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Introduction: Atopic dermatitis (AD) is one of the most common inflammatory 
skin diseases. Skin microecological imbalance is an important factor in the 
pathogenesis of AD, but the underlying mechanism of its interaction with 
humans remains unclear.

Methods: 16S rRNA gene sequencing was conducted to reveal the skin 
microbiota dynamics. Changes in skin metabolites were tracked by LC–MS 
metabolomics. We  then explored the potential mechanism of interaction by 
analyzing the correlation between skin bacterial communities and metabolites 
in corresponding skin-associated samples.

Results: Samples from 18  AD patients and 18 healthy volunteers (HVs) were 
subjected to 16S rRNA gene sequencing and LC–MS metabolomics. AD patients 
had dysbiosis of the skin bacterial community with decreased species richness 
and evenness. The relative abundance of the genus Staphylococcus increased 
significantly in AD, while the abundances of the genera Propionibacterium and 
Brevundimonas decreased significantly. The relative abundance of the genera 
Staphylococcus in healthy females was significantly higher than those in healthy 
males, while it showed no difference in AD patients with or without lesions. 
The effects of AD status, sex and the presence or absence of rashes on the 
number of differentially abundant metabolites per capita were successively 
reduced. Multiple metabolites involved in purine metabolism and phenylalanine 
metabolism pathways (such as xanthosine/xanthine and L-phenylalanine/
trans-cinnamate) were increased in AD patients. These trends were much more 
obvious between female AD patients and female HVs. Spearman correlation 
analysis revealed that the genus Staphylococcus was positively correlated 
with various compounds involved in phenylalanine metabolism and purine 
metabolic pathways. The genera Brevundimonas and Lactobacillus were 
negatively correlated with various compounds involved in purine metabolism, 
phenylalanine metabolism and sphingolipid signaling pathways.

Discussion: We suggest that purine metabolism and phenylalanine metabolism 
pathway disorders may play a certain role in the pathogenic mechanism of 
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Staphylococcus aureus in AD. We  also found that females are more likely to 
be colonized by the genus Staphylococcus than males. Differentially abundant 
metabolites involved in purine metabolism and phenylalanine metabolism 
pathways were more obvious in female. However, we should notice that the 
metabolites we detected do not necessarily derived from microbes, they may 
also origin from the host.

KEYWORDS

atopic dermatitis, skin microbiome, skin metabolome, correlation analysis, purine 
metabolism, phenylalanine metabolism

1 Introduction

Atopic dermatitis (AD) is one of the most common 
inflammatory skin diseases and clinically manifests as an eczema-
like rash with pruritus (Ständer, 2021; Zhang et  al., 2023). The 
prevalence of AD is 15–20% among children and up to 10% among 
adults, making AD the 15th most common nonfatal disease and the 
skin disease with the highest disease burden in disability-adjusted 
life years (Ständer, 2021; Schuler et al., 2023). In addition, AD may 
be  associated with an increasing prevalence of psychosocial 
disorders, such as depression, anxiety, sleep disorders and suicidal 
ideation (Kage et al., 2020). Epidermal barrier dysfunction, skin 
microecological imbalance and immune disorders, which are 
dominated by type 2 inflammation, contribute to the outbreak of 
AD (Langan et al., 2020).

The skin microbiota has a complex interaction with the host 
(Chen et  al., 2018). In recent years, with the application of high-
throughput DNA sequencing technologies based on two principal 
methods (16S rRNA gene sequencing and metagenomics sequencing), 
the study of the AD skin microbiome has shown great progress (Byrd 
et  al., 2018; Ghosh et  al., 2018). Skin microbiota disturbances 
characterized by increased Staphylococcus aureus colonization and 
decreased microbiota diversity occurred in both lesion and nonlesion 
sites of AD patients (Koh et al., 2022). S. aureus may destroy the skin 
barrier and induce an inflammatory response (Langan et al., 2020). 
The local Th2 immune response further diminishes barrier function 
and facilitates the growth of Staphylococcus, especially S. aureus 
(Langan et al., 2020; Schuler et al., 2023). However, the composition 
of the skin microbiome is complex, and the specific mechanism of its 
interaction with the host remains unclear.

Metabolomics is a technique that reflects the phenotypic outcome 
of biological activities and elucidates the relationship between 
metabolite changes and physiological/pathological changes (Zhang 
et  al., 2023). Skin cells and glandular secretions, skin resident 
microbiota, and external environmental factors (such as cosmetics or 
pollution) can affect the composition of skin metabolites (Afghani 
et  al., 2022). The metabolomic profile of 15 AD patients and 17 
controls was studied through skin punch biopsies, which revealed that 
a total of 77 metabolites differed significantly between the lesional skin 
of atopic dermatitis, nonlesional skin of atopic dermatitis and skin of 
controls (Ilves et al., 2021). Until now, much of the metabolomics 
research on AD skin has focused on the proportion of changes in the 
lipid composition of the skin due to its role in the structural integrity 
of the skin barrier (Emmert et al., 2021; Zhang et al., 2023).

