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Advances in high-throughput technologies have enhanced our ability to 
describe microbial communities as they relate to human health and disease. 
Alongside the growth in sequencing data has come an influx of resources that 
synthesize knowledge surrounding microbial traits, functions, and metabolic 
potential with knowledge of how they may impact host pathways to influence 
disease phenotypes. These knowledge bases can enable the development of 
mechanistic explanations that may underlie correlations detected between 
microbial communities and disease. In this review, we survey existing resources 
and methodologies for the computational integration of broad classes of 
microbial and host knowledge. We  evaluate these knowledge bases in their 
access methods, content, and source characteristics. We  discuss challenges 
of the creation and utilization of knowledge bases including inconsistency of 
nomenclature assignment of taxa and metabolites across sources, whether the 
biological entities represented are rooted in ontologies or taxonomies, and how 
the structure and accessibility limit the diversity of applications and user types. 
We make this information available in a code and data repository at: https://
github.com/lozuponelab/knowledge-source-mappings. Addressing these 
challenges will allow for the development of more effective tools for drawing 
from abundant knowledge to find new insights into microbial mechanisms 
in disease by fostering a systematic and unbiased exploration of existing 
information.
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1 Introduction

The structure and function of the human microbiome can be  both a driver and 
consequence of various disease states (Falony et al., 2019; King et al., 2019). Microbiome 
signatures are associated with a range of conditions including auto-immune and 
gastrointestinal disease, cancer, and neurological disease (Berg et al., 2020). Understanding 
interactions between the gut microbiome and the host at a mechanistic level requires a 
sophisticated synthesis of individual microbial functions, such as metabolic output, and how 
these functions interact with host processes that influence human physiology.
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Mechanistic prediction of microbe-host interactions often 
involves in-depth analyses of multi-omic datasets. For example, in one 
study that related immune markers, microbiome composition, 
metabolomic data, diet, and demographic measures to markers of 
metabolic health in people living with human immunodeficiency 
virus (HIV), they found that butyrate production and mucolytic 
activity of particular gut microbes play a potential role in intestinal 
barrier dysfunction, suggesting more targeted followup studies 
(Armstrong et al., 2021). In another study that used metagenomic, 
metatranscriptomic, metaproteomic, and metabolic data to explore 
the functional attributes of the microbiome that influence Parkinson’s 
disease (PD) pathogenesis, a preliminary result found the metabolite 
2-hydroxypyridine (2-HP) and the microbe Methanobrevibacter 
smithii to be enriched in PD, prompting several experiments which 
verified their effects on alpha synuclein aggregation (Wilmes et al., 
2022). Large scale metagenomics studies can hone in on these 
interactions at a species or strain level, and bioinformatics analyses 
can further hypothesize how the microbial community contributes to 
health or disease (Armour et  al., 2019; Wallen et  al., 2022). Such 
studies provide rich information in the scientific literature on 
associations between microbes, host pathways and diseases, which 
brings us closer toward a mechanistic understanding of the 
microbiome. Despite advances in bioinformatics techniques to 
evaluate multi-omic datasets and laboratory methods to further 
explore promising results, there is no efficient and reliable solution for 
using existing knowledge to identify the most promising potential 
mechanisms involving the microbiome in human disease for further 
experimental validation.

Public resources that organize microbial knowledge serve an 
important purpose in mechanistic inference. These can be summarized 
into six categories, with relevant concepts defined in Box 1: (1) 
Ontologies and taxonomies which provide a standardized nomenclature 
and hierarchical ranking of biological entities such as microorganisms, 
proteins or metabolites, (2) Annotated databases that have some 
information about the given concept that is linked to an experimental 
result, (3) Mechanistic curated knowledge bases that contain knowledge 
drawn from multiple data sources and render known explanations 
about biological interactions (4) Integrated knowledge bases which 
aggregate relationships and identifiers represented across many 
different sources (5) Correlative curated knowledge bases which include 
associations found between two unique concept types, e.g., a microbe 
and a disease, and (6) Inference-ready knowledge bases that enable 
mechanistic inference (Figure 1A). Synthesizing microbial and host 
information is critical to achieve a systems level perspective of the 
microbiome. Such integrated resources elucidate relationships 
between microbes and other biological concepts, allowing researchers 
to access the increasing amount of information to draw 
new conclusions.

We evaluate the accessibility of the many resources that fall within 
these categories, which alludes to the structure that the content is 
made available in, and the interfaces that users are able to access the 
resource. The various ways that knowledge bases are made available, 
whether through downloadable files, programmatically, or via a user 
interface, influences how useful they are among scientists. We identify 
the content of each resource including the types of information classes 
that are represented and the types of relationships between concepts. 
Lastly, we  critique the source characteristics of each resource by 
assessing the source of knowledge, the curation method, and the 

qualities such as accuracy that result from those curation methods. 
We assess comprehensiveness and accuracy by examining how each 
resource was constructed and how automated processes can lack the 
specific or validated evidence provided by manual curation. The most 
effective integrated resources are those which link all categories of 
knowledge, and align the concepts represented to identifiers of 
ontologies or primary knowledge bases (Figure 1B). These resources 
thereby allow for sophisticated computational analyses and inference 
to understand microbial mechanisms. In this review, we assess how 
integrated resources and tools can be used to address mechanistic 
questions in microbiome research.

2 Efforts to standardize microbiome 
studies

Understanding the host-associated microbiome is particularly 
challenging given the need to incorporate both microbial and host 
processes into analyses. Due to the interdisciplinary nature of 
microbiome research, there have been many efforts to develop broad 
standardization of experimental design, metadata, and reported 
results of observational and genetic studies in the field. The Genomic 
Standards Consortium (GSC) introduced two important standards: 
minimum information about any (x) sequence (MIxS) and 
minimum information about marker gene sequence (MIMARKS), 
and a checklist for microbiome study reporting and manuscript 
preparation (Yilmaz et  al., 2011; Mirzayi and Renson, 2021). 
Platforms such as Qiita, which allows users to perform microbiome 
analyses for one or more studies, require the metadata to be entered 
according to MIxS standards (Gonzalez et al., 2018). These standards 
ensure consistency in reporting metadata of new, published 
experimental results and support integration of data across 
studies seamlessly.

