al., 2019), 
it is widely acknowledged that SMS composition varies significantly 
with the cultivated mushroom species (Suwannarach et  al., 2022; 
Leong et  al., 2022b). For instance, the substrate for cultivation of 
Pleurotus eryngii (PE) a primary decomposer, is mainly composed of 
wood fibers (e.g., sawdust), straw, and inorganic nutrients (Estrada 
et al., 2009; Zhai and Han, 2018). Conversely, Agaricus bisporus (AB), 
a secondary decomposer, requires a nitrogen and polysaccharide-rich 
substrate, typically a mixture of manure and cereal straw (Kerrigan 
et al., 2013). Composting SMS was considered the most efficient and 
economically viable method for its recycling. Compared to SMS-AB, 
SMS-PE contains more plant fiber residues, leading to increased 
O-alkyl C content in the soil, easily decomposed by soil 
microorganisms. In contrast, SMS-AB, which has undergone AB 
decomposition and composting, exhibits a higher degree of 
humification and may contain more stable organic carbon. However, 
research on the effects of SMSs with different C compositions on soil 
microbial communities and functions is limited.

In this study, we conducted a laboratory incubation experiment 
to investigate the response of soil microbial communities and 
functions to the short-term application of different SMSs. The specific 
objectives were as follows: (1) to investigate the effects of short-term 
application of two different types of SMS and their respective rates on 
soil nutrients, SOC fractions, SOC chemical structure, and microbial 
community composition; (2) to determine the correlations between 
soil bacterial and fungal community composition and the fractions 
and chemical structure of SOC; and (3) to predict the potential 
functions of soil bacteria and fungi in the different SMS application 
treatments using PICRUSt2 and FUNGuild analyses.

2 Materials and methods

2.1 Characterization of SMSs

Jiangsu Guannan Yuguan Modern Agricultural Technology Co., 
Ltd. (China) provided the spent substrates of PE and AB. After the 
mushrooms are harvested, the residual substrate was collected for 
static composting. The static pile was regularly turned using a turner 
to ensure adequate aeration, and the composting process was 
completed within 2 months. Supplementary Table S1 in our previous 
study (Yang F. et al., 2024; Yang G. et al., 2024) presents the relevant 
properties of the SMSs. The chemical composition of SMS-PE 
contained 11.2% alkyl C, 13.8% methoxyl C, 39.5% O-alkyl C, 10.6% 
di-O-alkyl C, 8.5% aromatic C, 5.6% phenolic C, and 10.8% carbonyl 
C, while SMS-AB comprised 21.9% alkyl C, 11.1% methoxyl C, 23.8% 
O-alkyl C, 6.8% di-O-alkyl C, 10.8% aromatic C, 8.8% phenolic C, and 
16.8% carbonyl C (Yang F. et al., 2024; Yang G. et al., 2024).

2.2 Experimental design and sample 
collection

The soil was collected from the farmland (0-20 cm) of 
Duigougang Town (34°5′N, 119°12′E) in Guannan County, Jiangsu 
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Province. The essential characteristics of the soil were as follows: 
pH of 8.01, SOC content of 20.21 g kg−1, total N (TN) content of 
1.41 g kg−1, available phosphorus (AP) content of 19.47 mg kg−1, and 
available potassium content of 465 mg kg−1. After ground to <2 mm, 
the SMSs were mixed thoroughly with the fresh soil (equivalent to 
1.5 kg dry weight), transferred into glass containers (15 cm in 
diameter, 15 cm in height), and placed in a dark incubator at 25°C 
for 115 days. Soil moisture was maintained at 50–60% of water-
holding capacity during incubation. Three application rates for each 
SMS were established, which were 3% (low: PEL and ABL), 5.5% 
(medium: PEM and ABM), and 8% (high: PEH and ABH), 
respectively. Therefore, a total of seven treatments were set up, 
including a control (CK) without SMS. After cultivation, fresh soil 
samples were collected and divided into three parts: one was stored 
at −80°C for soil DNA extraction, another was kept at 4°C for soil 
MBC determination, and the remaining was air-dried for soil 
property analysis.