Theoretically, the skin microbiome and the skin would constantly 
interact with surrounding skin metabolites. The identification of AD 
skin metabolites may help to determine the changes in host status and 
the influence of the skin microbiome on the local skin. Several 
previous studies have explored the interactions between the skin 
microbiota and skin metabolites in AD. AD skin has an increase in 
free fatty acids (FFA), and this effect appears to be S. aureus-dependent 
(Emmert et  al., 2021). Saturated shorter-chain FFA are negatively 
correlated with Staphylococci (Emmert et al., 2021), and long-chain 
FFA are decreased in S. aureus-colonized AD skin (Li et al., 2017). 
Shorter fatty acids can more easily traverse the skin to acidify it, and 
S. aureus does not grow well in acidic healthy skin pH conditions 
(Afghani et al., 2022). However, lipids are not the only metabolites 
present in the skin, and an increasing number of studies are starting 
to turn from lipids to other molecules in AD (Afghani et al., 2022). 
Herein, we  performed 16S rRNA gene sequencing of the skin 
microbiome and untargeted metabolomics analysis of AD patients’ 
skin samples, and searched for metabolites closely related to the skin 
microbiome of AD patients through association analysis. We also 
explored the effects of sex and rash status on the results through 
subgroup analysis. We  established a correlation map of the skin 
microbiome and skin metabolome in AD patients and healthy people. 
These results highlight the role of the skin microbiome in regulating 
overall metabolism and provide new insights into the pathological 
mechanisms of AD.

2 Materials and methods

2.1 Study population

AD patients and healthy volunteers (HVs) were recruited from 
Guangdong Provincial Hospital of Traditional Chinese Medicine from 
October 2019 to May 2021. The inclusion criteria were as follows: over 
18 years of age; patients meeting the Williams AD diagnostic criteria 
(Williams et al., 1994), with or without rash in both elbow fossa; and 
volunteers with no skin disease. The exclusion criteria were as follows: 
patients who received systemic immunosuppressive agents, biological 
agents, antibiotics, antifungals and glucocorticoid drugs, or ultraviolet 
rays and other systematic treatment in the previous 1 month; 
participants with severe kidney or liver damage, mental illness, or 
other serious organ disease; and participants who had used topical 
glucocorticoid, anti-biological ointment, skin care product or lotion 
on the elbow fossa in the previous week. All clinical information and 
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samples were obtained with informed consent. This study was 
conducted with the approval of the institutional review board of the 
Guangdong Provincial Hospital of Traditional Chinese Medicine and 
in accordance with the Declaration of Helsinki (World Medical 
Association, 2013).

2.2 Sample collection

A sterile double-sided polyester swab was soaked with 0.9% NaCl 
and forcefully rubbed back and forth 50 times at the elbow fossa 
within a range of approximately 4 cm × 4 cm (regardless of whether 
there were rashes at the elbow fossa). The head of each swab was then 
placed in a sterile liquid-holding tube, fully oscillated, and cut 
aseptically from the handle before closing the tube cap. The same 
procedure was used to sample the skin of the elbow fossa again, and 
the samples were stored in another sterile storage tube. The two 
samples were refrigerated at −80°C within 2 h until 16S rRNA high-
throughput sequencing and metabolomics were performed. The 
workflow of this study is shown in Figure 1.

2.3 Microbiome DNA extraction and 16S 
sequencing

The DNA of the microbial community was extracted by a 
MagPure Stool DNA KF kit B (Magen, China) following the 
manufacturer’s instructions. The quality of all extracted DNA was 
assessed with a Qubit® dsDNA BR Assay kit (Invitrogen, United States) 
and agarose gel electrophoresis. Variable region V4 of the bacterial 16S 
rRNA gene was amplified with the common PCR primers 515F 

(5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′- GGACTACH 
VGGGTWTCTAAT-3′). Both forward and reverse primers were 
tagged with Illumina adapter, pad, and linker sequences.

The PCR products were purified using Agencourt AMPure XP 
beads. The validated libraries were used for sequencing on the 
Illumina HiSeq 2,500 platform (BGI, Shenzhen, China) following 
Illumina’s standard pipelines and generating 2 × 250 bp paired- 
end reads.

