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Background: Colorectal cancer (CRC) is a type of tumor caused by the
uncontrolled growth of cells in the mucosa lining the last part of the
intestine. Emerging evidence underscores an association between CRC and
gut microbiome dysbiosis. The high mortality rate of this cancer has
made it necessary to develop new early diagnostic methods. Machine
learning (ML) techniques can represent a solution to evaluate the interaction
between intestinal microbiota and host physiology. Through explained artificial
intelligence (XAI) it is possible to evaluate the individual contributions ofmicrobial
taxonomic markers for each subject. Our work also implements the Shapley
Method Additive Explanations (SHAP) algorithm to identify for each subject which
parameters are important in the context of CRC.

Results: The proposed study aimed to implement an explainable artificial
intelligence framework using both gut microbiota data and demographic
information from subjects to classify a cohort of control subjects from those
with CRC. Our analysis revealed an association between gut microbiota and
this disease. We compared three machine learning algorithms, and the Random
Forest (RF) algorithm emerged as the best classifier, with a precision of
0.729 ± 0.038 and an area under the Precision-Recall curve of 0.668 ±

0.016. Additionally, SHAP analysis highlighted the most crucial variables in
the model’s decision-making, facilitating the identification of specific bacteria
linked to CRC. Our results confirmed the role of certain bacteria, such
as Fusobacterium, Peptostreptococcus, and Parvimonas, whose abundance
appears notably associated with the disease, as well as bacteria whose presence
is linked to a non-diseased state.

Discussion: These findings emphasizes the potential of leveraging gut
microbiota data within an explainable AI framework for CRC classification. The
significant association observed aligns with existing knowledge. The precision
exhibited by the RF algorithm reinforces its suitability for such classification
tasks. The SHAP analysis not only enhanced interpretability but identified specific
bacteria crucial in CRC determination. This approach opens avenues for targeted
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interventions based on microbial signatures. Further exploration is warranted
to deepen our understanding of the intricate interplay between microbiota and
health, providing insights for refined diagnostic and therapeutic strategies.

KEYWORDS

machine learning, explainable artificial intelligence, colorectal cancer, microbiome,

biomarker identification, microbiota, precision medicine

1 Introduction

Colorectal cancer (CRC) stands as the third most prevalent

cancer globally (Morgan et al., 2023), claiming a significant toll in

cancer-related fatalities. The high mortality is due to the abnormal

growth of cells with the capacity to invade tissues and spread

to other parts of the body. Most colorectal cancers are due to

lifestyle and advanced age and only a few cases are attributable to

hereditary genetic diseases. Its incidence is constantly increasing,

and in-depth understanding of the pathogenetic mechanisms, early

diagnosis and innovative therapeutic options have become crucial

imperatives to address this growing challenge. The complexity of

colorectal cancer is highlighted by the diversity of pathological

pathways involved and the variability in response to treatments.

The prevailing gold standard for CRC diagnosis, colonoscopy, is

burdened by invasiveness and discomfort. However, resistance to

conventional treatments, post-surgical recurrence and the need to

improve access to care, especially in disadvantaged communities

make it necessary to open up to personalized therapies and more

targeted management strategies. A non-standardized approach

keep in mind the peculiar molecular characteristics of each tumor

and the patient’s individual responses to therapies. Hence, the

pressing demand for non-invasive, cost-effective early detection

methods persists. Non-invasive therapies take on particular

relevance with a view to reducing physical and psychological stress

on patients, reducing the recovery period and improving the quality

of life post-treatment.

The gut microbiota, a complex community of microorganisms

that colonize the gastrointestinal tract, has emerged as a critical

player in the regulation of intestinal homeostasis and the

modulation of local immune responses. In recent years, a growing

body of scientific evidence has highlighted the critical role of

the intestinal microbiota in the pathogenesis and development

of colorectal cancer. The dynamic interactions between the

microbiota and the intestinal mucosa play a key role in maintaining

a physiological environment and preventing the onset of cellular

alterations. However, dysbiosis or imbalances in the composition

of the microbiota can contribute to carcinogenesis, promoting

chronic inflammation, the production of carcinogenic metabolites

and alteration of the mucosal barrier. Certain bacteria, like

Fusobacterium nucleatum and Parvimonas micra, are notably more

abundant in CRC patients, often linked to the disease’s development

(Yachida et al., 2019; Löwenmark et al., 2020;Wu et al., 2021). These

findings drive the exploration of using fecal biomarkers for CRC

diagnosis. Understanding the central role of the gut microbiota

in the context of colorectal cancer could guide the development

of personalized strategies for disease management, exploiting the

TABLE 1 Summary table of the datasets used in the analysis.