2.3 Analyses of soil basic properties and 
SOC fractions

Soil properties, including pH, mineral N (NH4
+ and NO3

−), AP, 
and TN, were analyzed using various methods detailed in the 
Supplementary Text S1. SOC was determined using the K2Cr2O7 
oxidation method. SOC fractionation followed the differential 
solubility technique (Swift, 1996) adapted by Benites et al. (2003) in 
separating the FA and humic acid (HA). Soil samples were divided 
into light and heavy fractions using the density fractionation 
method (Janzen et al., 1992), and the total carbon content of each 
fraction (LFOC and HFOC) was determined. DOC was extracted 
using 0.5 M K2SO4 and measured using a total organic carbon 
analyzer (Elementar, Germany). Soil MBC was determined using 
the chloroform fumigation-extraction method.

2.4 13C NMR spectra of SOC

Before measurement, the soil samples were repeatedly treated 
with a 10% (v/v) hydrofluoric acid solution to remove Fe3+ and 
Mn2+, enhancing the instrument’s signal-to-noise ratio (Schmidt 
et al., 2011; Berhe et al., 2012). Subsequently, the soil samples were 
rinsed four times with deionized water to remove any residual 
hydrofluoric acid. The soil sample was dried in an oven at 40°C 
and ground through a 60-mesh screen, preparing it for cross-
polarization magic angle spinning 13C NMR spectrometry. The 13C 
NMR analysis was conducted using a Bruker AVANCE III 400 
spectrometer operating at a 13C resonance frequency of 
100.625 MHz. The samples were packed into a 4 mm diameter 
zirconium dioxide rotor and spun at a frequency of 5 kHz. The 
contact time was set to 10 milliseconds, and a recycle delay of 1 s 
was applied. Seven regions from the NMR analysis in each 
spectrum were obtained: 0–45 ppm (alkyl C), 45–60 ppm 
(methoxyl C), 60–93 ppm (O-alkyl C), 93–110 ppm (di-O-alkyl 
C), 110–142 ppm (aromatic C), 142–160 ppm (phenolic C), and 
160–190 ppm (carbonyl C). Various indexes of soil organic matter 
stability were computed as follows: (a) carbohydrate carbons 
(CC) = C60–93 ppm/C0–190 ppm (Chen et  al., 2023), and (b) 

aromaticity index (AI) = C110–160 ppm/C0–190 ppm (Kubar 
et al., 2021).

2.5 DNA extraction, PCR amplification, 
and Illumina Mi Seq sequencing

The total DNA of soil samples was extracted using the Fast DNA 
Spin Kits (MP Biomedicals, Santa Ana, CA, United States). DNA 
integrity and purity were assessed using 1% agarose gel 
electrophoresis. Additionally, DNA concentration and purity were 
accurately determined with a NanoDrop 1000 spectrophotometer 
(NanoDrop Technology, Wilmington, USA). For bacterial analysis, 
the primer set 515F and 806R were utilized to amplify the V3-V4 
hypervariable regions of the bacterial 16S rDNA gene. For fungal 
analysis, the primer set ITS5-1737F and ITS2-2043F were employed 
to amplify the ITS region of fungi. The PCR products were retrieved 
using the E.Z.N.A.® Gel Extraction Kit (Omega, USA), and the 
target DNA fragments were eluted with TE buffer. The library 
preparation was performed following the standard protocol of the 
NEBNext® Ultra™ II DNA Library Prep Kit for Illumina® (New 
England Biolabs, United States). The constructed amplicon library 
was subjected to sequencing on the Illumina Nova 6000 platform 
using PE250 sequencing (provided by Guangdong Magigene 
Biotechnology Co., Ltd., Guangzhou, China).

2.6 Bioinformatics and statistical analysis

Data normality and variance homogeneity were evaluated using 
the Shapiro–Wilk and Levene tests, respectively. The effects of SMS 
type and application rate on soil characteristics were analyzed by 
two-way ANOVA, followed by post-hoc analysis using Duncan’s test 
(significance level set at p < 0.05). Alpha diversity indices, Chao1 
(richness) and Shannon (diversity), were calculated at the OTU level. 
Non-metric multidimensional scaling (NMDS) analysis, based on 
the Bray-Curtis distance algorithm, was performed to investigate the 
differences in microbial community composition among treatments. 
The linkages between soil properties and microbial composition 
(phylum level) were evaluated using the Mantel test, implemented 
in the “vegan” package of R software. PCA analysis was performed 
using Origin 2022b software to investigate the composition of 
bacteria and fungi phyla in relation to selected soil characteristics. 
To assess species composition differences among soil samples at the 
genus level, a heatmap was constructed using the “pheatmap” 
package in R software.