In addition to standardizing metadata, it is important to unify the 
representation of concepts for multi-omic studies. Integrated resources 
harmonize biological content by mapping entities to standardized 
ontologies or other primary databases. The nomenclature of microbes, 
proteins, and metabolites that are involved in a microbiome study may 
vary, and aligning these terms is important for aggregation. It is most 
useful if the concepts represented are mapped to universally accepted 
identifiers such as ontologies or taxonomies (Box 1). Many domain 
specific ontologies exist in the Open Biological and Biomedical 
Ontology Foundry (OBO) that are widely relevant to biomedicine, 
such as the Gene Ontology (GO) that provides a directed acyclic graph 
(DAG) structure to the biological processes, cellular components, and 
molecular functions that result from gene products (The Gene 
Ontology Consortium, 2019; Jackson et  al., 2021). Structured 
databases that consolidate external annotations, align nomenclature, 
and provide frequent updates can also be  the main source of 
identifiers. PubChem is one such resource of chemical information 
including molecular formula, structure, and physical properties, while 
DrugBank expands on this information to include drug target 
sequences and pharmacological properties (Wishart et al., 2018; Kim 
et  al., 2023). This process of standardization thus enables the 
contextualization of specific experimental results to a broader class of 
concepts (chemicals, proteins, organisms, etc.). The primary databases 
relevant for microbiome research are described in Table  1. These 
efforts for standardization of both metadata and microbial concepts 
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have supported the development of integrated resources that combine 
functional and metabolic concepts of microbes and the host.

3 Microbiome-relevant knowledge 
bases and their applications

Our understanding of the microbiome is improved through 
knowledge of the relationships between individual microbial taxa, the 
functional characterization of their genes and how genomic content 
contributes to their metabolic outputs, and other information on 
microbial traits and functions determined through experimentation. 
Relating microbial taxonomic and functional information to host 
pathways, physiology or disease can provide mechanistic detail that 
informs our understanding of microbe-host interactions. This 
knowledge is made available through methods to collect and curate 
knowledge of microbial functions from the literature using natural 
language processing or manual annotation and representing the 
information in the form of integrated resources. We  assess the 
relationships among integrated knowledge bases and their mappings 
to primary databases in Figure 2. The varying categories of integrated 
resources are highly applicable to three primary use cases: effectively 

accessing systems level microbiome information, contextualizing new 
findings with existing findings, and inferring new relationships to 
better understand how microbes influence disease. More detail of 
these resource qualities is described in Supplementary Table 1.

3.1 Knowledge bases that streamline 
access

An increasing number of knowledge bases have been developed 
that synthesize microbial and host content for systems biology 
research, including mechanistic curated knowledge bases and 
integrated knowledge bases. The relationships represented capture 
biological processes in a causal way, and are rooted in human curation 
of specific, validating experiments. In most cases, these resources 
introduce new unique identifiers for informational classes, which, in 
combination with other primary databases discussed previously, 
supports standardization and integration of correlative and inference-
ready knowledge bases. In order to connect microbial sequences from 
experimental studies to these resources, sequence search tools such as 
Basic Local Alignment Search Tool (BLAST) or functional annotation 
tools such as InterPro and EggNog Mapper are used, alongside 

FIGURE 1

Characterization of known resources relevant to microbiome research. (A) Schematic of the types of resources that exist and the purpose that they 
serve in microbiome research. Note that resource characterization is based on the prominent qualities, though many resources span these types. 
Affordances represent the primary purpose of the given resource type. The standardized nomenclature affordance indicates that the resource 
introduces new identifiers to uniquify concepts. The knowledge-based biological relationships affordance implies that the resource describes 
interactions among the concepts by the indicated relationship type in (B). The mechanistic hypothesis inference affordance indicates that the resource 
is uniquely suited to provide a mechanistic explanation when given specific queries. (B) The evaluations performed over existing resources mentioned 
in the Resources column of (A) within this review.
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additional web applications such as MolEvolvR facilitating protein 
characterization across phylogenetic contexts (McGinnis and Madden, 
2004; Jones et al., 2014; Cantalapiedra et al., 2021; Krol et al., 2022).

3.1.1 Resources that include microbial and host 
genes, reactions, pathways, and metabolites

The Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
MetaCyc are examples of mechanistic curated knowledge bases that 
represent relationships among microbial and host genes, reactions/
pathways, and metabolites (Kanehisa et al., 2017; Caspi et al., 2020). 
KEGG and MetaCyc provide direct taxonomic mappings to NCBI 
Taxonomy, RefSeq, or GenBank, as well as direct mappings to multiple 
primary sources of metabolites and proteins (Figure 2). Both knowledge 
bases integrate knowledge of metabolic pathways for many organisms 
(Mendoza et  al., 2019; Caspi et  al., 2020). These knowledge bases 
organize pathway and molecular content in unique ways, often making 

comparison difficult, however a primary difference is in the supported 
tools surrounding the resource. KEGG introduces several tools 
including the BlastKOALA (short for KEGG Orthology And Links 
Annotation), a protein annotation web service, KEGG Mapper, a 
genome annotation service, and Pathogen Checker, a service supporting 
search of antimicrobial resistance genes (Kanehisa et al., 2017). KEGG 
also introduced drug and disease links to the pathways represented in 
2005 and 2008, respectively. MetaCyc introduces Pathway Tools 
consisting of key components such as PathoLogic, a method to predict 
metabolic pathways of a given organism, and MetaFlux to generate 
genome-scale metabolic networks (GSMNs or GEMs) using flux based 
analysis (Caspi et al., 2020). Each of these platforms support extensive 
web-based interfaces for exploring the content represented, and both 
have moved to a subscription model. The large diversity of life 
represented among MetaCyc and KEGG render them broadly relevant 
to understanding microbiome-related results.

3.1.2 Resources that host GSMNs
A method that systematically evaluates microbial phenotypes 

relevant for microbe:host interactions is GSMNs. GSMNs are in silico 
models and can be used to infer metabolic phenotypes. GSMNs use 
the annotated genes of an organism, which describe the associated 
biochemical reactions that the enzymatic products of such genes are 
capable of affecting. These gene annotations are found using 
annotation tools such as GapMind or aggregated from publicly 
available curated databases (Price et  al., 2020). GSMNs serve two 
purposes: they synthesize knowledge of that organism’s metabolism, 
and they are a mathematical model which can be used to simulate 
metabolic phenotypes in environments of interest (Moretti et al., 
2021). Moreover, GSMNs from multiple organisms can be aggregated 
in order to simulate entire microbial communities with tools such as 
MICOM (Swainston et  al., 2017). Recently, MICOM was used to 
predict the risk of Clostridium difficile infection, the leading cause of 
antibiotic associated diarrhea, based on the metabolic strategies of 
C. difficile in different host microbiome and diet contexts (Carr et al., 
2023). GSMNs can therefore serve as a blueprint for the suite of 
metabolic transformations possible and facilitate the understanding 
of the metabolic potential of a given microbial community (Mendoza 
et al., 2019; Esvap and Ulgen, 2021; Passi et al., 2021).

GSMNs are highly dependent on knowledge sources used in their 
construction. Because many different methods to generate GSMNs exist 
and it is often a manual process, there are often inconsistencies in the 
resulting models (Heinken et al., 2023). These differences are influenced 
by the reconstruction approach and attributed to the chosen database 
or annotation tools from which the information is gathered 
(Magnúsdóttir et al., 2017; Machado et al., 2018; Hsieh et al., 2023). The 
consistent mapping of the biological concepts represented in public 
databases and knowledge bases is a critical aspect of their broad utility. 
This standardization challenge expands beyond GSMNs to all resources 
that combine unique forms of knowledge based on prior studies, and 
remains a major limitation in the causal mechanism generating task.