Dataset Control CRC Metadata

Baxter et al. (2016) 171 120 Gender, age,

BMI, country

Zackular et al.

(2014)

30 30 Gender, age,

BMI, country

Zeller et al. (2014) 50 41 Gender, age,

BMI, country

TOTAL 251 191 Gender, age,

BMI, country

therapeutic potential of microbial manipulation. Harnessing the

power of machine learning (ML) (Amodeo et al., 2021; Bellando-

Randone et al., 2021; Rynazal et al., 2023; Golob et al., 2024),

our study crafts a comprehensive framework to scrutinize fecal

microbiome data gleaned from both healthy subjects and those

afflicted with CRC. This framework intricately involves data

preprocessing, feature extraction, feature selection, and model

construction, employing an array of ML algorithms. To ensure

transparency and interpretability in our study, we embrace the

principles of Explainable Artificial Intelligence (XAI) (Lombardi

et al., 2021a,b; Bellantuono et al., 2023; Novielli et al., 2023).

XAI not only enhances the trustworthiness of our models but

also empowers clinicians to understand the rationale behind each

prediction. This is particularly crucial in the context of personalized

CRC management, where treatment decisions need to be aligned

with the unique characteristics of each patient. The impact of

gut microbiota on CRC analyzed through machine learning,

coupled with transparent explanations afforded by XAI, holds the

potential to develop how to diagnose andmanage colorectal cancer,

fostering a new era of precision medicine that is both effective and

readily comprehensible.

2 Materials

In this study, we used three different dataset of three different

works (Zackular et al., 2014; Zeller et al., 2014; Baxter et al.,

2016). For each of them, we considered the control patient

(NC) and the CRC ones. These datasets collect 442 human stool

samples characterized by 16S metagenomic sequencing of the

V4 region of the 16S rRNA, from different countries: Canada

(CA), France (FRA), United States of America (USA). These

dataset provide information regarding the abundance of the

gut microbiota in NC patients and CRC ones at genus level.
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FIGURE 1

Boxplot of two classes (patients and controls) of the (A) age and (B) BMI. The symbol * denotes the significance level determined by the
Mann-Whitney U rank test for comparing two distributions. **Stands for p-value less or equal then 0.01. ****stands for p-value less or equal then
0.0001.

TABLE 2 Demographic characteristics of the study participants.

CRC (191) Control
(251)

p-value

Gender 114M / 77 F 101M / 150 F < 0.01

Country 2 CA / 41 FRA

/ 148 USA

3 CA / 50 FRA

/ 198 USA

0.892

The Fisher’s exact test was performed for gender and country.

Moreover, each of them is characterized with four metadata

features: gender, age, body mass index (BMI), country, as reported

in Table 1.

Information about the distribution of age and BMI for both

patients and controls are showed respectively in Figures 1A, B,

while the demographic characteristics of the entire dataset is

reported in Table 2. In the Supplementary Table S1 is reported the

information related to the metadata of each subject involved in

the analysis.

3 Methods

The workflow begins with the preprocessing of microbiome

data, followed by the construction of an explainable machine

learning model. The performance of three classifiers—XGBoost,

Random Forest, and Support Vector Machine—was rigorously

compared through a 20-repeated 5-fold Stratified Cross Validation.

Finally, we explore the functionality of the optimal classifier

using the XAI approach. This includes collecting SHAP values for

different (feature, prediction) pairs and averaging them across the

20 repetitions of the model CV. Figure 2 outlines the Artificial

Intelligence procedure implemented in this study to develop a

Machine Learning classifier for distinguishing between control and

CRC samples.

3.1 Preprocessing of the microbiome
samples

Preprocessing of microbiome data is a crucial step in the

analysis pipeline (Ibrahimi et al., 2023; Papoutsoglou et al.,

2023). The microbiome data undergo several preprocessing steps.