Additionally, Spearman correlation analysis was performed 
between the top 50 genera in relative abundance in bacteria and fungi 
and selected soil characteristics, utilizing the “pheatmap” function in 
R software. 16S rRNA sequencing data based on PICRUSt 2 analysis 
was used to obtain functional profiles. The FUNGuild predicted 
database1 was employed to predict the ecological functions of fungal 
communities, with confidence levels categorized as “probable” and 
“highly probable.”

1 http://www.funguild.org/
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3 Results and discussion

3.1 Soil properties

At the end of the 115-day experiment, both SMS type and 
application rate caused significant changes in soil properties 
(Supplementary Table S2). Both SMSs increased SOC, DOC, TN, AP, 
and TP contents and reduced soil pH, and a higher SMS application 
rate caused more pronounced changes. For a same SMS application 
rate, SOC, DOC, MBC, AP, and TP contents and pH were significantly 
higher in the SMS-PE treatment than in the SMS-AB treatment, 
whereas the opposite was true for NO3

−-N content.

3.2 SOC fractions

A higher application rate of SMS-PE caused no significant change 
in HFOC content but significantly increased the contents of LFOC, 
FA-C, and HA-C (Supplementary Table S3). By contrast, a higher 
application rate of SMS-AB led to a higher HFOC content. For a same 
SMS application rate, soil LFOC content in the SMS-PE treatment was 
significantly higher than that in the SMS-AB treatment, whereas soil 
HA-C content in SMS-AB was significantly higher than that 
in SMS-PE.

3.3 Chemical structure of SOC fractions

The components of SOC in all treatments were predominantly 
composed of alkyl C and O-alkyl C (Figure 1). The O-alkyl C was the 
most dominant SOC component in all SMS-PE treatments, and its 
proportion in SOC increased with increasing SMS-PE application rate. 
In comparison to CK, the proportions of soil CC significantly 
increased by 3.84, 6.96, and 8.77% in the PEL, PEM, and PEH, 
respectively (Figure 1A). However, regardless of the application rate, 
the proportion of soil CC in the SMS-AB treatment significantly 
decreased. SMS application significantly increased the AI of SOC in 

all treatments (Figure  1B). ABM and ABH exhibited significant 
increases in AI by 8.24 and 22.83% compared to PEM and PEH, 
respectively.

3.4 Soil microbial diversity and community 
structures

As the application rate of SMS increased, bacterial richness and 
diversity decreased (Figures 2A,C). In comparison to the CK, the 
application of SMS-AB did not have a significant effect on fungal 
richness. In contrast, SMS-PE application significantly reduced 
fungal richness (Figure 2B). The type and application rate of SMS 
had no significant effect on fungal diversity (Figure 2D). NMDS 
plots based on Bray-Curtis distance displayed seven distinct 
clusters of bacterial and fungal communities (Figures 2E,F). The 
PEL and PEM bacterial community clusters overlapped, whereas 
the other five clusters were clearly separated. The three SMS-PE 
(PEL, PEM, and PEH) fungal community clusters overlapped with 
each other, and the three SMS-AB (ABL, ABM, and ABH) fungal 
community clusters overlapped with each other. However, the two 
cluster groups were clearly separated from each other. These results 
indicate that both the type and application rate of SMS significantly 
affected the bacterial communities, whereas only the type of SMS 
significantly influenced the fungal communities.

After 115 days of incubation, the predominant bacterial phyla were 
Proteobacteria, Acidobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, 
Gemmatimonadetes, and Firmicutes in all treatments (Figure  3A). 
Compared to CK, SMS application decreased the relative abundance of 
Acidobacteria while increased the relative abundance of Bacteroidetes 
and Proteobacteria. Comparing the two SMSs, SMS-PE application 
increased the relative abundance of Proteobacteria, whereas SMS-AB 
increased those of Firmicutes and Actinobacteria. The predominant 
fungal phyla across treatments were Ascomycota and Basidiomycota 
(Figure  3B). The SMS-PE treatments increased Ascomycota and 
Basidiomycota relative abundances compared to CK, whereas the 
SMS-AB treatments decreased their relative abundances.