2.4 16S amplicon sequencing data analysis

After Illumina sequencing, barcode and primer sequences were 
removed. Specific tags were generated by FLASH software (version 
1.2.11) according to the overlap information of the reads (Magoč and 
Salzberg, 2011). Tags were clustered into operational taxonomic units 
(OTUs) with a 97% threshold by USEARCH (v7.0.1090), where the 
unique OTU representative sequences can be obtained (Edgar, 2010). 
Chimeras were filtered by UCHIME (v4.2.40) (Edgar et al., 2011). 
OTU representative sequences were aligned against the database for 
taxonomic annotation by RDP classifier (v2.2) software (sequence 
identity was set to 0.6) (Wang et al., 2007). Alpha diversity and beta 
diversity analyses were conducted by mothur (v1.31.2) and QIIME 
(v1.80), respectively (Schloss et al., 2009; Caporaso et al., 2010).

2.5 Liquid chromatography–mass 
spectrometry metabolomic data collection

Samples (100 μL) were placed into an EP tube and extracted with 
400 μL extract solution (methanol:acetonitrile:water 2:2:1), vortexed 

FIGURE 1

Analysis workflow.
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for 1 min, sonicated for 10 min, and incubated for 1 h at 
−20°C. Samples were centrifuged for 15 min at 25000 rpm at 4°C, and 
the supernatant was then transferred for vacuum freeze drying. The 
metabolites were resuspended in 200 μL of 10% methanol and 
sonicated for 10 min at 4°C. After centrifuging for 15 min at 
25000 rpm, the supernatants were transferred to a new glass vial for 
further analysis. The QC samples were then mixed from each sample.

The samples were analyzed on a Waters 2D UPLC (Waters, 
United States) coupled to a Q Exactive mass spectrometer (Thermo 
Fisher Scientific, United States) with a heated electrospray ionization 
(HESI) source and controlled by the Xcalibur 2.3 software program 
(Thermo Fisher Scientific, Waltham, MA, United States), according to 
previously reported methods with minor modifications (Chen et al., 
2021). Briefly, the mobile phase consisted of 0.1% formic acid (A) and 
acetonitrile (B) in positive mode and 10 mM ammonium formate (A) 
and acetonitrile (B) in negative mode. The column temperature was 
maintained at 45°C. The flow rate was 0.35 mL/min, and the injection 
volume was 5 μL. The mass spectrometric settings for positive/negative 
ionization modes were as follows: spray voltage, 3.8/−3.2 kV; sheath 
gas flow rate, 40 arbitrary units (arb); aux gas flow rate, 10 arb; aux gas 
heater temperature, 350°C; capillary temperature, 320°C.

2.6 LC–MS metabolomic data analyses

LC–MS/MS data processing was performed using Compound 
Discoverer 3.1 (Thermo Fisher Scientific, United  States) software, 
including peak extraction, peak alignment, and compound 
identification. Data preprocessing, statistical analysis, metabolite 
classification annotations and functional annotations were performed 
using the metabolomics R package metaX (BGI, Shenzhen, China) 
and the metabolome bioinformatic analysis pipeline (Wen et  al., 
2017). The multivariate raw data are dimensionally reduced by 
principal component analysis (PCA) to analyze the groupings, trends 
(intra- and intergroup similarities and differences) and outliers of the 
observed variables in the data set (whether there is an abnormal 
sample). Partial least squares method-discriminant analysis (PLS-
DA), the variable importance in projection (VIP) values of the first 
two principal components of the model, combined with the variability 
analysis, the fold change and Student’s t test were used to screen for 
differentially abundant metabolites.

2.7 Statistical analysis

Statistical analysis was performed in the R platform (v3.5.1). The 
differences in alpha diversity indexes were determined by Student’s t 
test. The beta diversity difference between the two groups was 
analyzed by analysis of similarity (ANOSIM). Differences in the 
relative abundance of genera between the two groups were evaluated 
with the Wilcoxon rank sum test. False-discovery rate (FDR) values 
were estimated using the Benjamini-Hochberg method to control for 
multiple testing. Linear discriminant analysis coupled with effect size 
(LEfSe) was applied to identify microorganisms that can be used to 
discriminate AD patients from HVs (Segata et al., 2011). A p value 
threshold cutoff at 0.05 was considered. Spearman correlation was 
carried out to determine the relationship between the skin microbiota 
and metabolites.

3 Results

3.1 Study population characteristics

After quality control, samples from 18 AD patients and 18 HVs 
were successfully subjected to 16S rRNA gene sequencing and LC–MS 
metabolomic analyses. Subgroup analysis was conducted according to 
whether there were rashes in the sampling site of the elbow fossa and 
by sex. The characteristics of the participants in each group are shown 
in Figure 1 and Supplementary Table S1.