Firstly, a filtration of taxonomic units is conducted, focusing on

removing non-informative features or taxa that are biologically

irrelevant or potential contaminants (Cao et al., 2021). This

involves applying thresholds based on abundance/prevalence,

variance, or correlation. In our case, low-abundance or prevalence

filtering eliminates features present in <10% of the samples.

The subsequent step involves normalization, aiming to address

variability in sampling depth and data sparsity. One approach for

data normalization is through transformation methods, wherein

values are replaced with their normalized counterparts. Given that

microbiome datasets are inherently compositional, these methods

adhere to Aitchison’s methodology for compositional data. They

transform feature counts into log-ratios within each sample,

utilizing an additive, centered log-ratio transformation (Aitchison,

1982; Egozcue et al., 2003).

3.2 Machine learning classifier

3.2.1 XGBoost
The XGBoost algorithm employs a collective of decision trees

trained through an iterative gradient boosting process. This process

involves addressing critical points within decision trees at each

step through subsequent trees. Addressing the challenge of missing

values, XGBoost employs sparsity-aware split finding (Chen and

Guestrin, 2016). This technique leverages data sparsity patterns in

a unified manner, determining the optimal direction in the event

of a missing feature necessary for a split. In the quest for optimal

performance in classification under cross-validation conditions, we

explore various XGBoost parameters:
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FIGURE 2

Schematic flowchart of the analysis.

• max depth ǫ {None, 3, 5},

• col sample bytree ǫ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9},

• n estimators ǫ {50, 100, 150, 200, 250}.

The implementation of the XGBoost algorithm utilizes the

Python (version 3.11.5) package xgboost (version 2.0.2).

3.2.2 Random forest
The Random Forest (RF) algorithm entails an ensemble of

decision trees derived through resampling the training dataset

with repetitions (bootstrapping) (Breiman, 2001). This process,

along with the randomization of features during training, ensures

low mutual correlation between RF trees. Decision trees generate

independent predictions for each observation, and their collective

outcomes are aggregated through either averaging (for regression)

or majority voting (for classification). Noteworthy characteristics

of RF algorithms include easy tunability, a minimal number

of parameters, resilience against overfitting, the ability to assess

feature importance during training, and an unbiased estimation

of generalization error. In this study, we aimed to optimize

the control/crc classification in cross-validation mode by varying

specific RF parameters, including:

• max depth {ǫ None, 3, 5},

• n estimators ǫ {50, 100, 150, 200, 250}.

The RF algorithm implementation utilized the Python (version

3.11.5) package scikit-learn (version 1.3.0) (Pedregosa et al., 2011).

3.2.3 Support vector machine
The Support Vector Machine (SVM) operates by determining

the optimal boundary between two or more classes in the data

space through the minimization of a loss function known as

Hinge Loss, augmented with a penalty term (Cortes and Vapnik,

1995). In this algorithm, only a limited set of input observations,

termed support vectors, actively contribute to delineating the

boundary between classes. The SVM algorithm iterates by treating

misclassified instances as support vectors, with their contribution

to the loss being proportional to their distance from the boundary.

This approach ensures that the loss is influenced solely by a

subset of input observations, facilitating an efficient estimation

of optimal parameters. For the optimization of control/CRC

classification under cross-validation conditions, we vary the

following SVM parameters:

• C ǫ {1, 5, 10, 20},

• Gamma ǫ {0.001, 0.01, 1}.

The SVM algorithm is implemented using the Python (version

3.11.5) package scikit-learn (version 1.3.0) (Pedregosa et al., 2011).
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TABLE 3 Comparison between evaluation metrics of XGBoost (XGB),

Random Forest (RF), and Support Vector Machine (SVM) classifiers.

ACC F1 PREC AUC
ROC

AUPRC

XGB 0.652 (0.017) 0.567 (0.022) 0.613 (0.022) 0.701 (0.015) 0.639 (0.021)

RF 0.673 (0.015) 0.507 (0.030) 0.729 (0.038) 0.699 (0.011) 0.668 (0.016)

SVM 0.633 (0.025) 0.478 (0.091) 0.613 (0.032) 0.663 (0.036) 0.597 (0.037)

The mean values accompanied by the standard deviation are shown. The highest values for

each metric are indicated in bold, and the second-highest values are underscored.