FIGURE 1

The proportion of CC (A), AI (B), and distribution of chemical shift ranges in total signal intensity (%) for 13C NMR (C) of soil organic C under different 
SMS application treatments. CC, carbohydrate carbons; AI, aromaticity index; SMS, spent mushroom substrate.
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3.5 Correlations between soil properties 
and bacterial and fungal communities

The Mantel test indicated that the composition of bacterial phyla 
was significantly affected by pH, O-alkyl C, CC, HA-C, and Carbonyl 
C, while the composition of fungal phyla was significantly affected by 
pH, NO3

−-N, HFOC, HA-C, O-alkyl C, Aromatic C, Phenolic C, and 
AI (Figure 4).

PCA analysis showed that axes 1 and 2 accounted for 42.0 and 
26.9% of the total variance in soil bacterial community composition, 
respectively (Figure 5A). There was significant difference in bacterial 
phylum-level community composition between the SMS-PE and 
SMS-AB treatments. The bacterial community compositions at the 
phylum level in the SMS-PE treatments were mainly associated with 
higher proportions of O-alkyl C and CC and a lower proportion of 
carbonyl C. The bacterial community compositions at the phylum 
level in the SMS-AB treatments were mainly related to a higher HA-C 
content, a lower pH, and lower proportions of O-alkyl C and CC 
(Figure 5A).

As shown in the PCA ordination plot, axes 1 and 2 explained 
39.7 and 25.1% of the total variance in soil fungal community 
composition, respectively (Figure  5B). The fungal community 
compositions at the phylum level in the SMS-PE treatments were 
mainly related to a higher proportion of O-alkyl C. The fungal 
community compositions at the phylum level in the SMS-AB 
treatments were mainly related to higher contents of NO3

−-N, 
HFOC, and HA-C, a higher AI value, and higher proportions of 
aromatic C and phenolic C in SOC.

To further explore the influencing factors of bacterial and 
fungal community compositions at the genus level, Spearman 
correlation analysis was conducted between the top  50 most 
abundant genera and selected soil characteristics. SMS-PE 
application increased the relative abundances of Acidibacter, 
Pedomicrobium, Hyphomicrobium, Ensifer, Hirschia, Bauldia, 
Reyranella, Terrimonas, Niastella, Flavisolibacter, and Agromyces, 
which were positively correlated with soil O-alkyl C and CC 
proportions (Figure  6A). SMS-AB application increased the 
relative abundances of PAUC26f, Actinomadura, Ilumatobacter, 

FIGURE 2

The Chao1 index, Shannon index, and non-metric multidimensional scaling (NMDS) plot based on Bray–Curtis dissimilarity of bacterial (A,C,E) and 
fungal (B,D,F) communities in soil under different treatments.
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Chryseolinea, and Bacillus, which were positively correlated with 
soil HA-C content. SMS-PE application markedly elevated the 
relative abundances of Thermomyces, Myceliophthora, 
Cladorrhinum, Podospora, Cephaliophora, Blastobotrys, Conocybe, 
and Psathyrella, which were positively correlated with O-alkyl C 
proportion in SOC (Figure 6B).

3.6 Prediction of potential functions of 
bacterial and fungal functional guild

PICRUSt2 was used to predict the bacterial function of soil 
microorganisms based on KEGG pathways. The predicted pathways 
of bacteria in all treatments classified into seven functional categories 

FIGURE 3

The average relative abundances of bacterial (A) and fungal taxa (B) at the phylum level under different treatments.

FIGURE 4

Correlations between soil microbial composition (at the phylum level) and soil properties identified by Mantel test.

https://doi.org/10.3389/fmicb.2024.1351921
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yang et al. 10.3389/fmicb.2024.1351921

Frontiers in Microbiology 07 frontiersin.org

FIGURE 5

Principal component analysis (PCA) of major bacterial (A) and fungal phyla (B) and selected soil parameters.

FIGURE 6

The top 50 most abundant bacterial (A) and fungal genera (B) in different treatments (the left sides of A,B) and their correlations with selected soil 
properties (the right sides of A,B). Both bacterial (A) and fungal (B) genera are grouped into seven phyla.
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(KEGG_L1): Metabolism (80.6–80.9%), Genetic Information 
Processing (12.1–13.6%), Cellular Processes (4.0–4.3%), 
Environmental Information Processing (1.9–2.0%), Human Diseases 
(0.22–0.36%), Organismal Systems (2.2–2.5%), and unknown (0.020–
0.028%) (Figure 7A). Functions of soil bacteria predicted by PICRUSt2 
indicated that the application of PE significantly increased soil 
carbohydrate metabolism (Figure 7B). The high-rate (8%) application 
of PE and AB significantly increased soil xenobiotic biodegradation 
and amino acid metabolism compared to other treatments, 
respectively.