3.2 Altered skin microbiota composition in 
AD patients

In the present study, a total of 2,073,232 effective 16S rRNA gene 
sequencing reads were obtained from the skin samples of 18 AD 
patients and 18 HV, with an average of 57589.8 reads per sample 
(ranging from 38,199 to 64,529). A total of 3,097 OTUs were obtained 
according to 97% similarity. After taxonomic assignment against the 
Greengenes (v201305) database, they were annotated at different 
phylogenetic levels (Supplementary Table S2). According to the 
rarefaction curve (Figure  2A), the current sequencing depth and 
samples were sufficient for taxa identification.

Alpha diversity represents the species richness and evenness within 
the microbiota, while beta diversity can reflect the shared diversity 
within the microbiota at different ecological distances (Yang et al., 
2022). The alpha diversity indexes, including the ACE index, Shannon 
index and Chao index, of the skin of AD patients were less than those 
of the HV group (p < 0.05) (Figure 2B; Supplementary Figures S1A,B), 
indicating decreased richness and evenness of the skin microbiome in 
AD patients. In addition, the ACE index and Chao index of female 
atopic dermatitis patients (ADFs) were less than those of female healthy 
volunteers (HVFs) (p < 0.05) (Supplementary Figures S1C,D). The 
score plot of principal coordinate analysis (PCoA) based on weighted 
and unweighted UniFrac distances showed differences in the 
composition and structure of the bacterial community between the AD 
group and HV group (p < 0.05) (Figures 2C,D). There were significant 
differences in beta diversity analyzed by weighted UniFrac PCoA of all 
subgroups (Supplementary Figures S2A–E).

There was considerable variation in the relative abundance of 569 
differentially abundant bacteria at the genus level (Figure  2E). 
Compared with HVs, AD patients showed a significantly greater 
relative abundance of the genus Staphylococcus (44.1% vs. 10.6%) and 
lower levels of the genera Propionibacterium (0.9% vs. 5.9%) and 
Brevundimonas (0.6% vs. 2.9%) (p < 0.05) (Figure 2F). The relative 
abundances of the genera Staphylococcus, Acinetobacter, Lactobacillus 
and Streptococcus in HVFs were significantly higher than those in male 
healthy volunteers (HVMs) (p < 0.05) (Supplementary Figure S4A). 
Microbiome compositions at the genus level in other subgroups are 
shown in Supplementary Figures S3A–E, 4B–E.

To further examine the alterations associated with AD, 
we conducted LEfSe analysis. The main differences were the increase 
in the abundance of Bacillales (class Bacilli and order Bacillales) in AD 
patients and the reduction in Caulobacterales (class 
Alphaproteobacteria and order Caulobacterales), Rhodobacterales 
(class Alphaproteobacteria and order Rhodobacterales) and 
Xanthomonadales (class Gammaproteobacteria and order 
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Xanthomonadales) (Figure 3A). Some differences were also observed 
at a lower taxonomic level. AD patients showed an increase in 
Staphylococcaceae (genus Staphylococcus). In contrast, AD patients 
exhibited a loss of Propionibacterium, Brevundimonas, Lactobacillus 

and Lysobacter at the genus level (Figure 3B). Taken together, these 
data indicate alterations in the commensal skin microbiome 
composition in AD patients, suggesting dysregulation of the 
microbial community.

FIGURE 2

Skin microbiome diversity and structure comparison between the AD group and HV group. (A) Rarefaction curve of all samples. (B) Alpha diversity 
analyzed by the ACE index. (C) Weighted Unifrac PCoA plot. (D) Unweighted Unifrac PCoA plot. (E) Comparison of bacteria at the genus level. 
(F) Top 10 genera in relative abundance. *p  <  0.05; **p  <  0.01; ***p  <  0.001.
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3.3 Skin metabolic profiling of AD patients

According to the information available for matching (including 
MS1 molecular weight, MS2 fragment spectra, column retention time 
and whether there are reference standards), the credibility levels of the 
identified substances are annotated to divide them into different 
credibility levels (Supplementary Table S3). In general, a total of 
23,700 features and 3,867 metabolites (level 1–5) were identified 
(Supplementary Table S4). All metabolites were classified into several 
classes, including compounds with biological roles (benzene and 

derivatives, amino acids, peptides, organic acids, carbohydrates, etc.), 
lipids (polyketides, fatty acyls, etc.), phytochemical compounds 
(terpenoids, alkaloids, flavonoids, etc.) and others. KEGG pathway 
analysis was conducted and showed that metabolism (including 
amino acid metabolism and lipid metabolism) was the main function 
of the metabolites.