There are several key resources hosting GSMNs, including the 
Biochemical, Genetic and Genomic knowledge base (BiGG), MetaNetX, 
BioModels, the Department of Energy Systems Biology Knowledgebase 
(KBase), and the Virtual Metabolic Human (VMH) (Arkin et al., 2018; 
Malik-Sheriff et al., 2019; Noronha et al., 2019; Norsigian et al., 2019; 
Moretti et al., 2021). BiGG enables an efficient search over multiple 
GSMNs by integrating published models of different organisms with 

BOX 1 Key terms

 • Data repository: an archive of any data formats to enable 
public sharing

 • Primary knowledge source: a source of knowledge that is 
used as a nomenclature standard for a knowledge base, for 
example an annotated database or ontology

 • Ontology or Taxonomy: a system that is used as a 
semantic standard with a hierarchical classification 
scheme approved by groups of experts (Carpendale 
et al., 2014)

 • Annotated database: database that stores experimentally 
derived content, such as sequences or structures from an 
instrument, with data labels potentially from 
manual curation

 • Knowledge Base: structured repository describing the 
relationships between categories and the standardizing 
mappings of such categories*

 • Mechanistic knowledge: an assertion of causal 
relationships between two categories

 • Correlative knowledge: an assertion of statistical 
associations between two categories

 • Mechanistic curated knowledge base: knowledge base 
derived from manual curation over multiple 
knowledge sources

 • Correlative curated knowledge base: repository of 
correlative knowledge derived from manual curation over 
multiple knowledge sources

 • Integrated knowledge base: knowledge base that 
incorporates content from multiple knowledge sources, 
most often cross-linking identifiers over such resources

 • Inference-ready knowledge base: knowledge base that 
represents relationships in a logically consistent and 
semantically well-defined manner

*A category here signifies a class of knowledge based on empirical evidence, 

often referred to as a concept or entity. The three terms are used interchangeably 

throughout this review.

https://doi.org/10.3389/fmicb.2024.1351678
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Santangelo et al. 10.3389/fmicb.2024.1351678

Frontiers in Microbiology 05 frontiersin.org

TABLE 1 Primary knowledge sources for the standardization of all entity types.

(A) Microbial classification resource Nomenclature Trait 
based

Sequence 
based

De novo 
tree based

Update 
frequency

Ontologies and taxonomies

Bergey’s Manual of Systematic Bacteriology (Goodfellow et al., 2009) X X 2–4 y

NCBI Taxonomy (Federhen, 2012) X X 6 months

Deutsche Sammlung fur Mikroorganismen und Zellkultren (DSMZ) X X 1–4 months

Genome Taxonomy Database (GTDB) (Parks et al., 2022) X X 6 months

Greengenes, Greengenes2 (DeSantis et al., 2006; McDonald et al., 2023) X X X Irregular

SILVA (Quast et al., 2012) X X X 1–2 years

Unified Medical Language System (UMLS) (Bodenreider, 2004) X 2.5 months

Systematized Nomenclature of Medicine-Clinical Terminology 

(SNOMED CT) (Vuokko et al., 2023)

X 1 year

Medical Subject Headings (MeSH) X 1 year

(B) Functional 
characterization of genes 
resource

Nomenclature Sequence Function Homologous 
Groupings

Microbe 
Oriented

Host 
Oriented

Update 
frequency

Ontologies and taxonomies

Protein Ontology (PRO) (Chen et al., 2020) X X X 2–6 months

Gene Ontology (GO) (The Gene Ontology 

Consortium, 2019) – subsumes EC

X X X 1 month

Annotated Databases

Protein Data Bank (PDB) (wwPDB 

consortium et al., 2019)

X X X 1 week

SWISS-PROT/Trembl (Boeckmann, 2003) X X X X 1 month

Cluster of Orthologous Groups (COGs) 

(Galperin et al., 2021)

X X X X X Irregular

InterPro/Pfam (Paysan-Lafosse et al., 2023) X X X X X X 1–3 months

Carbohydrate Active Enzymes (CAZy) 

(Cantarel et al., 2009)

X X X X X X 1 month

GenBank (Sayers et al., 2021) X X X X 2 months

RefSeq (O’Leary et al., 2016) X X X X 1 year

Entrez (Maglott et al., 2007) X X Daily

Ensembl (Howe et al., 2021) X X 0.5 months

Protein Information Resource/Protein 

Sequence Database (PIR/PSD) (Barker et al., 

2000)

X X X X 3 months

Protein Extraction, Description and 

ANalysis Tool (PEDANT) (Frishman, 2003)

X X X X Irregular

microRNA sequence database (MiRBase) 

(Griffiths-Jones, 2006) (host oriented only)

X X X 1 year

Universal Protein Resource Knowledge 

Base (UniProtKB) (The UniProt 

Consortium et al., 2023) *note this 

contains SWISS-PROT/Trembl

X X X X X 1 month

AnnoTree (Mendler et al., 2019) *note this 

contains InterPro annotations (microbe 

oriented only)

X X X X Dep. on GTDB

(Continued)
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TABLE 1 (Continued)

(B) Functional 
characterization of genes 
resource

Nomenclature Sequence Function Homologous 
Groupings

Microbe 
Oriented

Host 
Oriented

Update 
frequency

Ontologies and taxonomies

Bacterial and Viral Bioinformatics 

Resource Center (BV-VRC) (Olson et al., 

2023) (microbe-oriented only)

X X X Irregular

Functional Annotation of Prokaryotic 

Taxa (FAPROTAX) (Liang et al., 2020)

X X X X X Irregular

Enzyme Commission (EC) (Biochemistry 

IU of Committee MBN and Webb, 1992)

X X X X 2.5 months

BRaunschweig ENzyme DAtabase 

(BRENDA) (Chang et al., 2021)

X X X X X 6 months

EggNOG (Huerta-Cepas et al., 2019) X X X X X X 2–3 y

SEED (Overbeek et al., 2014) X X X X X X Dep. on resources

(C) Metabolite and reaction 
classification resource

Nomenclature Gene 
interaction

Chemical 
reaction

Microbe 
oriented

Host 
oriented

Update 
frequency

Ontologies and taxonomies

Chemical Entities of Biological Interest (ChEBI) 

(Hastings et al., 2016)

X X X 1 month

Chemical Function Ontology (Wishart et al., 2023) X X X X New

Annotated Databases

ChEMBL (Zdrazil et al., 2023) X X X X X 6 months

PubChem (Kim et al., 2023) X X X 1 year

SABIO-Reaction Kinetics Database (Wittig et al., 2018) X X X X 1 year

DrugBank (Wishart et al., 2018) X X X X 1 year

Rhea (Bansal et al., 2022) X X X X 2 months

(D) Pathway classification resource Microbe oriented Host oriented Update frequency

