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Effects of lactic acid bacteria 
inoculants on the nutrient 
composition, fermentation 
quality, and microbial diversity of 
whole-plant soybean-corn mixed 
silage
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Qi Li , Xinyue Zhu , Baiyila Wu , Zongfu Hu * and Huaxin Niu *
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The mixture of whole-plant soybean and whole-plant corn silage (WPSCS) is 
nutrient balanced and is also a promising roughage for ruminants. However, 
few studies have investigated the changes in bacterial community succession 
in WPSCS inoculated with homofermentative and heterofermentative lactic 
acid bacteria (LAB) and whether WPSCS inoculated with LAB can improve 
fermentation quality by reducing nutrient losses. This study investigated the 
effect of Lactobacillus plantarum (L. plantarum) or Lactobacillus buchneri (L. 
buchneri) on the fermentation quality, aerobic stability, and bacterial community 
of WPSCS. A 40:60 ratio of whole-plant soybean corn was inoculated without 
(CK) or with L. plantarum (LP), L. buchneri (LB), and a mixture of LP and LB (LPB), 
and fermented for 14, 28, and 56  days, followed by 7  days of aerobic exposure. 
The 56-day silage results indicated that the dry matter content of the LP and LB 
groups reached 37.36 and 36.67%, respectively, which was much greater than 
that of the CK group (36.05%). The pH values of the LP, LB, and LPB groups 
were significantly lower than those of the CK group (p  <  0.05). The ammoniacal 
nitrogen content of LB was significantly lower than that of the other three groups 
(p  <  0.05), and the ammoniacal nitrogen content of LP and LPB was significantly 
lower than that of CK (p  <  0.05). The acetic acid content and aerobic stability of 
the LB group were significantly greater than those of the CK, LP, and LPB groups 
(p  <  0.05). High-throughput sequencing revealed a dominant bacteria shift 
from Proteobacteria in fresh forage to Firmicutes in silage at the phylum level. 
Lactobacillus remained the dominant genus in all silage. Linear discriminant 
analysis effect size (LEFSe) analysis identified Lactobacillus as relatively abundant 
in LP-treated silage and Weissella in LB-treated groups. The results of KEGG 
pathway analysis of the 16S rRNA gene of the silage microbial flora showed 
that the abundance of genes related to amino acid metabolism in the LP, LB, 
and LPB groups was lower than that in the CK group (p  <  0.05). In conclusion, 
LAB application can improve the fermentation quality and nutritional value of 
WPSCS by regulating the succession of microbial communities and metabolic 
pathways during ensiling. Concurrently, the LB inoculant showed the potential 
to improve the aerobic stability of WPSCS.
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1 Introduction

The increasing demand for pasture-based feeds with acceptable 
protein content is crucial due to China’s growing demand for meat and 
milk, exacerbating the feed shortage in the ruminant industry (Meng 
et al., 2022). Whole-plant soybeans, as legumes, offer high yields, ease 
of harvest, and high protein and vitamin content with good palatability 
and digestibility (Gandra et al., 2022). However, their lower water-
soluble carbohydrate (WSC) content and higher buffering energy lead 
to higher pH in whole-plant soybean silage, limiting LAB growth and 
challenging good silage production (Ghizzi et al., 2022). In contrast, 
whole-plant corn, a graminaceous plant, serves as a primary roughage 
source in many countries. Its low buffering energy and high WSC 
content facilitate high-energy silage production. Nevertheless, its low 
crude protein (CP) content necessitates additional protein sources, 
like soybean meal or cake, for ruminant feed (Meng et al., 2022). Prior 
research has demonstrated superior overall silage quality in the corn-
soybean strip-intercrop model compared to corn or soybean silage 
alone (Ni et al., 2018; Zeng et al., 2020; Meng et al., 2022). Kizilsimsek 
et al. (2017) reported that silage with a whole soybean to whole corn 
ratio of 40:60 exhibited better fermentation quality and superior 
aerobic stability than soybean silage alone compared to corn silage. 
The above studies confirmed the viability of mixed whole-plant corn 
and soybean silages. However, they also highlight problems such as 
high levels of ammonia nitrogen (NH3-N) resulting from protein 
degradation and elevated yeast counts in silage, which compromise 
aerobic stability, and pH levels above 4.5, among other concerns 
(Kizilsimsek et  al., 2017; Zeng et  al., 2020). Therefore, this study 
investigated the use of lactic acid bacteria (LAB) inoculants to reduce 
nutrient loss and improve fermentation quality in the WPSCS process.