PCA, a multivariate technique, was used to determine whether 
samples from different groups could be segregated based on their 
metabolic profiles. The PCA results showed that the distribution of 
samples in the HV group was more concentrated than that in the AD 

FIGURE 3

Linear discriminant analysis (LDA) effect size of the AD group and HV group. (A) Cladogram of LEfSe of the skin microbiome from 16S rRNA gene 
sequencing results. (B) Histogram of the LDA scores for differentially abundant microbes in AD patients and healthy controls (LDA  >  4.0).
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group (Figure 4A). Similarly, the distributions of samples in the male 
atopic dermatitis patient (ADM) group and HVM group were more 
concentrated than those in the ADF group and HVF group, 
respectively (Figure 4B).

A total of 773 differentially abundant metabolites (VIP ≥ 1; fold-
change ≥1.2 or ≤ 0.83; p < 0.05) between the AD group and HV group, 
at the credibility level of level 1 to level 4, were obtained 
(Supplementary Table S5). Similarly, differentially abundant 
metabolites in other subgroups were calculated, and the number of 
differentially abundant metabolites in each subgroup is shown in 
Table 1. Compared with the total number, the per capita number was 
more appropriate to reflect the effect of different influencing factors. 
We found that the number of differentially abundant metabolites per 
capita could be divided into three levels. Under the same gender, the 

number of differentially abundant metabolites per capita between AD 
patients and HVs was the largest, at more than 20. In the same state of 
illness or health, the number of differentially abundant metabolites per 
capita between different genders was in the middle, approximately 10. 
The number of differentially abundant metabolites per capita in AD 
patients with or without rashes was the lowest, approximately 5. Thus, 
we inferred that the state of AD is the most important factor that 
causes significant changes in skin metabolites. The gender factor 
ranked second. The presence or absence of rashes in AD has relatively 
little influence on skin metabolites.

KEGG pathway analysis of the differentially abundant metabolites 
between the AD group and HV group was conducted to uncover the 
metabolic pathway alterations (Figure 4C). The dot size of metabolic 
pathways was the largest, indicating the largest amounts of 

FIGURE 4

Skin metabolomic profiling. (A) PCA revealed that the distribution of samples in the HV group was more concentrated than that in the AD group. 
(B) PCA revealed that the distributions of samples in the ADM group and HVM group were more concentrated than those in the ADF group and HVF 
group, respectively. (C) Bubble plot of the metabolic pathway enrichment analysis results of the AD group and HV group.
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differentially abundant metabolites annotated to metabolic pathways. 
Furthermore, the differentially abundant metabolites of each enriched 
pathway were analyzed, and it was found that there were upstream and 
downstream cascades in the purine metabolism and phenylalanine 
metabolism pathways (Figures 5A,B). The content of xanthosine and 
xanthine in the skin of AD patients was 54 times and 38 times that of 
HV, and the content of L-phenylalanine and trans-cinnamate was 
approximately 4 times and 5 times that of HV, respectively, suggesting 
that the metabolic pathways related to xanthosine/xanthine and 
L-phenylalanine/trans-cinnamate are upregulated in AD. In addition, 
sphingosine levels were also significantly elevated in AD patients, 
approximately 9 times higher than in HV.

Similarly, KEGG pathway analysis of other subgroups was 
conducted (Supplementary Figures S5A–E). We  found significant 
enrichment of differentially abundant metabolites in purine metabolism 
and phenylalanine metabolism pathways between ADF and HVF 
(Supplementary Figure S5A). The content of xanthosine and xanthine 
in ADF is 99 times and 75 times that of HVF, and the content of 
L-phenylalanine and trans-cinnamate is approximately 7 times and 9 
times that of HVF, respectively. However, the comparison between ADM 
and HVM showed only differentially abundant metabolite enrichment 
in the purine metabolism pathway (Supplementary Figure S5B). The 

xanthosine and xanthine contents of ADM were 30 times and 7 times 
that of HVM, respectively. In addition, the differentially abundant 
metabolites of purine metabolism and phenylalanine metabolism 
pathways were also enriched between ADF and ADM 
(Supplementary Figure S5C). However, there was no significant 
difference in the above two pathways between HVF and HVM 
(Supplementary Figure S5D). Through the above subgroup analysis, it 
can be  inferred that the skin metabolic phenotype of AD patients 
differed by sex, and the differences in the purine metabolism and 
phenylalanine metabolism pathways between AD patients and HV were 
more obvious in females.

3.4 Correlation analysis between the skin 
microbiota and skin metabolism

In total, 569 differentially abundant bacteria at the genus level and 
81 differentially abundant metabolites at credibility levels of 1 to 3 
between the AD group and HV group were obtained. Spearman 
correlation analysis was performed between the above differentially 
abundant bacteria and differentially abundant metabolites 
(Supplementary Table S6). Furthermore, the correlation between five 

TABLE 1 The number of differentially abundant metabolites in each group.