3.3 Evaluation metrics

In the realm of classification machine learning, the selection

of appropriate evaluation metrics is crucial for assessing the

performance of models. These metrics provide quantitative

measures of a model’s ability to correctly classify instances and are

essential tools for comparing and optimizing different algorithms.

In order to obtain statistically robust results, a 5-fold cross-

validation was applied to partition the dataset, where each fold was

used as a test set while the remaining four as training ones (Schaffer,

1993). An hyperparameter tuning was conducted with a random

search by using the RandomizedSearchCV function of the python

library scikit-learn (Bergstra and Bengio, 2012), implemented with

a nested 3-fold cross- validation to avoid bias in the estimation

of test error (Varma and Simon, 2006). The entire process was

repeated 20 times, by dividing the dataset with different partitions

between each repetition.

The metrics used to evaluate the performance of models were

(Venerito et al., 2022):

• Accuracy: The accuracy is the proportion of correct

predictions (both true positives and true negatives) among

the total number predictions.

• Recall: The recall is a metric evaluating the frequency

with which a machine learning model accurately recognizes

positive instances (true positives) among all the actual positive

samples. It is calculated by dividing the number of true

positives by the total number of elements that actually belong

to the positive class.

• Precision: The precision is a metric assessing how often

a machine learning model predicts the positive class. It

is computed by dividing the number of accurate positive

predictions (true positives) by the total instances predicted

as positive by the model (sum of true positives and

false positives).

• F1 score: The F1 score is the harmonic mean of the precision

and recall.

• AUC ROC: The area under the Receiver Operating

Characteristic (ROC) curve;

• AUPRC: The area under the Precision-Recall (PR) curve.

We considered as positive instances those ones belonging to the

CRC class.

For the evaluation of the best classifier, the one with the highest

AUPRC will be chosen. This metric is well-suited for assessing the

discriminative power of a classifier in the presence of an imbalanced

dataset, where the number of positive cases is greater than the

number of negative cases (Ozenne et al., 2015).

3.4 SHAP algorithm

The eXplainable Artificial Intelligence (XAI) framework

encompasses a variety of techniques united by their shared focus

on informativeness, uncertainty estimation, generalization, and

transparency. In this study, we employ the SHAP local explanation

algorithm to uncover the significance of features in classifying

control/CRC samples. Serving as a local, model-agnostic post-hoc

explainer, the SHAP algorithm derives inspiration from Shapley

(SHAP) values rooted in cooperative game theory (Lundberg and

Lee, 2017; Lundberg et al., 2020). It constructs interpretable linear

models for individual samples, highlighting the contribution of

each feature to the sample’s prediction. The computation of SHAP

values involves assessing the difference in model output predictions

with and without specific features, considering all conceivable

feature subsets. As a result, the model requires retraining on all

subsets F of the complete set S of features (F⊆ S). The SHAP value

for the jth feature of the instance x is determined by aggregating it

across all possible subsets (Equation 1):

Φj(x) =
∑

F⊆S−{j}

|F|!(|S| − |F| − 1)!

|S|!
[fx(F ∪ j)− fx(F)] (1)

where |F |! represents the permutations of features in the subset

F, (|S| - |F |− 1)! the permutations of features in the subset S - (F⊆

{j}) and |S|! is the total number of feature permutations.

The SHAP value calculation is implemented in the Python

(version 3.11.5) package shap (version 0.43.0). For RF and XGBoost

models, we utilized the TreeExplainer function with the “feature

perturbation” parameter set to “interventional.” This approach

is tailored to disrupt dependencies between features, aligning

with the principles outlined in causal inference (Janzing et al.,

2020). By adopting this parameter configuration, our objective

was to alleviate the impact of highly correlated predictors, thereby

mitigating potential misinterpretations and ensuring a more

robust analysis.

4 Results

The objective of this study was to investigate changes in the gut

microbiota among individuals with CRC in comparison to control

subjects. To unveil these alterations, a machine learning-based

classification model was employed, and the contribution of features

was analyzed. Our attention will be directed toward the outcomes

of the Artificial Intelligence workflow, specifically examining the

classification performance of various Machine Learning algorithms

and the prevalence of bacteroides that exerts the most significant

influence on predictions.
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FIGURE 3

(A) Average ROC Curve with standard deviation over 20 model runs; (B) Average PR Curve with standard deviation over 20 model runs.