Ontologies and taxonomies

Pathway ontology (Petri et al., 2014) X X 1 week

Small Molecule Pathway Database (SMPDB) (Jewison et al., 2014) X 2–4 years

PathBank (Wishart et al., 2020) X X 2–4 years

(E) Disease classification resource Nomenclature Disease classification Update frequency

Ontologies and taxonomies

Disease Ontology (Schriml et al., 2022) X X 1 year

Monarch Disease Ontology (Vasilevsky et al., 2022) X X 1 month

Unified Medical Language System (UMLS) (Bodenreider, 2004) X 6 months

Systematized Nomenclature of Medicine-Clinical Terminology 

(SNOMED CT) (Vuokko et al., 2023)

X 1 year

Medical Subject Headings (MeSH) X 1 year

Chemical Function Ontology (Wishart et al., 2023) X New

International Classification of Diseases (ICD) (Harrison et al., 2021) X 1–4 years

The Nomenclature column specifies if the primary knowledge source provides identifiers for concept names. (A) Primary knowledge bases for microbial classification. Trait based resources use 
inherent traits, structural or otherwise, to differentiate taxa. Sequence-based resources rely on the genomic content, and de novo tree-based resources use some sequence-based and some 
machine learning techniques to differentiate taxa. All microbial classification resources are microbe-oriented. (B) Primary resources for functional characterization of microbial genes. Primary 
resources may link a given protein with its genomic sequence (Sequence), describe the function of a protein (Function), or describe the evolutionary relationships among proteins 
(Homologous Groupings). (C) Primary knowledge bases used for metabolic modeling. Primary resources may link a given chemical with a target genomic sequence (Gene Interaction) or 
describe the reactions that a chemical is involved in (Chemical Reaction). (D) Primary knowledge sources used for pathways. (E) Primary knowledge sources used for diseases. Primary 
resources that include a hierarchical classification of diseases are noted (Disease classification). All disease resources are host-oriented.
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standardized nomenclature of all components, with models of 108 
organisms included as of 2019(Norsigian et  al., 2019). BiGG and 
BioModels make high-quality GSMNs available to the academic 
community. Over the years, these have been updated to introduce 
features such as including genome annotations, standardizing reactions 
and metabolites to primary sources, and a greater taxonomic diversity of 
models (Malik-Sheriff et al., 2019; Norsigian et al., 2019). The VMH 
connects human metabolism, genetics, and disease with microbial 
metabolism and diet. The VMH cross-references over 57 resources to 
combine GSMNs of humans and microbes drawn from existing 
metabolic maps, experimental data from literature, and other integrated 
resources including BiGG (Noronha et  al., 2019). VMH is a useful 
resource for studies seeking available knowledge of metabolite profiles. 
For example, the VMH was used in an evaluation of the influence of the 
Mediterranean diet on aging and the gut microbiome (Ghosh et al., 
2020). MetaNetX is an integrated knowledge base that provides a 
mapping between major GSMN databases for more standardized 
representation of metabolic processes (Moretti et al., 2021). The goal of 
this resource is to reconcile the biochemical and metabolic content 
represented in key public databases. MetaNetX both provides cross-links 
and merges equivalent biochemical reactions and metabolites into a 
single identifier, such that entities are merged based on reaction context 
or chemical formula (Moretti et  al., 2021). MetaNetX provides a 
straightforward way to access the relationships among metabolites 
through many GSMN sources. KBase is a resource funded by the US 
Department of Energy that integrates external repositories with data 
generated on the system, e.g., for public access to genomes and their 
corresponding metabolic models, including KEGG, BiGG, and MetaCyc, 
thus including metabolic models for 773 gut microbes as of 2018 and 
potentially more GSMNs that are currently private (Arkin et al., 2018). 
KBase also supports a suite of tools that allow for the construction of 
these metabolic models and workflows supporting the assembly of 
genomes all the way through to metabolic reconstruction, as well as 
many other computational tools for omic analyses. These user generated 
tools can generate data linkages to Functional Annotation of Prokaryotic 
Taxa (FAPROTAX) and InterPro, and all database entries and mappings 
are inherited from ModelSEED (Arkin et al., 2018; Seaver et al., 2021).

3.1.3 Resources that host microbe and host 
metabolic content

There are several curated and integrated knowledge bases focused 
on centralizing known metabolic traits and output in host and microbial 
environments. The Human Microbial Metabolome Database (MiMeDB) 
connects microbial and human metabolism among many resources, 
including the VMH, as well as genome or proteome information with a 
focus on how the human microbiome influences health (Wishart et al., 
2023). While MiMeDB represents fewer diseases than KEGG, they are 
constrained to those that are understood to be affected by microbial 
metabolism. MiMeDB furthermore supports specific constraints on the 
search of all entity types within the web-interface (e.g., co-metabolite, 
microbial, or human metabolite type). The MetAboliC pAthways 
DAtabase for Microbial taxonomic groups (MACADAM) is focused on 
functional annotations and integrates pathway genome databases 
(PGDBs) from MetaCyc, MicroCyc, FAPROTAX, and International 
Journal of Systematic and Evolutionary Microbiology (IJSEM) with 
genomes from RefSeq (Le Boulch et al., 2019). The Human Metabolome 
Database (HMDB) has accelerated the standardization of metabolic 
output and originally provided a uniquely centralized resource of 

broadly relevant human metabolomic data (Wishart et al., 2022). In 
2021 microbial or gut-derived metabolites were added to the HMDB, 
supporting disease-focused investigation of microbial pathways. With 
the comprehensive array of metabolites documented, the known 
metabolite-disease associations in HMDB were used in a deep learning 
method intended to predict novel disease associated metabolites (Sun 
et  al., 2022). The HMDB ecosystem also introduces tools such as 
DeepMet, a deep generative model for identifying new metabolites and 
potential hypotheses surrounding them (Wishart et al., 2022). Other 
deep learning based methods for understanding microbe-metabolite 
relationships include MMVec, BiomNED, and MiMeNet (Morton et al., 
2019; Le et al., 2020; Reiman et al., 2021).

3.1.4 Resources that include microbial trait and 
genomic content

Curated databases that incorporate microbial trait information or 
genomic content can illuminate functional qualities of microbes. These 
include the Bacterial Diversity Metadatabase (BacDive) and the 
Pathosystems Resource Integration Center (PATRIC) (Gillespie et al., 
2011; Söhngen et al., 2014). PATRIC integrates genomic, transcriptomic, 
protein–protein interaction, protein structure, and other diverse data 
types for 22 genera of prokaryotic bacteria, mainly pathogens (Gillespie 
et al., 2011). This integrated knowledge base, which also includes some 
correlative results of host-pathogen-disease associations, compiles this 
information from publicly available datasets for users to easily view and 
analyze such results. BacDive is the largest standardized resource of 
prokaryotic information, consisting of strain level details of phenotypes, 
morphology, growth patterns, metabolism, and sequences for over 
70,000 strains (Söhngen et al., 2014).