Group Up Down Total number Per capita number

AD vs. HV 334 439 773 21.5

ADF vs. HVF 213 161 374 23.4

ADM vs. HVM 189 300 489 24.5

ADF vs. ADM 93 65 158 8.8

HVF vs. HVM 66 128 194 10.8

ADL vs. ADNL 49 32 81 4.5

Differentially abundant metabolite screening conditions: (1) VIP of the first two principal components of the PLS-DA model ≥ 1; (2) fold-change ≥ 1.2 or ≤ 0.83; (3) p < 0.05.

FIGURE 5

Altered metabolites and metabolic pathways observed in AD patients. (A) The purine metabolism pathway. (B) The phenylalanine metabolism pathway. 
Differentially abundant metabolites are shaded in red or blue. Red represents elevation compared with the HV group, and blue indicates a decrease 
compared with the HV group. The black arrow represents molecular interaction or relation. The blue arrow indicates the link to/from another KEGG 
pathway map.
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important kinds of differentially abundant bacteria revealed by LEfSe 
analysis and the key differentially abundant metabolites in purine 
metabolism, phenylalanine metabolism and sphingolipid signaling 
pathways are shown in Table 2. We found that the genus Staphylococcus 
was positively correlated with various compounds in phenylalanine 
metabolism and purine metabolic pathways. The genera 
Brevundimonas and Lactobacillus were negatively correlated with 
various compounds in purine metabolism, phenylalanine metabolism 
and sphingolipid signaling pathways.

4 Discussion

Skin microecological imbalance plays an important role in the 
pathogenesis of AD (Langan et al., 2020). The relationship between 
human and skin microbiota is bidirectional. Skin microbiota can 
affect host gene expression, and different skin characteristics can 
also form microbiota with specific preferences (Fyhrquist et  al., 
2019). There are also complex interactions between different skin 
bacteria. Previous studies have suggested that S. aureus is often 
dominant in the skin of AD patients, which can promote the onset 
of AD and limit the growth of other bacteria, which may have 
regulatory or protective effects (such as Staphylococcus epidermidis 
and Corynebacterium) (Fyhrquist et al., 2019). In contrast, some 
strains of Staphylococcus epidermidis, Roseomonas and 
Propionibacterium can inhibit the growth of S. aureus and are 
potential probiotics for the treatment of AD (Koh et al., 2022). Our 
study is based on 16S high-throughput sequencing technology, and 
the results are difficult to accurately annotate to the species level, nor 
can they be  used to detect viruses or eukaryotic communities 
(Ghosh et al., 2018). Our study showed that the alpha diversity of the 
skin microbiota decreased in AD patients. The relative abundance of 
the genus Staphylococcus significantly increased, while the relative 
abundances of the genera Propionibacterium, Brevundimonas, 
Lactobacillus and Lysobacter significantly decreased, suggesting that 
the genus Staphylococcus affected the growth of other skin symbiotic 
flora and destroyed the skin microecological balance. Thus, it is 

reasonable to infer that S. aureus should account for most of the 
detected genus Staphylococcus and play an important role in the 
pathogenesis of AD.

In addition to disease factors, the skin bacterial structure is also 
affected by other confounding factors. It has been reported that the 
number of bacteria at the genus level does not change from birth to 
1 year of age, but the relative abundance of microbiota fluctuates, with 
the relative abundances of the genera Staphylococcus and Streptococcus 
decreasing as infants grow, while the relative abundances of other 
genera increase (Capone et  al., 2011). This trend was maintained 
through childhood (2–12 years old), with more diversity of skin 
microbiota on the forearms of children than adults (Shi et al., 2016). 
The composition of skin microbiota in adolescents was stable, similar 
to that of adults (Shi et al., 2016). The skin microbiome structure in 
different sites of AD was also different (Bjerre et al., 2021). Therefore, 
the subjects included in this study were all adults, and the sampling 
sites were all elbows, which can better reduce the interference of age 
and site factors on the research results. To investigate the effect of sex 
and local rash factors on the results, we  performed a subgroup 
analysis. We revealed that there were significant differences in the 
composition and structure of the bacterial community between 
different sexes and lesion states.