4.1 Feature engineering

The dataset utilized in this study consists of abundance tables

representing microbial communities from the V4 region of the

16S rRNA, collected at the genus level. Starting with an initial

dataset comprising 462 features (microbial communities), the

data cleaning process, as described in the methods, reduced the

total number of features to 164. Following the centered log-

ratio transformation for each sample, additional variables were

incorporated, including country, age, BMI, and gender. This

resulting dataset served as the input for the machine learning

classification framework.

4.2 Classification CRC/control

A comprehensive correlation analysis was conducted among

all features considered as inputs to the ML classifier and the

output target class. The outcomes of this analysis are presented in

Supplementary Figure S1, where the top features are displayed in

descending order based on their correlation coefficients with the

target class. Despite observing statistically significant correlations

among the features, it is noteworthy that the maximum correlation

does not exceed 0.3. This implies that a univariate analysis

approach for classifier creation is not suitable, necessitating a

multivariate approach. The limited strength of individual feature

correlations underscores the need for constructing multivariate ML

classification models to capture the intricate relationships within

the dataset and achieve a more comprehensive understanding of

the predictive factors associated with the target class.

Within this study, the efficacy of three supervised machine

learning algorithms—XGB, RF, and a SVM—was assessed. The

optimal classifier emerged as the one exhibiting the highest

AUPRC, averaged across the 20 repetitions of the 5-fold cross-

validation. As outlined in Table 3, the RF model proved to be the

most proficient, excelling in terms of accuracy, precision and area

under the precision-recall curve.

Figure 3 illustrates the RF classification model’s performance,

assessed through the Receiver Operating Characteristic (ROC)

curve (Figure 3A), showcasing an Area Under the Curve (AUC)

value of 0.699± 0.011 and through the Precision-Recall (PR) curve

(Figure 3B) with an AUC of 0.668 ± 0.016. The plots showcase the

average curves derived from 20 repetitions of the Cross-Validation,

accompanied by their standard deviation.

In Supplementary Figures S2–S4, we present the analysis of

parameter stability during the tuning phase of nested cross-

validation. These figures illustrate, across multiple repetitions, the

frequency with which a particular parameter was selected as the

best parameter for our models. This in-depth examination provides

valuable insights into the robustness and consistency of the chosen

parameters throughout the nested cross-validation process.

4.3 Explainability

Model explainability involves understanding how algorithms

discern the relationship between inputs and outputs. While

complex non-linear models achieve superior performance, their

interpretability is often compromised. This lack of interpretability

limits their application in biomedical research, where a thorough

understanding of the classification process is crucial. Feature

importance methods aim to quantify the contribution of each

feature to the model’s predictions. Global methods provide an

overarching ranking of features, while local methods illuminate the

contribution of each feature to a specific prediction. In Figure 4,

global feature importance is illustrated using various methods.

In Figure 4A, the RandomForest embedded feature importance

is presented. The importance of a feature is computed as the

(normalized) total reduction of the criterion brought about by that

feature, commonly referred to as the Gini importance.

Figure 4B showcases the feature importance based on SHAP

values. Essentially, this method constructs an interpretable linear

model around each test instance and estimates feature importance

at the local level. The plot in Figure 4B reveals the most important

features for classification according to the SHAP algorithm. Shapley

values are calculated by averaging across all iterations of the

algorithm for each subject, considering the 20 repetitions. This

summary plot provides an insightful overview of each feature’s

relative impact on the model’s predictions, contributing to a
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FIGURE 4

The images display the top 20 features ranked by their importance. (A) RF embedded feature importance. The boxplots represent the distributions of
the feature importance coe�cient calculated across all validation folds of the model. (B) SHAP summary plot depicting Shapley values for each
feature. Each point represents a subject’s Shapley value, with the y-axis indicating the corresponding feature and the x-axis representing the Shapley
value. The color gradient reflects feature values, ranging from low to high, while features are ordered by mean importance, with more important
features positioned toward the top.
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thorough understanding of the overall importance and influence

of different features in the analysis.