3.1.5 Resources that include microbial or host 
pathway content

Several graph relational databases exist that support more complex 
queries based on their structure. These resources incorporate 
semantically defined relationships between concepts at a much greater 
depth than those represented in KEGG or MetaCyc. The Reactome 
Knowledgebase (Reactome) is a graph database that synthesizes human 
molecular processes in a standardized way such that all concepts are 
rooted in ontologies or primary databases (Fabregat et al., 2018). With 
over 10,000 human genes and their function incorporated, Reactome 
provides a high-level metabolic map for the interaction between the 
genome, the proteome, and the metabolome in humans. Reactome is 
not as broadly relevant to the specific microbe-human interactions that 
exist elsewhere as only pathogenic bacteria and infectious diseases are 
included. WikiPathways is another graph database of biological pathway 
models for all species, though mostly focused on human biology 
(Martens et al., 2021). Reactome and WikiPathways are community 
driven, which results in content that reflects the current consensus and 
supports more frequent updates. Reactome and WikiPathways provide 
interactive network visualizations of curated processes and pathways for 
the user to browse the concepts represented.

3.2 Contextualizing experimental findings

Whereas the previous section described curated and integrated 
knowledge bases that allow scientists to effectively access systems-level 
microbiome information, a second category of knowledge bases 
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represent literature findings. Correlative knowledge bases allow 
researchers to contextualize new findings with existing findings in the 
literature, such as previous studies that have detected a relationship 
between a microbe and a disease, pathway, or other entity through 
laboratory or population level studies. These resources organize 
previously found associations between microbes and other entities, 
making knowledge computationally accessible.

In response to the growing number of drug resistant bacteria, the 
Microbe-Drug Association Database (MDAD) was built through 
manual curation of literature describing microbe-drug relationships 
based on PubMed keywords (Sun et al., 2018). The studies represented 
are either microbe-drug relationships identified through lab 
experiments or those found effective in clinical trials. GutMGene is 
another database created after manually searching PubMed articles for 

evidence of associations between microbes and metabolites produced 
or consumed, and microbial influence on human gene expression 
(Cheng et al., 2022). GutMDisorder similarly synthesizes associations 
between microbes and human diseases or phenotypes found in the 
literature (Cheng et  al., 2020). Disbiome contains microbe-disease 
associations found from population level studies that identified 
significant differences in abundance between a control and disease state 
(Janssens et  al., 2018). Amadis similarly provides evidence of 
associations between diseases and microbes, with a similar number of 
disease entries as Disbiome (Amadis includes relationships between 221 
human diseases and 774 microbes, while Disbiome includes 190 human 
diseases and 800 microbes) (Janssens et al., 2018; Li et al., 2021). The 
Host Genetic and Immune Factors Shaping Human Microbiota 
(GIMICA) is another database representative of multiple human body 

FIGURE 2

(A) Network of relationships included in integrated resources. Edges between an integrated resource and some type of primary knowledge source 
(microbe, protein, metabolite, pathway, or disease) represent either a categorization of the concept via an ontology or taxonomy (solid lines), or a 
nomenclature mapping to some identifier (dashed lines). Node size of the primary knowledge source (colored) represents the in-degree from 
integrated databases, where the largest nodes are those most often used for standardization. Colored points above integrated resources specify to 
which concept type the integrated resource maps, including indirect mappings through a general aggregate database. (B) Relationships among all 
general aggregate databases and primary databases, separated by category. Reference degree shows the degree to which a primary database may 
be referenced, indicating those most often used for standardization. E.g., If database i references another database j, a general aggregate database that 
in turn references database k, then i and k have a reference degree of 2. That primary database is only referenced if shown in (A). This figure was 
generated using code and data available in github repository: https://github.com/lozuponelab/knowledge-source-mappings.

https://doi.org/10.3389/fmicb.2024.1351678
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://github.com/lozuponelab/knowledge-source-mappings


Santangelo et al. 10.3389/fmicb.2024.1351678

Frontiers in Microbiology 09 frontiersin.org

sites and the immune, environmental, and genetic factors that they 
interact with (Tang et al., 2021). Several other link-based aggregate 
databases introduced more stringent manual curation techniques to 
adequately represent the variable aspects of studies, such as experimental 
setting or sequencing technique. BugSigDB is a community-supported 
effort of over 2,500 curated microbial signatures cited in over 600 
scientific articles. With over 1,400 unique taxa represented, BugSigDB 
is rich in metadata, experimental conditions, and design of each 
experiment and is well standardized to a range of ontologies. Another 
knowledge base, dbBact, includes over 900 experiments and supports 
similar use cases aligning results across many studies (Amir et al., 2023). 
These literature-based databases support easy access to information in 
a context dependent manner. The provenance of such associations is 
also easily made available within these resources by PubMed Identifier 
(PMID). NJS16 is an integrative network that incorporates manually 
curated knowledge from literature of gut microbes and how they 
interact via metabolite transport (Sung et  al., 2017). NJS16 uses a 
metagenomic analysis of a cohort of Type 2 Diabetes individuals to 
showcase a framework that can predict microbe-metabolite interactions 
that influence host physiology in other contexts. Such manually curated 
resources play a critical role in allowing researchers to contextualize 
their results by easily accessing literature that describes correlative 
microbial findings.

Findings of a specific experimental result can be related to a more 
complete mechanistic path by using relationships summarized in 
correlative databases. These databases have been used for corroboration 
of the findings of targeted experiments. For example, gutMGene has 
been used to corroborate the hypothesis that the gut microbial 
community plays an important role in cardiovascular disease through 
short chain fatty acid production by citing searchable microbe-
metabolite relationships in the form of a network. Additionally, 
gutMDisorder has been used to validate polysaccharides identified to 
have a regulatory effect in disease through microbe-disease relationships 
in the form of a network (Hu et al., 2022; Wei et al., 2023). BugSigDB 
demonstrates the value in having a heterogeneous resource to explore 
patterns of microbial composition across studies, examines the 
commonly co-occurring or mutually exclusive individual or groups of 
microbes, and evaluates differences in microbial communities across 
body sites (Geistlinger et al., 2022). However, despite these highly useful 
applications of manually curated, correlative knowledge bases, there are 
key challenges that contribute to their limited use. A primary limitation 
of these databases is the small number of relationship types represented 
(designated as path length in Figure 3). Furthermore, it is difficult to 
align experimental results to such databases when concepts are not 
mapped to common primary knowledge sources, discussed more in 
challenges and future perspectives.