Due to the important role of skin microbiota in the pathogenesis 
of AD, restoring skin microbial homeostasis is becoming a novel 
therapeutic strategy for treating AD (Hrestak et al., 2022; Koh et al., 
2022). Application of prebiotics and probiotics, whether by 
gastrointestinal approach or external use, may help to increase the 
diversity of the skin microbiota and have potential therapeutic effect 
of AD (Hrestak et  al., 2022). Coagulase-negative Staphylococcus 
(CoNS) strains with antimicrobial activity were common on the 
normal population but rare on AD subjects, and application of 
antimicrobial CoNS strains to human subjects with AD may decreased 
colonization by S. aureus (Nakatsuji et al., 2017). Topical microbiome 
transplantation with Roseomonas mucosa for AD patients was 
associated with significant decreases in measures of disease severity 
and S. aureus burden (Myles et al., 2018). A Living symbiotic bacteria-
involved skin dressing was developed for microbiome-based 

TABLE 2 The correlation between specific bacteria and differentially abundant metabolites.

Compound Staphylococcus Brevundimonas Propionibacterium Lactobacillus Lysobacter

L-phenylalaninea 0.610 −0.508 −0.325 −0.578 −0.221

Trans-cinnamatea 0.642 −0.541 −0.330 −0.578 −0.266

Tran-2-hydroxycinnamatea 0.570 −0.505 −0.293 −0.564 −0.259

Phenylactatea 0.591 −0.368 −0.195 −0.442 −0.426

Xanthineb 0.523 −0.436 −0.418 −0.282 −0.096

Xanthosineb 0.772 −0.549 −0.372 −0.467 −0.244

Hypoxanthineb −0.321 0.421 0.416 0.217 −0.033

Adenosineb 0.448 −0.509 0.027 −0.354 −0.278

Guanosineb 0.430 −0.295 −0.126 −0.408 −0.338

Deoxyinosineb 0.437 −0.535 −0.131 −0.468 −0.282

Sphingosinec 0.257 −0.395 −0.243 −0.381 −0.191

r ≤ −0.6 −0.6 < r ≤ −0.4 −0.4 < r ≤ −0.2 −0.2 < r ≤ 0 0 < r ≤ 0.2 0.2 < r ≤ 0.4 0.4 < r ≤ 0.6 r>0.6

Bold and italic values indicate nominal significant associations (p < 0.05). 
aThese metabolites are involved in phenylalanine metabolism.
bThese metabolites are involved in purine metabolism.
cThese metabolites are involved in sphingolipid signaling pathway.
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biotherapy toward AD, which may recover skin barrier functions and 
alleviate AD-associated inflammation responses (Liu et al., 2023).

Samples for metabolomics analyses can be serum, urine, sweat, 
skin, etc. (Afghani et al., 2022). Both host gene expression products 
and substances produced by skin microorganisms influence skin 
metabolites (Afghani et al., 2022). Skin samples can be collected by 
invasive or noninvasive methods; the former is by skin biopsy, and the 
latter is by tape strips (Afghani et al., 2022). It has been reported that 
the swabbing method is comparable to the tape stripping method for 
collecting viable skin bacteria without losing fidelity to the 
composition of the skin microbiome (Ogai et al., 2018). However, to 
our knowledge, there have been no previous studies in AD 
metabolomics applying the swabbing method for sampling. In this 
study, a polyester swab was used to collect samples from skin, and 
large amounts of metabolites were successfully obtained. This 
noninvasive method for skin sample collection was proven to be safe, 
convenient and efficient.

Diet, age, sex, sampling method and other factors may affect the 
metabolites detected (Afghani et al., 2022). We evaluated the influence 
of disease, sex and rashes on the metabolomics analyses. The PCA 
results revealed that metabolites of healthy people have better 
consistency than those of AD patients, and males have better 
consistency than females. The number of differentially abundant 
metabolites per capita suggested that the effects of the state of AD, sex 
and the presence or absence of rashes on metabolomics analyses were 
successively reduced.

The differentially abundant metabolites between AD patients and 
HVs were enriched in the purine metabolism and phenylalanine 
metabolism pathways. The contents of xanthosine/xanthine and 
L-phenylalanine/trans-cinnamate are significantly elevated in AD, 
especially among females. However, we  should notice that the 
metabolites we detected do not necessarily derived from microbes, 
they may also origin from the host. Xanthine is the substrate of 
xanthine oxidase and xanthine dehydrogenase, and it is also the 
intermediate product of the process from hypoxanthine to uric acid 
(Kulikowska et  al., 2004). Xanthine is involved in a variety of 
intracellular metabolic pathways, such as purine nucleotide catabolism 
(Kulikowska et  al., 2004). Exogenous guanosine and xanthosine, 
which are fluxed through the GTP branch of purine biosynthesis, were 
shown to significantly reduce methicillin-resistant S. aureus (MRSA) 
β-lactam resistance (Nolan et al., 2023). Further study demonstrated 
that exposure of MRSA to guanosine and xanthosine can significantly 
reduce the levels of the cyclic dinucleotide c-di-AMP, which is needed 
for β-lactam resistance (Nolan et al., 2023).