The Figure 4B indicates the presence of bacteria, such as

Porphiromonas, with a high relative abundance (highlighted in red

points on the summary plot) on the positive side of the x-axis,

while a low relative abundance (highlighted in blue points) is more

prevalent on the negative side. This suggests that a higher relative

abundance of these bacteria is generally associated with a higher

probability value for CRC, while a lower relative abundance is

linked to a lower probability value for CRC. Conversely, bacteria

like Lachnospira exhibit the opposite pattern, implying that a high

abundance of this genus is correlated with a lower probability

of CRC. These nuanced insights into the direction of effects are

not discernible using global explanation methods like RF’s built-in

feature importance. Notably, the importance rankings of features

obtained from both RF and SHAP values show substantial overlap

(Jaccard Index = 0.67), highlighting the robustness and stability of

the model. Furthermore, the SHAP summary plot highlights that

among the top 20 most significant variables, Age, Gender, and BMI

are included.

We have extended our explainability analysis to include the

other two models (SVM and XGBoost). Due to computational

constraints, we limited the number of repetitions for SVM to 5.

The SHAP summary plots for these models are now available in

the Supplementary Figure S5. Additionally the Table 4 illustrates

the overlap coefficient (Vijaymeena and Kavitha, 2016) between

the SHAP values of the three models. Notably, we observed a

higher degree of overlap between the Shapley values of the two

top-performing models, RF and XGBoost.

Figure 5 displays the dependence plots for the top two variables

according to the SHAP summary plot. Notably, the dependence

of marginal contributions for a specific variable varies with the

fluctuations in the variable itself. Specifically, in the depicted

dependence plots, an increase in the values of Fusobacterium

(Figure 5A) or Porphyromonas (Figure 5B) corresponds to a rise

in the associated SHAP values. Consequently, elevated values of

these variables play a significant role in the algorithm’s decision to

classify an instance as CRC. Moreover, the color code represents

the abundance of another bacterium. In Figures 5A, B can be

observed the correlation of Fusobacterium with Peptostreptococcus

and Porphyromonas, respectively.

5 Discussion

In our research, we have crafted an Artificial Intelligence

workflow adept at deciphering the human microbiome within

a cohort of control and CRC subjects, offering a highly

dependable prediction of CRC outcomes. A notable strength

lies in the entirely data-driven implementation of the classifier.

Additionally, the preprocessing pipeline impartially eliminates

less informative bacteria without relying on diagnostic labels

associated with the microbiome. Beyond its precision, the top

classifier yields predictions that are readily interpretable. XAI

analysis results reveal a discernible pattern aligning with established

knowledge, highlighting some bacterial genera among the 20 most

significant features, known for their association with CRC in

existing literature.

TABLE 4 Overlap coe�cient between the top 20 most important

features, as determined by SHAP, across the three ML models.

RF 0.55

XGBoost 0.40 0.75

SVM RF

Among the foremost 20 features, Fusobacterium,

Porphyromonas, Peptostreptococcus, and Parvimonas have emerged

as potential microbiological markers that could significantly

improve the accuracy of colorectal cancer (CRC) diagnoses (Chen

et al., 2022).

Figure 5 offers insight into the connection between specific

bacterial genera and CRC. The observed positive correlation

between the relative abundance of well-documented bacteria like

Fusobacterium and Porphyromonas and SHAP values suggests their

influence on the model’s predictions. This correlation hints at the

biological relevance of these taxa in the context of CRC. Essentially,

a higher abundance of these bacteria appears to positively impact

the model’s attribution of the positive class (cancer) during

output explanation. The visual representation in Figure 5 aids

in understanding the model’s decision-making from a biological

standpoint (Zhou et al., 2018; Koliarakis et al., 2019).

The recognition of abundant bacteria originating from the

oral cavity, including Fusobacterium, Peptostreptococcus, and

Parvimonas, indicates a dynamic symbiotic metacommunity

intricately linked to the initiation of colorectal cancer (CRC).

Within the human body, a symbiotic relationship with the

microbiota exists, where polymicrobial communities inhabit

cavities such as the oral and intestinal regions. Despite these areas

being anatomically separated with distinct microbiota colonization,

there are indications that bacteria from the oral cavity may migrate

to the colon (Koliarakis et al., 2019). Fusobacterium has been

associated with genetic and epigenetic abnormalities in colorectal

cancer (CRC) tissues, including microsatellite instability (MSI).