Based on FUNGuild functional prediction, the functional 
classification information of fungi was obtained in different 
treatments, along with the abundance information of these 
functional classifications (Figure 7C). The prediction of fungi 
FUNGuild showed that the relative abundance of pathotroph-
saprotroph-symbiotroph nutritional mode was higher than those 
of the other nutritional modes in both the CK and SMS-AB 
treatments, and it was significantly higher in CK (45.82%) than 
in the SMS-AB treatments (37.52–42.48%) (Figure  7D). By 
contrast, Saprotroph had a higher relative abundance 

(56.09–61.45%) than the other nutritional modes in the 
SMS-PE treatments.

4 Discussion

4.1 Variations in SOC component with 
different SMSs incorporation

Different SMSs incorporation significantly affected SOC 
component. Specifically, the application of SMS-PE increased active 
SOC components, including FA-C, LFOC, MBC, O-alkyl C, and CC, 
whereas SMS-AB mainly increased the stable components such as 
HFOC, HA-C, Aromatic C, thereby increasing the AI. Studies indicate 
that alterations in soil carbon components are closely linked to the 
input of exogenous organic matter (Hu et al., 2023). The substrate 
materials used for cultivating PE consisted of 20–35% sawdust, 5–25% 
corn cob, and 25–30% wheat straw (Yang F. et al., 2024; Yang G. et al., 
2024). After the composting, the content of lignin, cellulose, and 
hemicellulose in the spent substrate of PE was determined to be 5.23, 

FIGURE 7

Relative abundances of KEGG L1 (A) and L2 (B) pathways predicted by PICRUSt2 for the soil bacterial communities and FUNGuild annotated fungal 
trophic modes (C) and main fungal functional guilds (D) in different treatments.
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18.04, and 8.05%, respectively (Supplementary Table S1). On the 
other hand, the substrates for cultivating AB contained 54% rice 
straw, 44.4% chicken manure, and other materials. The lignin, 
cellulose, and hemicellulose contents of the composted SMS-AB were 
much lower, 1.65, 4.42, and 2.15%, respectively 
(Supplementary Table S1). Wang et al. (2012) indicated that after the 
initial rapid decomposition phase of 6 months, wheat straw 
accumulates a higher amount of recalcitrant carbon compared to 
maize straw, which contains a more significant proportion of lignin 
and cellulose. During the decomposition process of wheat and maize 
straws (over 2 years), the contents of O-alkyl C and di-O-alkyl C 
decreased, whereas the stable carbon contents, e.g., alkyl C, aromatic 
C, phenolic C, and carbonyl C, gradually increased (Wang et  al., 
2012). The decreases in the contents of di-O-alkyl C and O-alkyl C in 
wheat and maize straws were associated with the decomposition of 
cellulose-like substances, whose decomposition products may 
be further metabolized and transformed into other compounds by 
microorganisms, increasing the contents of stable carbon components. 
Additionally, the humification index (HA/FA ratio) of SMS-AB was 
significantly higher than that of SMS-PE (Supplementary Table S1). 
Therefore, SMS-AB exhibited higher levels of recalcitrant C and 
AI. By contrast, SMS-PE had a higher proportion of CC (easily 
degradable carbon).

4.2 Soil microbial community composition 
and function under different SMSs 
incorporation

Involved in SOC turnover and nutrient transformation, soil 
microbes are crucial to ecosystem functions. This study demonstrates 
that the application of SMSs with varying carbon components 
significantly alters soil microbial community composition (Figure 3). 
The relative abundance of Proteobacteria was notably higher in 
SMS-PE, and its relative abundance positively correlated with the 
application rate of SMS. It could be attributed to the preference of 
Proteobacteria for decomposing labile organic carbon fractions, which 
were enriched by applying SMS-PE in the soil (Fierer et al., 2012). 
Comparing two SMSs, SMS-AB application enhanced the relative 
abundance of Firmicutes and Actinobacteria. Compared to the 
copiotrophic bacteria Proteobacteria, Firmicutes have a greater 
capacity for decomposing recalcitrant carbon sources (Ling et al., 
2021). Actinobacteria, known for their versatile metabolism and rapid 
growth among soil bacteria, can promote soil carbon storage by 
producing polysaccharides, thereby enhancing the stability of soil 
carbon components (Mitra et  al., 2022; Yang F. et  al., 2024; Yang 
G. et al., 2024). This suggests that the application of AB led to an 
increase in the proportion of recalcitrant carbon in the soil compared 
to SMS-PE treatment. For fungi, comparing two SMSs, SMS-PE 
treatment increased the relative abundance of Ascomycota and 
Basidiomycota, whereas SMS-AB treatment led to a decrease. 
Ascomycota and Basidiomycota are primarily known for their 
saprophytic or parasitic nutritional modes, which could be attributed 
to the higher cellulose content in the SMS-PE treatment (Lundell 
et  al., 2014). Fungi belonging to Ascomycota and Basidiomycota 
produce enzymes such as cellulases which are involved in cellulose 
degradation (Singh et  al., 2003). Conversely, SMS-AB application 
increased the presence of soil’s recalcitrant C compounds.