Lactobacillus plantarum is a homofermentative LAB favored in 
silage production, metabolizing WSC in silage to lactic acid and 
rapidly lowering pH to inhibit yeast and mold growth (Mu et al., 
2020). Inoculation with L. plantarum in mixed alfalfa and Leymus 
chinensis silage improves fermentation quality by increasing LA 
content and reducing pH and NH3-N content (Si et  al., 2023). In 
contrast, L. buchneri, a heterofermentative LAB, enhances silage’s 
aerobic stability by converting LA into acetic acid (AA), thereby 
inhibiting filamentous fungi growth (Yin et al., 2023). da Costa et al. 
(2022) reported that L. buchneri inoculation increased AA 
concentration and reduced yeast and ethanol content in sugarcane and 
peanut silages. Current research on whole-plant corn-soybean 
predominantly focuses on the intercropping model and the 

corn-soybean ratio during silage processing (Kizilsimsek et al., 2017; 
Ni et al., 2018; Zeng et al., 2020; Meng et al., 2022), and the above two 
mixed silage methods are also limited by nutrient loss and incomplete 
fermentation. To date, few studies have investigated the effects of 
homofermentative and heterofermentative lactic acid bacteria 
inoculation on changes in the quality, microbial composition, and 
expected functions of WPSCS. We hypothesize that LAB inoculation 
will induce changes in the succession of bacterial communities within 
mixed silages and improve the fermentation quality of WPSCS by 
reducing ammonia nitrogen levels and pH in mixed silages. This study 
evaluated the effect of adding L. plantarum or L. buchneri inoculant 
on the fermentation quality and nutrient composition of whole-plant 
soybean–corn mixed silage and analyzed the bacterial community and 
functional prediction to gain a deeper understanding of LAB.

2 Materials and methods

2.1 Materials and silage preparation

On September 14, 2022, fresh whole soybeans (R5 stage, seed 
fullness 1/2 ~ 3/4) and whole corn (wax ripe stage) were manually 
harvested from the soybean-corn strip intercropping field of the 
Institute of Agriculture and Animal Husbandry Science, Tongliao, 
Inner Mongolia Autonomous Region, China. The soybean stubble was 
maintained at a height of 5 cm, and the corn stubble at 15 cm. The 
harvested plants were transported to the laboratory and chopped into 
1–2 cm lengths using a crop cutter. Chemical characterization and 
microbial counts were determined after thoroughly mixing stems and 
leaves (Table 1). Lactobacillus plantarum (No. 6026) and Lactobacillus 
buchneri (No. 20294), isolated from fermented total mixed rations, 
were used as inoculants. The fresh material (FM) was mixed in a 40:60 
ratio by fresh weight. L. plantarum (LP), L. buchneri (LB), and the 
combined inoculant (LPB, 1:1) were applied at a rate of 1 × 10−6 cfu/g 
FM, dissolved in 20 mL of distilled water, and sprayed evenly on the 
FM. The control group (CK) received 20 mL of distilled water without 
inoculants. A total of 500 g FM was placed in vacuum bags (NO.14193, 
28 × 35 cm, Deli, Zhejiang, China) and sealed using a vacuum machine 
(PFS-200, Ruixiang, Shanghai, China). Thirty-six bags (4 treatments 
× 3 ensiling days × 3 replicates) were stored at room temperature 
(20 ± 2°C). Silage samples were collected at 14, 28, and 56 days of 
ensiling to evaluate chemical composition, fermentation quality, and 
microbial community.

TABLE 1 Chemical characterizing and microbial counts of fresh materials.

Items Corn Soybean Corn and soybean (60:40)

DM (%DM) 40.61 30.90 38.49

CP (%DM) 8.64 14.09 12.68

ADF (%DM) 19.43 25.53 21.03

NDF (%DM) 33.4 37.05 36.73

WSC (%DM) 11.05 3.66 5.09

Microorganism (log10 cfu/g FM)

LAB 7.52 4.84 5.12

Yeast 8.01 5.20 5.47

Mold - - -
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2.2 Aerobic stability test

150 g of silage sample after fermentation for 56 days was 
transferred to a 200 mL polyethylene (PE) bottle. A multi-channel 
high-precision automatic temperature recorder (model MDL-1048A, 
Shanghai Tianhe Automation Instrument Co., Ltd.) with multiple 
probes was positioned at the feed center to monitor feed and ambient 
temperature changes every 30 min. Aerobic stability was determined 
as the duration required for the silage temperature to consistently 
exceed the ambient temperature by 2°C (Ke et al., 2015).

2.3 Fermentation quality, chemical 
characterizing, and microbial counts of 
silage

Samples were dried at 65°C for 72 h to measure DM content and 
subsequently crushed and sieved through a 1 mm mesh for chemical 
analysis. CP content was determined using the Kjeldahl method, and 
WSC content was assessed using the anthrone-sulfuric acid 
colorimetry method (AOAC, 1990). Neutral detergent fiber (NDF) 
and acid detergent fiber (ADF) contents were analyzed following the 
method of Van Soest et al. (1991).