In the tumorigenesis and progression of CRC, Fusobacterium

has the potential to enhance proliferation and metabolism, alter

the immune microenvironment, and promote metastasis and

chemoresistance. It may serve as a biomarker for identifying

individuals at high risk for CRC (Wang and Fang, 2023).

According to our study, a high concentration of bacteria from

the Lachnospiraceae family is associated with a lower likelihood

of CRC. This spurious association has been observed in previous

works, including (Hexun et al., 2023; Zhang et al., 2023), and this

could be linked to the mechanism whereby a high concentration of

these bacteria may promote heightened immune surveillance, thus

controlling colorectal cancer progression and counteracting it.

Additionally, from the summary plot, we observe another

pattern well-documented in the literature. There are studies

indicating that certain bacteria of the Clostridiales order, including

Eubacterium eligens, Eubacterium ventriosum, and Anaerostipes,

are significantly reduced in CRC patients compared to control

subjects (Montalban-Arques et al., 2021). This is evident in

Figure 4B, where corresponding to these commensal bacteria,

the high concentration of these bacteria (red points on the

plot) is associated with negative SHAP values, indicating that
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FIGURE 5

SHAP dependence plot for (A) Fusobacterium and Peptostreptococcus. (B) Porphyromonas and Fusobacterium.

the model assigns a low probability of classifying these subjects

as CRC.

Regarding demographic descriptors, age, gender, and BMI

have emerged as important features. Higher age, male gender,

and elevated BMI appear to be positively associated with CRC.

These findings are widely accepted and supported by scientific

literature, where obesity is recognized as a factor associated with the

development of this tumor, along with advancing age. Age exhibits

a consistent trend with expected associations: longer lifespans

correspond to a higher risk of having CRC (Murphy et al., 2011;

Ye et al., 2020; Elangovan et al., 2021).

In addition to the strengths mentioned above, we performed

a comprehensive analysis of explainability across the three models

employed in our study. This analysis, as can be observed

in Figure 4B and in Supplementary Figure S5, demonstrates the

comparability of explainability results in terms of both the most

important features and the correlation between feature values and

their corresponding Shap values. Notably, the positive/negative

correlations observed between SHAP values and the abundance of

specific features persist consistently across all three models.

This consistency in the interpretability of our models enhances

the robustness of our findings.

The presented study acknowledges certain limitations that

we aim to address in future research efforts. While the

classification performance provides valuable insights, there is

the potential for further optimization. This could be attributed

to the presence of other factors associated with colorectal

cancer, such as hereditary factors and smoking, which were not

considered in our analysis. Furthermore, the utilized database,

obtained through 16S rRNA sequencing, provides a limited

taxonomic resolution compared to Shotgun sequencing. A finer

taxonomic resolution might have contributed to a more precise

analysis and potentially identified stronger associations with

the disease.

In the realm of CRC research, our study takes a distinctive

approach by applying XAI techniques to unravel the intricate

relationship between the human microbiome and CRC. Utilizing

SHAP in microbiome research for predicting CRC outcomes

enhances the transparency of our model and introduces a

new perspective for the application of XAI in personalized

medicine. Our identification of microbiological markers

and taxonomic units associated with CRC risk contributes

to the understanding of disease mechanisms and has the

potential to inform diagnostic and therapeutic strategies. By

acknowledging demographic descriptors alongside microbiome

features, our work ensures a comprehensive approach that can be

applicable across diverse patient populations. In recognizing the

challenges and limitations of our study, we aim to guide future

investigations, emphasizing our commitment to advancing both

the scientific understanding of CRC and the practical applications

of contemporary technologies.

6 Conclusion

This study has enabled the identification of bacteria that

significantly influence the discrimination between healthy and

diseased individuals through Explainable Artificial Intelligence

(XAI), suggesting the identification of new disease biomarkers.

Additionally, the use of explainable artificial intelligence

models can support making these models more transparent and

interpretable, allowing for the appreciation, understanding, and

utilization of the microbiota composition for each individual.

By employing such the proposed method for each subject,

an assessment of the microbiota can be conducted, with

the aim of implementing actions to evaluate its modification,

if necessary.
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