3.3 Mechanistic hypothesis generation

Hypothesis generation in microbiome research requires a diverse 
range of knowledge. To date, no resource or methodology supports the 
task of hypothesizing mechanisms of microbial processes that influence 
disease by including all categories of data described in Figure  3. 
However, some resources represent data in a way that supports 
inference, linking multiple complex relationships into a derived 
explanation. Structured, microbiome-relevant resources can support 
this automated inference. Knowledge graphs (KGs) are commonly used 

for this purpose due to their logical representation conducive to 
automated inference. KGs are simplified representations of related 
concepts through nodes (concepts) and edges (relationships between 
those concepts). The KG construction process involves the aggregation 
of content and harmonization to ontologies, most often through ingests 
that extract, transform, and load such information into a semantically 
consistent format. Graph-based models, the basis of KGs, enable 
complex queries and reasoning, which is especially useful for 
understanding the intricate interactions between microbes and the host. 
The following resources have varying levels of specificity to a particular 
disease, solely focus on microbial trait data, or lack the wider context 
necessary for disease-based inference.

MiKG4MD is one resource that represents how microbes are 
involved with mental disorders in the form of a knowledge graph (Liu 
et al., 2021). MiKG4MD was used to form specific queries that identify 
several sources describing the relationship between Bifidobacterium 
dentium and anxiety or depression via the neurotransmitter gamma-
aminobutyric acid (GABA) (Liu et al., 2021). MiKG4MD has not been 
applied beyond the case studies that demonstrate its purpose, though 
these queries exemplify the hypothesis generating potential. The Pre-/
Probiotics Knowledge Graph (PPKG) represents over 29,000 articles 
describing prebiotics and probiotics, combined with three other 
primary public databases, MeSH, UMLS and SNOMED CT (Table 1) 
(Liu et  al., 2022). Similar to MiKG4MD, a specific query of PPKG 
showed 114 direct relationships identified between Bifidobacterium 
bifidum and disease, suggesting an influence on blood lipids, gut 
microbiome profiles, brain connectivity, and gene expression (Liu et al., 
2022). KG-microbe is a resource that more broadly represents how 
microbes interact with their environment (Joachimiak et  al., n.d.). 
KG-Microbe is useful to understand microbial traits and environments, 
such as soil or water as well as human anatomical sites, though it does 
not yet include information which connects microbes to disease. Several 
relevant ontologies that play an important role in the representation of 
the complex knowledge associated with the microbiome also exist. The 
ontology of host–microbe interactions (OHMI) is the only known OBO 
ontology resource that introduces a structured representation of 
microbe-host interactions (He et  al., 2019). This resource makes a 
critical step in developing standards for how to represent host–microbe 
interactions through flexible and interoperable representations. 
Furthermore, OHMI aligns to several OBO ontologies including NCBI 
Taxonomy, the Environmental Ontology (ENVO), and the Uber-
anatomy Ontology (UBERON). Importantly, OHMI does not include 
the mechanistic detail of proteins and metabolites necessary for 
inference, however the logical representation introduced can provide a 
framework for mechanistic inference (He et al., 2019). OHMI has not 
been updated since the original publication. OHMI introduces over 
1,000 terms including microbes, host–microbe interactions, and study 
details (He et al., 2019).

There are also frameworks that synthesize multi-omic content in a 
graph database or network representation. BioChem4j is one such 
framework that automatically ingests content from multiple ontologies 
and represents microbes and their functional traits using the UniProt 
API (Swainston et  al., 2017). BioChem4j is therefore an extensible 
resource from which researchers can gather the enzymes and 
metabolites involved in microbial biochemical reactions that may occur 
in any environment. BioChem4j has been applied toward a pipeline for 
the discovery and optimization of biosynthetic pathways, specifically for 
understanding a range of industrial microorganisms. The pipeline 
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examined flavonoid production pathways and an alkaloid pathway in 
Escherichia coli for the purposes of microbial engineering for chemical 
production (Carbonell et al., 2018). The Unified Functional Network 
(UniFuncNet) is another framework that integrates multiple resources 
necessary for the construction of GSMNs (Queirós et al., 2022). The 
UniFuncNet framework can take as input a list of entities from different 
databases (e.g., proteins, genes, metabolites, etc) and output a network 
representation of all associations among such entities. UniFuncNet’s 
applications are demonstrated through two workflows which, for 
example, expanded existing GSMNs of Akkermansia muciniphila to 
include the biosynthesis and metabolism of glycans, or to relate 
compounds identified in a metabolomics dataset to relevant pathways 
and organisms (Queirós et al., 2022).

4 Challenges associated with the 
construction and applications of 
knowledge bases

4.1 Inconsistent taxonomy and metabolite 
nomenclature assignment

A major challenge arising from the availability of multiple 
taxonomic databases as well as multiple versions of the same taxonomic 
database are the resultant inconsistencies in the labeling of a microbe. 
The classification method of microbes curated from the literature is 
often overlooked, and in many cases a microbe may be assigned the 
wrong identifier (e.g., a microbe originally labeled via SILVA is assigned 
an NCBI Taxonomy identifier). Methods of taxonomic assignment in 
sequence-based studies of microbial population differ depending on 
whether small subunit (SSU) ribosomal RNA (rRNA) is targeted, also 
known as 16S sequencing for bacteria and archaea, or shotgun 
metagenomic sequencing is performed. Inconsistent classification, 
whether varying labels is due to lack of information or poor quality of 
sequencing reads, can impede the ability to relate findings about a given 
microbe across studies to each other and to their functional attributes, 
which is important for ultimately trying to understand microbe-host 
interactions at the mechanistic level. Additional challenges arise when 
microbial nomenclature is revised based on a better resolution of 
evolutionary relationships from sequencing data or phenotypic 
information, resulting in the same taxa having different names 
depending on the date of publication.

SILVA and Greengenes, which are built using sequences from the 
European Nucleotide Archive (ENA) and GenBank, respectively, are the 
most used taxonomic databases for 16S sequencing (Pruesse et al., 2007; 
Ceccarani and Severgnini, 2023; McDonald et al., 2023). SILVA uses a 
Bergey’s seed alignment (Garrity et al., 2004), then partially manually 
builds upon that classification to construct a phylogenetic tree which is 
used as a guide. In order to classify sequences, SILVA uses the SILVA 
Incremental Aligner (SINA) reference-based alignment tool for multiple 
sequence alignment, and assigns organism names according to the 
Deutsche Sammlung fur Mikroorganismen und Zellkultren (DSMZ) 
(Pruesse et al., 2012). In contrast to SILVA, which uses a pre-constructed 
tree, Greengenes constructs a de novo tree for taxonomic classification 
(DeSantis et al., 2006). Greengenes2 made significant updates by linking 
a substantial number of whole genome sequences from the International 
Nucleotide Sequence Database Collaboration (INSDC) (Arita et al., 
2021), amplicons from the Living Tree Project (Yilmaz et al., 2014) and 

other resources, to create the largest tree with the broadest phylogenetic 
coverage to date (McDonald et al., 2023). A new version of the SILVA 
database is released semi-annually, whereas Greengenes2 only recently 
was released, 9 years after the prior version (Pruesse et  al., 2007; 
McDonald et  al., 2023). Although it is well established that use of 
different taxonomic databases and their versions can greatly impact 
taxonomic assignments made, there are limited solutions for dealing 
with this ambiguity when creating integrated resources.