The functional prediction results show that the SMS-PE 
application significantly increased the soil Carbohydrate metabolism 
(Figure  7B), involving the breakdown and metabolism of various 
organic compounds, including the degradation of hemi-cellulose and 
cellulose (Toledo et  al., 2017). Bacterial functional predictions 
suggested that applying a high rate of PE (8%) significantly increased 
the relative abundance of xenobiotics biodegradation and metabolism 
in the soil. This may be  attributed to the presence of microbial 
communities within the SMS-PE that exhibit the capability to degrade 
lignin compounds, which are universally recognized for their 
proficiency in decomposing dyes, hydrocarbons (notably polycyclic 
aromatic hydrocarbons), pesticides, and emerging contaminants 
(Leong et al., 2022a). Bacterial functional predictions indicated that 
the application of AB significantly increased the replication and repair 
function, which is beneficial for repairing pathogen infection (Wang 
et  al., 2022). The high-rate application of AB (8%) significantly 
increased amino acid metabolism compared to other treatments. This 
may be due to the presence of poultry manure in AB, which can 
accelerate the metabolism of N-containing substances. The more 
abundant the bacteria with amino acid metabolism function, the more 
significant their promoting effect on amino acid production and 
humus synthesis (Wu et al., 2017).

The FUNGuild functional prediction reveals that Pathotroph-
Saprotroph-Symbiotroph nutritional mode predominates in the CK 
and SMS-AB treatments, while the Saprotroph mode is most abundant 
in the PE treatment. It has been reported that saprotrophic fungi are 
the primary decomposers of dead or senescent plant material in soils, 
playing an essential role in the decomposition of organic matter and 
nutrient cycling (Duan et al., 2023). In contrast, pathogenic fungi 
obtain their nutrition from living host cells, negatively impacting crop 
growth (Anthony et al., 2017). The application of PE significantly 
reduced the relative abundance of Animal Pathogen-Endophyte-
Lichen Parasite-Plant Pathogen-Soil Saprotroph-Wood Saprotroph, 
Animal Pathogen-Endophyte-Fungal Parasite-Lichen Parasite-Plant 
Pathogen-Wood Saprotroph, and Endophyte-Litter Saprotroph-Soil 
Saprotroph-Undefined Saprotroph, while increasing the relative 
abundance of “Wood Saprotroph and Endophyte-Plant Pathogen” 
(Figure  7C). The fungi corresponding to Animal Pathogen-
Endophyte-Fungal Parasite-Lichen Parasite-Plant Pathogen-Wood 
Saprotroph are Nectriaceae, a family containing essential plant 
pathogens that induce disease in grapevines, avocados, and olives 
(Malapi-Wight et al., 2015). Within Nectriaceae, the most abundant 
genus is Fusarium. The fungi corresponding to Animal Pathogen-
Endophyte-Lichen Parasite-Plant Pathogen-Soil Saprotroph-Wood 
Saprotroph are only Fusarium. Fusarium species are soil-borne 
vascular wilt pathogens and rank among the most crucial 
phytopathogenic and toxigenic fungi (Tang et  al., 2020). Adding 
organic fertilizer likely promotes beneficial microbial growth while 
suppressing pathogenic bacteria in the soil (Hartmann et al., 2015). In 
this study, SMS-PE application might have increased beneficial fungi 
like Cladorrhinum, Podospora, and Blastobotrys, inhibiting the growth 
of harmful fungi such as Fusarium (McCormick et al., 2012; Zhao 
et al., 2021). In this study, SMS-PE application might have increased 
beneficial fungi like Cladorrhinum, Podospora, and Blastobotrys, 
inhibiting the growth of harmful fungi such as Fusarium (McCormick 
et al., 2012; Zhao et al., 2021). Wang et al. (2020) has shown that SMS 
application can inhibit soil pathogens, alter the rhizosphere microbial 
community of cucumbers, and enhance cucumber growth. These 
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findings collectively suggest that SMS can be  developed into a 
biocontrol-functional organic fertilizer. Moreover, bioactive 
compounds with biocontrol properties can be extracted from SMS 
using appropriate methods and incorporating them into liquid 
fertilizers can create effective liquid biocontrol fertilizers (Qin 
et al., 2023).