A 20 g silage sample was mixed with 180 mL distilled water, 
homogenized using a high-speed mill at 5000 r/min for 1 min, and 
then filtered through four gauze layers and qualitative filter paper. The 
pH was determined using a pH meter (LEICI pHS-3C, Shanghai, 
China). Lactic acid (LA), acetic acid (AA), and propionic acid (PA) 
contents were quantified using high-performance liquid 
chromatography (ICS-3000 system, Dionex, Sunnyvale, CA, USA), as 
described by Hu et al. (2020). Ammonia nitrogen (NH3-N) levels were 
ascertained following the protocol of Broderick and Kang (1980).

For microbial analysis, a gradient dilution of the filtrate (range 
10−1 to 10−6) was conducted on an ultra-clean bench. A 100 μL sample 
of the diluted filtrate was plated onto MRS agar for lactic acid bacteria 
cultivation and incubated at 35–36°C for 3 days before counting the 
colonies. Additionally, 100 μL of the dilution was plated onto Potato 
Dextrose Agar plates, incubated at 28°C for 3 days, and then used for 
counting yeast and mold colonies.

2.4 Microbiome sequencing and analysis

To evaluate the effects of additives on fresh material (FM) and 
silage, 10 g of each was mixed with 40 mL of sterile PBS (pH 7.4). The 
mixture was then shaken at 120 rpm for 2 h using an electronic 
oscillator. After filtration through gauze, the filtrate was centrifuged at 
13,000 rpm for 10 min at 4°C. The supernatant was discarded, and the 
pellet was stored on dry ice. Subsequently, an E.Z.N.A.® soil DNA Kit 
(Omega Biotek, Norcross, GA, U.S.) was used to extract the DNA 
according to the manufacturer’s instructions. The final DNA 
concentration and purity were determined using a NanoDrop 2,000 
UV–vis spectrophotometer (Thermo Scientific, Wilmington, 
United  States), and DNA quality was assessed by 1% agarose 
gel electrophoresis.

The V3-V4 region of the 16S rRNA gene was amplified with the 
primer pair 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R 
(5′-GGACTACHVGGGTWTCTAAT-3′). Polymerase chain reaction 

amplification was conducted as described previously (Hu et al., 2020). 
Amplified fragments were sequenced on an Illumina MiSeq PE300 
platform (Majorbio Biopharm Technology Co., Ltd., Shanghai, 
China). Raw Fastq files were merged by their overlapping regions with 
overlaps of >10 bps using Trimmomatic (Bolger et  al., 2014). The 
merged sequences were filtered by removing sequences with a 
mismatch ratio up to 0.2 and bases containing N to obtain optimized 
sequences. QIIME (Caporaso et al., 2010) was used to pick operational 
taxonomic units (OTUs) based on 97% sequence identity and to assess 
sequence quality. Potential chimeras were removed using Usearch 
(version 7.1) (Edgar, 2013). OTUs present in negative control 
amplifications were also removed prior to analysis. Any OTU 
containing only 1 sequence was removed. The primary OTU 
sequences were subjected to taxonomic analysis using the Ribosomal 
Database Project Classifier (version 2.2) and the 16S rRNA database 
(Silva v138), with a confidence level of 0.7 (Yang et  al., 2019). 
Chloroplast and mitochondrial sequences were removed from further 
analysis. Alpha diversity and beta diversity were determined by 
random normalization to the same sequence using QIIME2 (Douglas 
et  al., 2018). Microbial relative abundance was used to represent 
bacterial classification. We also used linear discriminant analysis effect 
size (LEfSe) to identify significant associations between bacterial taxa 
in the treatments (Segata et al., 2011). The 16S rRNA gene sequences 
of bacterial colonies were annotated and predicted for Kyoto 
Encyclopedia of Genes and Genomes (KEGG) functions using 
Tax4Fun (version 0.3.1) (Aßhauer et al., 2015).

2.5 Statistical analyses

Statistical analyses were conducted using SPSS 26.0 software 
(SPSS, Chicago, Illinois, USA) for Windows. Each silage treatment 
index underwent a one-way analysis of variance (ANOVA), and a 
general linear model (GLM) was applied for an interaction effect on 
ensiling days (D) and additive treatment (T). Duncan’s multiple 
comparison method identified significant differences between 
treatment means. Effects were considered significant at p < 0.05.

3 Results

3.1 Chemical characterizing and microbial 
counts of FM

The nutritional content of the soybean-corn whole-plant mix lies 
between that of soybean and corn, with a DM content of 38.49% FM, 
WSC content of 5.09% DM, and epiphytic LAB and yeast counts of 
5.12 log10 cfu/g FM and 5.47 log10 cfu/g FM, respectively (Table 1).