Similar problems arise for the nomenclature of metabolites that 
are represented in manually curated databases. Main technologies 
used for metabolomics include mass spectrometry (MS)-based or 
nuclear magnetic resonance (NMR)-based approaches. Metabolomics 
can be  approached with untargeted techniques (for hypothesis 
generation) or targeted techniques (for hypothesis testing) (Johnson 
et al., 2016). The naming and mapping of these metabolites therefore 
can introduce some uncertainty and similar discontinuity as microbial 
taxonomy. Metabolite identification is done by comparing the spectra 
obtained experimentally with that included in the curated knowledge 
bases or primary knowledge sources described above, such as ChEBI 
or ChEMBL (Hastings et al., 2016; Zdrazil et al., 2023). The mismatch 
of metabolite names and identifiers across these standardized 
resources, presents challenges for researchers to contextualize their 
findings and formulate hypotheses regarding their data using 
integrated resources (Merlet et al., 2016; Shaffer et al., 2017). Resources 
also exist that facilitate the classification relating their spectra to those 
of known metabolites to improve direct mapping such as the Global 
Natural Products Social molecular networking (GNPS) (Overbeek 
et  al., 2014). The challenge of mismatching metabolite labels is 
especially prominent in the construction and alignment of GSMNs, 
which draw from these standardized databases. HMDB is one of the 
most comprehensive resources of known host and microbiome 
associated metabolites, still only representing a fraction of the 
metabolome, that cross-links many of standard chemical databases 
and identifiers to make this process more straightforward (Wishart 
et  al., 2022). MetaNetX further facilitates mapping experimental 
results to representations in GSMNs to contextualize metabolomics 
findings (Moretti et  al., 2021). An important direction of 
understanding microbiome-host relationships is evaluating how the 
microbiome and the metabolome interact with exogenous factors, 
such as diet, collectively called the exposome (Shaffer et al., 2017). The 
VMH is an important resource for this, as it introduces known 
relationships between the exposome and the metabolome (Noronha 
et  al., 2019). Nomenclature challenges also are confronted in 
constructing correlative knowledge bases, such as gutMGene, in that 
chemical names that are manually curated, or text mined potentially, 
cannot be mapped to an identifier in a primary knowledge source 
(Cheng et al., 2022). As such, what exists in these resources may not 
accurately represent what was found in the corresponding study. The 
increased utility and standardization of naming of integrated 
knowledge bases is critical for addressing the challenges described, as 
integrated resources provide expansive knowledge that will support 
mechanistic exploration.

4.2 Semantic standardization

Another limitation of these resources is the extent to which entities 
are mapped to existing primary knowledge sources (e.g., ChEBI). 
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Without mappings to a semantic standard, it is impossible to combine 
a resource with others as the concepts represented are not identical. 
Mechanistic curated knowledge bases such as KEGG, which introduce 
new identifiers due to their broadly represented and cross-linked 
information, are particularly useful resources to map to because of their 
scale and connectivity to other resources. Integrated knowledge bases 
play an important role in enabling one to search a broader field of 
knowledge, or relationships between more concept types (a higher path 
length as defined in Figure  3). The benefits of standardizing to 
ontologies are two-fold; first, ontologies offer a full hierarchy of 
relationships in a machine-readable format. Ontologies are curated by 
experts in both data engineering and the scientific area represented and 
provide a logical interpretation of knowledge categories. This makes it 
possible to abstract or concretize a concept depending on the 
mechanistic detail desired. Experimental results can be  mapped to 
ontological concepts as an exact term (e.g., AKT-interacting protein 
isoform 2) or more broadly characterize the concept to a parent term 
(e.g., AKT-interacting protein). Second, KGs built of the logical 
representation of concepts in ontologies can be used to contextualize 
scientific results and infer mechanistic explanations. More 
comprehensive KGs can be  constructed when all the knowledge 
represented in these resources is correctly mapped to useful ontologies.

Microbiome relevant knowledge bases primarily lack 
standardization in microbial and disease categories. The few databases 
that incorporate human diseases are limited in their degree of 
standardization. Ontologies such as the Monarch Disease Ontology 
(MONDO) and the Human Phenotype Ontology (HPO) have been 
developed as part of the Monarch initiative and provide logically 
coherent hierarchical representations of concepts (Köhler et al., 2021; 
Vasilevsky et al., 2022). MONDO, which includes resources such as 
Online Mendelian Inheritance in Man (OMIM) and Orphanet, is 
updated monthly, and introduces thousands of diseases and disorders. 
Mappings to resources such as MONDO support the applications of 
aggregate databases toward understanding microbial mechanisms in 
human disease. Microbes in gutMGene, gutMDisorder, Disbiome, 
Amadis, and GIMICA are mapped to NCBI Taxonomy, however those 

in MDAD and NJS16 are not (Figure  2). MDAD includes protein 
mappings to UniProt and metabolite mappings to DrugBank, while 
NJS16 only includes metabolite mappings to KEGG (Goodfellow et al., 
2009; wwPDB consortium et al., 2019). The absence of mappings to 
NCBI Taxonomy or any structured phylogenetic database limits 
usability due to the inconsistencies in naming and taxonomic 
classification strategies. It is important that new resources map to the 
primary sources most often referenced by current integrated resources, 
as shown in Figure 2A by the colored node size, to ensure that concepts 
can be consistently identified. These standardization challenges limit the 
capacity to integrate sources of knowledge and make mechanistic claims 
using such knowledge.

4.3 Access methods and source 
characteristics of resources

The source characteristics of integrated resources can influence 
both their comprehensiveness and accuracy. Manually curated resources 
can have increased accuracy as content is provided through curation by 
experts directly from literature. While manual curation is nearly always 
at play due to the requirement of specific expertise in understanding 
microbes, the field is clearly approaching a new era of automated 
content extraction. Text mining approaches make this task more 
efficient, allowing for more content to be easily accessed by scientists 
with a wide variety of research interests.