4.3 The relationship between SOC 
component and microbial community 
composition

The aim of this study was to investigate the relationship between 
soil microbial community structure and SOC composition in soils 
applied with different types of SMSs. The mantel test showed that the 
phylum-level bacterial community composition was significantly 
affected by soil pH, O-alkyl C, CC, HA-C, and carbonyl C, whereas 
the phylum-level fungal community composition was significantly 
affected by soil pH, NO3

−, HFOC, HA-C, O-alkyl C, aromatic C, 
phenolic C, and AI (Figure 4). The PCA analysis showed that the 
phylum-level bacterial community compositions in the SMS-PE 
treatments were mainly associated with the relatively high proportions 
of O-alkyl C and CC. The O-alkyl C and CC were positively correlated 
with the relative abundance of Proteobacteria, aligning with the 
finding of Di Lonardo et al. (2017) that Proteobacteria abundance was 
significantly correlated with easily degradable compounds. Further 
corroboration comes from Bonanomi et al. (2019), who noted that 
decreases in the proportions of O-alkyl C and di-O-alkyl C during leaf 
litter decomposition contribute to the reduction in the relative 
abundance of Proteobacteria. The bacterial community compositions 
at the phylum level in the SMS-AB treatments were mainly related to 
the relatively high content of HA-C. HA-C was positively correlated 
with the relative abundances of Firmicutes and Actinobacteria, which 
was similar to the finding of Li et al. (2019) that the application of HA 
increased the relative abundances of Firmicutes and Actinobacteria in 
soil. Actinobacteria are vital players in organic matter transformation 
and play a significant role in breaking down persistent polymers (Xu 
et al., 2016). The fungal community compositions at the phylum level 
in the SMS-PE treatments were mainly related to the relatively high 
proportion of O-alkyl C. O-alkyl C was positively correlated with the 
relative abundances of Basidiomycota and Ascomycota. This suggests 
that Ascomycota and Basidiomycota may produce more O-alkyl C, 
and thus, more organic matter is transformed by these microorganisms.

As aforementioned, the application of SMS-PE mainly increased 
the relative abundance of Proteobacteria. Specifically, the 
Proteobacteria genera of Acidibacter, Pedomicrobium, 
Hyphomicrobium, Ensifer, Hirschia, Bauldia, and Reyranella increased 
in relative abundance with a higher application rate of SMS-PE. In 
addition, the application of SMS-PE also increased the relative 
abundances of Terrimonas, Niastella, and Flavisolibacter in 
Bacteroidetes and Agromyces in Actinobacteria. The relative 
abundances of these genera showed positive correlations with O-alkyl 
C and CC. Hyphomicrobium, Pedomicrobium, Reyranella, and Bauldia 
are the major denitrifying bacteria in soil, with the ability to reduce 
nitrate to nitrite and further to NO and N2O (Seitzinger et al., 2006). 
Ensifer and Niastella were reported to be associated with NO3

−-N and 
COD, respectively, suggesting that they may be  involved in 
denitrification processes (Guo et al., 2023). The increased labile C 