3.2 Effect of additives on the chemical 
characterizing in mixed silage

After 14 days of ensiling, the WSC content in CK was significantly 
higher (p < 0.05) than that in LP. After 28 days, the CP content of LP 
was significantly higher (p < 0.05) than that of CK and LPB. After 
56 days, the DM and CP contents of LP, LB, and LPB showed an 
increase compared to CK, but no significant differences were observed 
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among the treatment groups. The WSC content in LB and LP was 
significantly lower (p < 0.05) than that in CK (Table 2).

3.3 Effect of additives on the fermentation 
quality in mixed silage

After 14 and 28 days of ensiling, the pH values of the LP, LB, and 
LPB groups were significantly lower than that of the CK group 
(p < 0.05), and the LB group had a significantly greater AA content 
than the other groups (p < 0.05). After 14 days, the LA content of LP 
and LPB was significantly higher than that of CK and LB (p < 0.05). 
After 28 days, the NH3-N content of LP and LB was significantly lower 
than that of CK (p < 0.05), and LPB had a significantly lower PA 
content than the other groups (p < 0.05). After 56 days of ensiling, the 
pH value of LP, LB, and LPB remained significantly lower than that of 
CK (p < 0.05). The NH3-N content of LB was significantly lower than 
that of the other groups (p < 0.05), and the NH3-N content of LP and 
LPB was significantly lower than that of CK (p < 0.05). The AA content 
of LB was significantly higher than that of CK and LP (p < 0.05). 
However, no significant difference in LA content between the groups 
was observed (p > 0.05) (Table 3).

3.4 Effect of additives on the aerobic 
stability in mixed silage

After 56 days of ensiling followed by seven days of aerobic 
exposure, the aerobic stability time of the silage treated with LB was 
significantly longer than that of the other groups (p < 0.05), as depicted 
in Figures 1A,B. On the fifth and seventh days of aerobic exposure, the 
yeast and mold counts in LB-treated silage were significantly lower 

than those in LP, LPB, and CK (p < 0.05), as shown in Figures 1D,E. On 
the seventh day of aerobic exposure, the counts of LAB were 
significantly greater in the LP, LB, and LPB treatments than in the CK 
treatment (p < 0.05), as shown in Figure 1C. Furthermore, the counts 
of yeast and mold in the silage treated with LPB were significantly 
lower than those in CK and LP (p < 0.05), according to Figures 1D,E.

3.5 Effect of additives on the microbial 
diversity in mixed silage

High-throughput 16S rRNA gene sequencing was performed on 
39 samples, yielding 1,895,170 valid sequences classified into 659 
OTUs. VENN analysis identified 112 shared OTUs across different 
silage feed groups (Figure  2A). Principal Coordinates Analysis 
(PCoA) of β-diversity demonstrated clear segregation of bacterial 
communities between silage and FM (Figure 2B). After 56 days of 
ensiling, microbial α-diversity did not exhibit significant differences 
among groups (p > 0.05) (Table  4). The coverage index was 0.99, 
indicating that the sequencing results accurately reflected the 
microbial community’s characteristics (Table 4).

In FM and silage samples, 24 phyla were identified, with the top 10 
listed by abundance (Figure 3A). In FM, Proteobacteria dominated 
(91.78%). After ensiling, Firmicutes became the dominant phylum in 
all groups, reaching 69.92% in CK56 silage; in LP56, LB56, and LPB56 
treated silages, Firmicutes represented 77.79, 84.93, and 72.74%, 
respectively. A total of 358 genera were detected across the samples, 
with the top 10 listed by abundance (Figure 3B). The dominant genera 
in FM included Serratia (9.81%), Asaia (27.64%), unclassified_f__
Erwiniaceae (11.72%), and Pantoea (7.67%). In silage, Lactobacillus 
predominated. In CK56 silage, Lactobacillus (63.12%) and Asaia 
(7.47%) were the main genera; in LP, LB, and LPB treated silages, 

TABLE 2 Chemical characterizing of whole-plant soybean-corn mixed silage.

Item Ensiling days Treatments SEM 
(n  =  3)

p-value

CK LP LB LPB T D T  ×  D

DM (%FM)

14 37.54 38.7 37.80 38.03

0.574 NS * NS28 36.31 38.06 37.47 37.40

56 36.05 37.36 36.67 36.48

CP (%DM)

14 11.61 12.25 11.88 11.67

0.208 * * NS28 11.47b 12.17a 11.80ab 11.64b

56 11.26 11.41 11.50 11.39

ADF (%DM)

14 20.33 20.69 20.42 19.01

1.1019 NS ** NS28 19.60 18.37 18.13 17.75

56 19.48 16.38 15.84 17.51

NDF (%DM)