Knowledge bases can be accessed in many ways depending on the 
type of users that they serve (Figure 1B). Wet-lab focused researchers 
interested in accessing the broad store of knowledge offered by these 
resources are primarily interested in interactive web interfaces. 
Curated knowledge bases KEGG and MetaCyc each offer interactive 
visual interfaces and useful pathway diagrams. Integrated knowledge 
bases such as MiMeDB and MACADAM also offer an interface to 
easily query the desired content, though not the same support in 
pathway diagrams as Wikipathways and Reactome. Reactome is even 
more uniquely suited to show interactive cartoon diagrams which can 

FIGURE 3

Understanding the connectedness of integrated databases based on path length. Path length refers to the number of relationships between unique 
concepts, or feature types, that are included within a resource. The feature types discussed in this context are microbes, proteins (or genes, human or 
microbial), metabolites (human or microbial), pathways (human or microbial), and diseases (human). The concept of path length is used to assess how 
comprehensively a resource can be used for mechanistic inference, or which relationships are needed from other databases to do so.

https://doi.org/10.3389/fmicb.2024.1351678
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Santangelo et al. 10.3389/fmicb.2024.1351678

Frontiers in Microbiology 12 frontiersin.org

greatly increase accessibility to all users. Other programmatic ways 
of accessing these resources are important for the analyses that 
bioinformaticians do using complex datasets. The Simple Protocol 
And Resource Description Framework Query Language (SPARQL) 
is a query language for the Resource Description Framework (RDF), 
a framework that supports relationship-based data made available on 
the web (Candan et al., 2001). When SPARQL queries are supported, 
whether programmatically or via an API, computational users can 
easily access information through highly specialized queries. API 
support also enables this functionality.

Many mechanistic curated and integrated knowledge bases are 
offered as relational databases or tables, which supports fast access 
to a range of knowledge. Graph databases require traversal across a 
wider domain of information, and therefore are not quick in 
retrieval. However, graph databases can host information to a 
greater level of detail. For example, the “glycolysis” pathway in 
KEGG and MetaCyc host fewer than 30 metabolites or gene/gene 
products, whereas Reactome includes over 40 metabolites and 100 
proteins. In relational databases such as KEGG, the detail comes in 
the nodes (genes, metabolites, organisms) and the relationships 
represent some interaction or input/output more generally. In graph 
databases such as Reactome, the edges provide a hierarchical set of 
content in themselves with much more detail, for example the edge 
“ADPGK:Mg2+ phosphorylates Glc to G6P” connects alpha-D-
Glucose to alpha-D-glucose 6-phosphate. All reactions are  
rooted in literature evidence, providing a detailed account of 
biological interactions.

The formal representation of knowledge introduced by KGs can 
include heterogeneous biological content that is flexible and 
interoperable. The network structure of a KG supports inference 
based on both the semantic representation of knowledge and the 
structure of the graph, allowing one to infer new edges (hypothesized 
relationships between distinct concepts) or classify biological 
concepts. An important consideration for KGs is the model used to 
represent such complex knowledge. A logical semantic representation 
is critical for inference, and this can be difficult with such complex 
concepts as microbe-host interactions. It is generally useful to follow 
a predefined schema for interoperability and introducing new 
information, such as the Web Ontology Language (OWL) or the 
Biolink model (Bechhofer, 2009; Unni et al., 2022). These models 
allow harmonization of data sources across all knowledge types, 
which is especially important in the multi-omic nature of microbiome 
science. The types of edges within MiKG4MD are arbitrary and do 
not align with previously existing repositories, such as the Biolink 
Model or the Relationships Ontology (RO), both of which provide 
some standardized structure to the organization of a KG (Smith et al., 
2005; Liu et al., 2021; Unni et al., 2022). However KG-microbe does 
align to the Biolink schema, which ingests microbial trait databases 
and combines them with ontologies such as ChEBI and GO 
(Joachimiak et  al., n.d.). This was done using automated graph 
construction libraries that are a part of KG-Hub. Through some 
manual curation, KG-Microbe includes specific microbial traits to 
be  represented in a way that aligns with the Biolink schema 
(Joachimiak et al., n.d.). It is important for the chosen schema to 
support interoperability between KGs, incorporation of any ontology 
or primary knowledge source, and correctly represent the 
heterogeneous data types necessary within a microbiome-
relevant KG.

5 Future perspective

By indexing and linking multi-omic knowledge, integrated 
resources can contextualize results at the systems-level, corroborating 
findings from experimental observations, and provide promise toward 
uncovering novel hypotheses. We  evaluate key categories of 
microbiome-relevant knowledge including microbes, host and 
microbial proteins, host and microbial metabolites, host and microbial 
pathways, and host diseases and argue that the extent to which these 
categories are covered by such integrated resources influences their 
ability to be adopted for mechanistic inquiry. It is important for users to 
evaluate the resource based on the six categories present here and their 
affordances (Figure  1A); ontologies and taxonomies, annotated 
databases, mechanistic curated knowledge bases, integrated knowledge 
bases, correlative curated knowledge bases, and inference-ready 
knowledge bases, in order to derive the best applications of such 
resources. We have also evaluated the primary traits of these resources 
including access methods, content, and source characteristics 
(summarized in Supplementary Table  1). The access points of the 
knowledge contained in these resources, whether programmatically or 
via a user-friendly web interface, can greatly affect the adoption by the 
intended user. Ensuring they support downloadable flat files or APIs 
translates to more readily available content for automatic hypothesis 
generation. Mapping the concepts represented in each resource is an 
important factor to consider in utilizing these resources, as it can limit 
the capacity for connecting it with other resources. Many correlative 
knowledge bases, for example, lack the level of nomenclature 
standardization to commonly used primary knowledge sources that is 
essential for wide adoption and integration of such resources. Future 
resources should always keep the nomenclature limitations in mind 
during construction and ensure that the level of standardization 
supports the intended use case.

Inference-ready knowledge bases such as KGs serve an important 
purpose in the microbiome field in supporting mechanistic hypothesis 
generation using existing knowledge. As shown, there are few resources 
that adequately map all categories of knowledge mentioned to enable 
explanations for microbe-disease associations to be understood. A focus 
on this connectedness, highly dependent on the level of standardization 
discussed previously, will drive the microbiome field toward a deeper 
understanding of microbe-host interactions via automated inference 
(Figure 2). Furthermore, it is important that these KGs use a data model 
that is highly interoperable and flexible to integrate heterogeneous data 
types. Applying these resources to mechanistic inference can help assess 
health outcomes and derive new understandings of multi-omic data sets 
through many methodologies such as linear modeling or machine 
learning based approaches. While these methodologies are not 
addressed in great detail, it is important to recognize their complexities.

Through this review of resources, we have provided evidence of the 
efforts to consolidate the rapidly increasing number of experimental 
findings surrounding the microbiome. We have published data resource 
mappings in a git-hub repository to ensure reproducibility and to 
support updates.1 We recognize that this review does not capture all 
possible resources, therefore encourage contributions to this repository 
in hopes of maintaining a useful source of information for researchers 

1 https://github.com/lozuponelab/knowledge-source-mappings
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to select the most appropriate knowledge sources. We argue that the 
adoption of these resources and contributions to the field will 
be maximized with further standardization and connectedness. The 
application of these resources to understanding microbe-host-disease 
related questions holds promise for advancing biomedical understanding.
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