(O-alkyl C and CC) in the SMS-PE treatments can act as electron 
donors for the denitrification processes (Cui et  al., 2023), which 
explains the observed increased relative abundances of the bacteria 
associated with denitrification. Hirschia and Terrimonas can secrete 
cellulases to degrade lignocellulosic fibers (Martin et  al., 2014). 
Agromyces strains are known to produce β-glucosidase during the 
decomposition of rice straw (Han et al., 2023). Flavisolibacter can 
degrade cellulose and is considered a beneficial bacterium that plays 
a key role in improving plant disease resistance, promoting plant 
growth, and fixing carbon dioxide (Liu et al., 2016). The application 
of SMS-AB led to increases in the relative abundances of PAUC26f in 
Acidobacteria, Actinomadura and Ilumatobacter in Actinobacteria, 
Chryseolinea in Bacteroidetes, and Bacillus in Firmicutes. In addition, 
the relative abundances of these genera were positively correlated with 
the content of HA-C. Actinomadura and Ilumatobacter are involved in 
the biosynthesis of antibiotics such as polyketones, streptomycin, and 
vancomycin (Hertweck, 2009). Additionally, HA application promotes 
the growth of Ilumatobacter (Sang et  al., 2021). Chryseolinea can 
degrade complex organic compounds such as polysaccharides 
(Milkereit et  al., 2021). Bacillus is recognized as an efficacious 
biocontrol agent, mitigating the prevalence of soil-borne diseases, and 
improving the soil ecosystem (Liang et al., 2018). A study showed that 
adding 0.5% Bacillus subtilis to cow manure compost promoted the 
conversion of organic C to humus (Duan et  al., 2020). HA is an 
organic macromolecule produced by microbial degradation of plant, 
animal, and microbial residues (Yu et al., 2019). Mainly composed of 
aromatic compounds rich in active functional groups (phenolic and 
carboxyl groups), HA is difficult to mineralize. Inoculating microbes 
to improve the composting efficiency of SMS and elevate the levels of 
functional substances, such as humic acids, provides a new strategy 
for creating functional fertilizers derived from SMS (Sun et al., 2023; 
Li et al., 2024).

The application of SMS-PE significantly increased the relative 
abundances of Thermomyces, Myceliophthora, Cladorrhinum, 
Podospora, Cephaliophora, and Blastobotrys in Ascomycota and 
Conocybe and Psathyrella in Basidiomycota. The relative abundances 
of these genera were positively correlated with the relative abundance 
of O-alkyl C (Figure 6B). There was un-degraded cellulose in the 
composted SMS-PE, and Myceliophthora and Thermomyces can secrete 
abundant cellulases and xylanases to degrade the cellulose (Van den 
Brink et al., 2012). Cladorrhinum, Podospora, and Blastobotrys are 
potential biocontrol agents of plant pathogens and promote plant 
growth. In addition, they produce enzymes with biotechnological 
applications (Barrera et  al., 2019). Podospora and Blastobotrys, 
abundant in healthy soils, can reduce tomato wilt disease (Verticillium) 
(Dutta, 1981). Cephaliophora, a predatory fungus, is under-researched 
(Morikawa et al., 1993). Psathyrella, a wood-decomposer (Suetsugu 
et  al., 2020) whose secondary metabolites have antibacterial and 
inhibitory properties, is a potential biocontrol agent. Conocybe is 
capable of cellulose degradation, polysaccharide production, and 
pathogenic fungi inhibition (Yang et  al., 2022). Investigating the 
interactions between SOC components and distinct microbial genera, 
as well as their functional roles, establishes a basis for future 
development of SMS-derived functional fertilizers. While the SMS-PE 
application significantly altered the abundances of various fungal 
genera, suggesting potential benefits for soil health and biocontrol, 
these laboratory-based findings must be  validated through field 
experiment. Additionally, future research should consider the initial 
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microbial community composition and physical soil properties, which 
can significantly influence SOC fractions and microbial 
community responses.

5 Conclusion

Our research indicates a close relationship between SOC 
composition and microbial community and function under the 
short-term application of SMS. The application of SMS-PE resulted 
in higher proportions of CC and O-alkyl C, which stimulated the 
bacterial and fungal genera associated with cellulose degradation. In 
addition, functional predictions indicated that the relative 
abundance of carbohydrate metabolism in bacteria was significantly 
increased, and the relative abundances of fungal pathogens, 
especially Fusarium spp., were notably decreased. The application of 
SMS-AB increased AI, the proportion of aromatic C, and the 
contents of HA-C and HFOC. The relative abundances of beneficial 
genera like Actinomadura, Ilumatobacter, and Bacillus were 
increased. Furthermore, functional prediction revealed that high-
rate SMS-AB application elevated bacterial amino acid metabolism 
and the abundance of plant pathogenic fungi. Our results elucidate 
that the application of different SMSs can alter SOC composition, 
thereby affecting the composition and function of soil microbial 
communities. This work enhances our understanding of the 
relationship between soil organic carbon components and microbial 
communities and provides foundational insights for developing 
effective SMS management strategies.
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