14 35.05 35.64 36.17 35.97

0.926 * ** NS28 34.66 32.15 33.55 35.64

56 33.70 29.88 30.19 32.74

WSC (%DM)

14 4.62a 2.95b 3.87ab 3.61ab

0.221 ** ** NS28 2.43 2.02 2.06 2.05

56 2.22a 1.75b 1.83b 1.96ab

Different letters in the same row indicate significant differences (p < 0.05), and the same or no letters indicate non-significant differences (p > 0.05). **p < 0.01; *p < 0.05; and NS, p ≥ 0.05. CK, 
no additive; LP, L. plantarum; LB, L. buchneri; LPB, L. plantarum + L. buchneri. SEM, standard error of the mean. T, additive treatment; D, ensiling days; T × D, interaction of additive treatment 
and ensiling days; NS, not significant.
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Lactobacillus represented 74.62, 63.82, and 66.42%, respectively, with 
Asaia at 2.11, 3.64, and 7.85%. Weissella abundances were 14.88, 13.95, 
and 14.32% in LB14, LB28, and LB56 treated silages, respectively. 
LEfSe analysis (LDA = 4) revealed significant taxonomic differences 
between FM and treatments (Figure 3C), with g_Asaia concentrated 
in the FM group. After ensiling, g__Leuconostocaceae was enriched in 
CK treatment, g__Weissella in LB, and g__Lactobacillus in 
LP treatments.

3.6 Association between microbial 
community and fermentation features in 
mixed silage

Figure 4 illustrates the relationships between silage fermentation 
parameters and bacterial populations at the genus level. Lactobacillus 
positively correlated with LA and AA, and negatively with pH, NH3-N, 
and PA. AA showed a positive correlation with the genera Weissella 
and Leuconostoc. Serratia, Pantoea, and Stenotrophomonas were 
positively associated with pH, NH3-N, and PA.

3.7 Predicted functions of the microbial 
community in mixed silage

Tax4Fun inferred potential functions of the bacterial communities 
in silage after 56 days of fermentation. Six primary metabolic pathways 
were identified, with critical predictive genes related to metabolism 
constituting approximately 73% of the silage genomic repertoire 
(Figure 5A). The top 20 metabolic pathways in the secondary pathways 
are listed (Figure 5B). Compared to the control, LP, LB, and LPB 
showed a significantly lower abundance in amino acid metabolism 

(p < 0.05) and a significantly higher abundance in nucleotide 
metabolism and sugar biosynthesis and metabolism (p < 0.05).

4 Discussion

The nutrient contents required for silage production include DM 
content above 30% (Guyader et al., 2018), WSC content over 5% DM 
(Ni et al., 2017), and LAB count greater than 5.00 log10 CFU/g FM (Cai 
et al., 1998). After blending whole-plant soybean and corn in a 40:60 
ratio, DM, WSC, and LAB counts adjusted to 38.49% FW, 5.02% DM, 
and 5.19 log10 CFU/g FM, respectively, meeting these requirements. 
The yeast count (5.47 log10 CFU/g FM) was higher than LAB, 
suggesting competition for substrate in early silage stages and 
indicating the necessity of LAB inoculation in mixed silage.

4.1 Effect of LAB on the chemical 
composition of mixed silage

As anticipated, the DM and WSC content in ensiled material 
decreased compared to FM and further decreased with silage time. 
This reduction is primarily due to microorganisms converting 
nutrients such as DM and WSC into various energy forms during 
ensiling (Wang S. et al., 2022). After 56 days, the DM contents of LP, 
LB, and LPB increased by 3.6, 1.7, and 1.2%, respectively, compared 
to those of the CK group. This shows that vaccination with LAB can 
inhibit DM loss in WPSCS, which is consistent with the results of Ren 
et al. (2020) and Xiong et al. (2022). During mixed silage fermentation, 
LAB and other microorganisms consume WSC, produce organic 
acids, and reduce WSC content (Fang et al., 2022). Consequently, 
WSC content is lower in the additive group than in the control group 

TABLE 3 Fermentation quality of whole-plant soybean-corn mixed silage.

Item Ensiling days Treatments SEM 
(n  =  3)

p value

CK LP LB LPB T D T  ×  D

pH

14 4.33a 4.07b 4.13b 4.11b

0.027 ** ** NS28 4.17a 3.90c 4.02b 3.97bc

56 4.03a 3.87b 3.91b 3.93b

NH3-N (%DM)

14 0.17 0.15 0.15 0.16

0.010 ** ** NS28 0.24a 0.19bc 0.17c 0.21ab

56 0.27a 0.22b 0.18c 0.23b

LA (%DM)

14 6.68c 9.57a 7.62b 9.31a

0.411 ** ** NS28 7.82 9.72 9.18 9.64

56 9.66 10.47 9.78 10.15

AA (%DM)