Phenylalanine is involved in a variety of metabolic activities in the 
body, and tyrosine, phenylactate and trans-cinnamate can be produced 
under the action of different enzymes (Matthews, 2007; Teufel et al., 
2010; Otto et al., 2019). Bacteria in the environment can participate in 
the metabolism of phenylalanine and phenylacetate (Teufel et  al., 
2010). Pseudomonas taiwanensis has been used to catalyze trans-
cinnamate formation from phenylalanine (Otto et  al., 2019). The 
functional predictions based on metagenomic analysis in previous 
study revealed that AD skin samples exhibited enrichment in 
phenylalanine tyrosine and tryptophan biosynthesis (Chng et  al., 
2016). In addition, human lack the ability to synthesize essential 
amino acids such as phenylalanine, and they acquire essential amino 
acids from their diet or perhaps their associated microbial 
communities (Shrode et al., 2022; McCann and Rawls, 2023). Essential 

amino acid may act as chemical mediators of host–microbe interaction 
(McCann and Rawls, 2023). Thus, it was reasonable to infer that the 
significant proportion of increasing phenylalanine in AD we detected 
by skin metabolomics was probably derived from dominant microbes 
in AD. As far as we know, there are no relevant studies on purine 
metabolism and phenylalanine metabolism pathways in the 
pathogenesis of AD, but there is evidence that xanthosine, 
phenylalanine and trans-cinnamate participate in bacterial metabolic 
activities (Otto et al., 2019; Nolan et al., 2023). The important role of 
S. aureus in the pathogenesis of AD has been generally confirmed, and 
this study suggested that xanthosine/xanthine and L-phenylalanine/
trans-cinnamate were positively correlated with Staphylococcus. 
Therefore, the purine metabolism and phenylalanine metabolism 
pathways may play a certain role in the pathogenic mechanism of 
S. aureus in AD, which is worthy of further exploration.

Epidermal barrier dysfunction is also a major characteristic of AD 
(Langan et al., 2020). Ceramide plays an important role in maintaining 
skin barrier function, and sphingosine is an important component of 
ceramide (Toncic et al., 2020). Ceramides can be divided into several 
subtypes, and they are dysregulated in AD patients (Ghosh et al., 2018). 
Previous studies have observed a decrease in long-chain ceramides and 
an increase in short-chain ceramides in AD patients (Afghani et al., 
2022). It was reported that the colonization of Staphylococcus was 
positively correlated with the epidermal ceramide subspecies AS, ADS, 
NS and NDS in AD (Emmert et al., 2021). Our study showed that the 
amount of sphingosine in AD patients was approximately 10 times that 
in healthy controls (p < 0.05), which was consistent with previous 
studies (Toncic et al., 2020). However, we did not identify ceramide 
substances in this study, which may be  due to the wide variety of 
ceramides and lack of a specialized ceramide comparison database.

There are some limitations in our study. First, the correlation 
between the skin microbiota and skin metabolites is only statistically 
significant, and it was difficult to determine whether the differential 
metabolites between the two groups detected in skin samples came 
from the host or microorganisms. Second, our study only detected the 
metabolites in skin samples without untargeted metabolomics analysis 
on serum samples, which can better reflect the metabolic situation of 
the body. It is necessary to collect both skin samples and blood 
samples in future research. In addition, relatively fewer subjects were 
included in the subgroup analysis, which inevitably increased the 
random error. Thus, the specific mechanism of interaction between 
skin microbiota, human skin and skin metabolites still needs to 
be further studied.

In summary, AD patients had dysbiosis of the skin microbiome 
with the features of decreased species richness and evenness. The 
relative abundance of the genus Staphylococcus increased significantly 
in AD, while the relative abundances of the genera Propionibacterium, 
Brevundimonas, Lactobacillus and Lysobacter were significantly 
decreased. Multiple metabolites related to purine metabolism and 
phenylalanine metabolism pathways (such as xanthosine/xanthine 
and L-phenylalanine/trans-cinnamate) were upregulated in AD 
patients, and they were positively correlated with the genus 
Staphylococcus, which suggested that purine metabolism and 
phenylalanine metabolism pathways may play a certain role in the 
pathogenic mechanism of S. aureus in AD. We  also found that 
different sexes had certain effects on skin microbiota and metabolite 
composition. Females are more likely to be colonized by the genus 
Staphylococcus than males, and the differentially abundant metabolites 
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involved in purine metabolism and phenylalanine metabolism 
pathways were more obvious in female.
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