14 2.99b 2.86b 4.92a 3.29b

0.351 ** * NS28 3.17b 3.13b 5.40a 3.47b

56 3.70c 3.66c 6.03a 4.50b

PA (%DM)

14 0 0.07 0.02 0.04

0.04 * ** **28 0.32a 0.38a 0.25a 0.01b

56 0.69 0.66 0.67 0.74

Different letters in the same row indicate significant differences (p < 0.05), and the same or no letters indicate non-significant differences (p > 0.05). **p < 0.01; *p < 0.05; and NS, p ≥ 0.05. CK, 
no additive; LP, L. plantarum; LB, L. buchneri; LPB, L. plantarum + L. buchneri. SEM, standard error of the mean. T, additive treatment; D, ensiling days; T × D, interaction of additive treatment 
and ensiling days; NS, not significant.
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due to significant WSC consumption by LAB during fermentation. In 
this study, the CP contents of LP, LB, and LPB showed an increase 
compared to the CK group, correlating with Dong et al. (2022), who 
found that lower pH inhibits plant protease and microbial activities, 
retaining CP content.

4.2 Effect of LAB on fermentation quality 
and aerobic stability in mixed silage

Ensiling systems require low pH for feed preservation and 
inhibiting harmful microorganisms and molds (Zhang et al., 2022). 
This study aligns with Si et al. (2023), demonstrating an initial 
rapid pH drop in early silage fermentation, continuing as 
fermentation progressed. The control silage’s pH (4.03) at 56 days 

was slightly lower than the pH (4.44) reported by Kizilsimsek et al. 
(2017) for 60-day corn and soybean silage, likely due to higher 
WSC content in the whole-plant corn silage. Notably, the pH of 
silage inoculated with LAB after 56 days of fermentation was 
significantly lower than that of the control group, highlighting 
LAB’s effectiveness in silage fermentation. The LP treatment group 
maintained a consistently low pH during silage, attributed to LP’s 
role as a homofermentative bacterium that increases LAB 
population and promotes lactic acid metabolism, thereby 
accelerating pH reduction (Mu et al., 2020). Proteolysis is a critical 
issue in silage fermentation, with high NH3-N content indicating 
extensive protein degradation (Tao et al., 2020). This study found 
that after 56 days of ensiling, the NH3-N concentration in the 
additive-treated silages was lower compared to CK silages, aligning 
with Dong et al. (2022), who reported LAB’s role in improving 

FIGURE 1

Dynamics of mixed silage temperature (°C) versus ambient temperature during aerobic exposure (A) and the time when the silage temperature was 
2°C below ambient temperature (B). Dynamics of [(C) LAB; (D) Yeast; (E) Mold] during aerobic exposure. Different letters indicate significant differences 
(p  <  0.05), and the same or no letters indicate non-significant differences (p  >  0.05).
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silage fermentation quality and reducing protein hydrolysis. The 
decrease in NH3-N content in additive-treated silage may result 
from the inhibition of Clostridium and other proteolytic bacteria 
by the low pH environment, thereby preserving the CP content 
(Dong et al., 2022). Organic acid content and composition patterns 
serve as essential indicators of silage quality (Jiang et al., 2020). 
After 14 days of ensiling, the LA content in the LP group surpassed 
that in the other three groups. However, by day 56, the differences 
in LA content among all groups were not statistically significant. 
In the early stages of silage, homofermentative bacteria rapidly 
consume WSC, leading to high lactic acid production. However, in 
later stages, limited LAB numbers and WSC content may result in 
minimal changes in LA (Xu et al., 2019). WSC deficiency induces 
a shift in fermentation type from homo-to hetero-fermentation, 
with hetero-fermenters often dominating the ensiling process 
during extended ensiling periods (Okoye et al., 2023). Compared 
to AA content (1.3–5.5 g/kg DM) reported in whole-plant corn 
silage by Huang et al. (2021), this study found that mixed soybean 
corn whole-plant silage had higher AA content (2.99–6.03 g/kg 
DM). The addition of whole soybeans may influence the increase 
in AA content in mixed silage, as studies indicate that low sugar 
content in legumes induces a shift in LAB fermentation from homo 

to hetero fermentation (Mu et  al., 2020). Hetero-fermentation 
primarily produces lactic acid and acetic acid, the latter being an 
effective preservative that inhibits yeast and mold growth. High 
levels of acetic acid indicate optimal aerobic stability in silage 
(Arriola et al., 2021). After 56 days of ensiling, silage treated with 
LB exhibited a higher acetic acid content than the three other 
groups, significantly higher aerobic stability than the CK and LP 
groups, and the lowest yeast and mold counts post-exposure. These 
findings align with those of Keshri et  al. (2019) and Wu et  al. 
(2023), confirming that silage supplemented with LB demonstrates 
superior aerobic stability.

4.3 Effect of LAB on the microbial diversity 
in mixed silage

Studies of various silage microorganisms have shown that 
Proteobacteria initially dominate in FM but are gradually 
replaced by Firmicutes post-ensiling (Zhao et al., 2021; Zi et al., 
2021; Li et  al., 2022), consistent with results of this study. 
Proteobacteria, the largest bacterial phylum, is succeeded by 
Firmicutes, which includes a variety of LAB crucial for silage 

FIGURE 2

Venn diagram (A) and nonmetric multidimensional scaling (B) of the bacterial community at the operational taxonomic unit level. FM, fresh material; 
CK, no additive; LP, L. plantarum; LB, L. buchneri; LPB, L. plantarum + L. buchneri. 14, 28, and 56 indicate 14, 28, and 56  days of ensiling, respectively.

TABLE 4 Alpha diversity of whole-plant soybean-corn mixed silage.

Items CK56 LP56 LB56 LPB56 SEM (n  =  3) p value

Sequence 22,922 19,969 26,997 25,280 6365.09 0.719

OTUS 195 174 177 183 15.94 0.587

Simpson index 0.41 0.31 0.37 0.25 0.06 0.134

Ace index 281 303 300 351 43.46 0.467

Chao 1 index 254 266 259 289 33.10 0.736

Good Coverage index 0.99 0.99 0.99 0.99 0.00 0.369

Different letters in the same row indicate significant differences (p < 0.05), and the same or no letters indicate non-significant differences (p > 0.05). **p < 0.01; *p < 0.05; and NS, p ≥ 0.05. CK, 
no additive; LP, L. plantarum; LB, L. buchneri; LPB, L. plantarum + L. buchneri. SEM, standard error of the mean. T, additive treatment; D, ensiling days; T × D, interaction of additive treatment 
and ensiling days; NS, not significant.
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fermentation (Li et al., 2022). After 56 days of ensiling, a higher 
abundance of Firmicutes was observed in the additive group than 
in the control, suggesting a higher count of LAB. The majority of 
epiphytic bacteria in fresh raw materials are not essential for 
silage, which exhibits a significantly different microbial 
community composition (Guo et al., 2021). Predominant genera 
identified in FM in this study were Serratia, Asia, unclassified_f_
Erwiniaceae, and Pantoea. Post-ensiling, Lactobacillus gradually 
became the dominant genus in each group. Lactobacillus is 
crucial in silage, producing LA, reducing pH, suppressing 
undesirable bacteria, and often dominating in high-quality silage 
(He et  al., 2019; Li et  al., 2021). The relative abundance of 
Lactobacillus was higher in the inoculated group than in the 
control, likely due to LAB addition fostering a conducive 
environment for LAB growth. This is supported by findings of Ni 
et al. (2017) and Wang Q. et al. (2022), who reported increased 
Lactobacillus abundance and altered microbial community 
structure in silage following LAB inoculation. Weissella, a hetero-
fermentative LAB, colonizes early in silage. As pH decreases, it is 
progressively replaced by acid-resistant lactobacilli (Wang et al., 
2019). LB-treated silages in this study consistently showed high 
Weissella abundance, potentially due to LB’s enhancement of 
Weissella competitiveness during silaging. Bai et  al. (2020) 
observed a similar increase in Weissella abundance in LB-treated 
alfalfa silage after 60 days of fermentation. Additionally, LEfSe 
results indicated that Leuconostoc was enriched in CK groups, 
while Weissella was enriched in the LB group. Both primarily 

perform hetero-fermentation, converting various organic 
compounds into acetic acid (Chun et al., 2017), contributing to 
elevated acetic acid levels in CK and LB silage groups.

During the anaerobic fermentation process, microorganisms 
such as LAB play an indispensable role. They convert nutrients 
into volatile fatty acids and play a key role in improving silage 
quality and aerobic stability (Holzer et al., 2001). In this study, a 
positive correlation between Lactobacillus and LA and AA was 
shown by Spearman correlation analysis. This finding is 
consistent with the results of Sun et al. (2021) on whole plant 
corn fermentation patterns, further confirming the importance 
of lactic acid bacteria in the production of LA and AA. Similarly, 
the production of acetic acid is closely related to the activities of 
Weissella and Leuconostoc, which serve as hetero-lactic acid 
bacteria in silage fermentation and are mainly responsible for the 
production of LA and AA (Wang et al., 2019). The increased AA 
content in the LB group silages and the high abundance of these 
two bacterial genera may be the reasons for the prolonged aerobic 
stability of the LB group. Enterobacter can not only convert LA 
to AA and other organic acids but also metabolize protein to 
NH3-N, resulting in poor silage fermentation (Spoelstra, 1987). 
The positive correlation between the abundances of Serratia and 
Pantoea, which are members of the Enterobacteriaceae family, 
and NH3-N in this study further confirmed the protein-degrading 
role of Enterobacteriaceae. Some studies have shown that 
microbial metabolism results in nutrient consumption during 
silage. Fermentation of Enterobacteriaceae leads to the 

FIGURE 3

(A) The relative abundance (%) of bacterial phyla (at least 1% in one group) in FM and forage oat silage at the phylum level. (B) The relative abundance 
(%) of bacterial phyla (at least 1% in one group) in FM and forage oat silage at the genus level. (C) Linear discriminant analysis effect size (LEfSe) was 
used to assess differences in microbial communities between FM and silage (LDA score  >  4.0). The length of the histogram represents the LDA score of 
different species. FM, fresh material; CK, no additive; LP, L. plantarum; LB, L. buchneri; LPB, L. plantarum + L. buchneri. 14, 28, and 56 indicate 14, 28, 
and 56  days of ensiling, respectively.
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degradation of protein; it can ferment LA or glucose to AA and 
BA under anaerobic conditions, and Enterobacter and 
Lactobacillus also compete for limited nutrients; therefore, 
Enterobacter is not conducive to maintaining the fermentation 
quality and nutrients of mixed silage (Zong et al., 2023).

Despite high-throughput sequencing technology’s ability to 
analyze microbial community structure and diversity, it does not 
directly predict changes in bacterial community functions. To 
address this, Tax4fun, a tool for predictive microbial community 
functions, was utilized in this study to predict the KEGG 

FIGURE 4

This heatmap displays Pearson’s correlations between genus-level microbial communities and fermentation parameters. Positive and negative 
correlations are marked in red and blue, respectively. *p  <  0.05; **p  <  0.01; ***p  <  0.001. NH3-N, ammonia nitrogen; LA, lactic acid; AA, acetic acid; PA, 
propionic acid.

FIGURE 5

Tax4Fun analysis was used to elucidate the functional metabolic profile of the bacterial community in silage fermented for 56  days. (A) Level 1 
metabolic pathways; (B) Level 2 Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologue functional predictions of the relative abundances of 
the top 20 metabolic function. *p  <  0.05; **p  <  0.01; ***p  <  0.001. CK, no additive; LP, L. plantarum; LB, L. buchneri; LPB, L. plantarum + L. buchneri. 56 
indicates 56  days of ensiling.
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metabolic profiles of bacterial communities within silage 
samples. The most abundant level 1 pathway was metabolic, 
aligning with previous findings that bacteria in silage efficiently 
convert substrates into various metabolites, leading to richer 
metabolic pathways (Xiao et al., 2022). Amino acids, vital for 
protein synthesis and primary metabolism in soybean-corn 
mixed crop silage, should be preserved from excessive catabolism 
during fermentation (Wang Y.-L. et al., 2022). At pathway level 
2, the abundance of the amino acid metabolic pathways of LP, 
LB, and LPB was lower than that of the control group, which 
further explains the lower ammonia nitrogen levels in the 
inoculated groups. This suggests that LAB addition can inhibit 
mixed silage protein hydrolysis, likely due to lower pH, as 
demonstrated by Flythe and Russell (2004), who noted that 
acidic fermentation conditions can interfere with amino acid 
metabolism in forage. Nucleotides, crucial for DNA synthesis, 
energy provision, and participation in biochemical and 
regulatory reactions in bacteria (Bai et  al., 2022), showed 
enhanced metabolism in the inoculated group compared to the 
control, as evidenced by Zhao et al. (2023). This enhancement in 
nucleotide metabolism in the inoculated group may be attributed 
to increased LAB relative abundance during silage processing. 
Furthermore, sugar biosynthesis and metabolism were 
significantly higher in the inoculated group, correlating with 
findings by Hisham et  al. (2022). However, linking sugar 
biosynthesis to metabolism and fermentation requires further 
verification through histological studies such as transcriptomics, 
proteomics, and metabolomics.

5 Conclusion

After inoculation with lactic acid bacteria, the fermentation 
quality of whole-plant soybean and whole-plant corn mixed 
silages was satisfactory. This study showed that inoculation with 
LAB increased the lactic acid content of mixed silage while 
decreasing the pH, dry matter loss, and NH3-N content. Moreover, 
the aerobic stability time of mixed silages inoculated with LB was 
prolonged. Lactobacillus was relatively abundant in the LP-treated 
silages, and Weissella was relatively abundant in the LB-treated 
silages. Gene function prediction results showed that the 
metabolic abundance of amino acids in the mixed silage 
inoculated with LAB was lower than that in the CK group, 
indicating that adding LAB may inhibit the degradation of 
proteins in the mixed silage.
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